
CS 395T: Sublinear Algorithms Fall 2016

Lecture 6 — September 13, 2016

Prof. Eric Price Scribe: Shanshan Wu, Yitao Chen

1 Overview

Recap of last lecture. We talked about Johnson-Lindenstrauss (JL) lemma [JL84] and how to
construct a distribution of linear maps that satisfies the JL guarantee. The main result is that let
A ∈ Rm×n with each entry drawn i.i.d. from a zero-mean subgaussian distribution with variance
. 1/m, if m = O(1

ε2
log 1

δ), then we have for 0 < ε, δ < 1,

∀x ∈ Rn, P(|‖Ax‖22 − ‖x‖
2
2| ≥ ε‖x‖

2
2) ≤ δ. (1)

The key idea is to show that ‖Ax‖22 is subgamma distributed:

Aij ∼ subgaussian(1/m)

=⇒ Aijxj ∼ subgaussian(x2i /m)

=⇒
∑
j

Aijxj ∼ subgaussian(‖x‖22/m)

=⇒ (
∑
j

Aijxj)
2 ∼ subexponential(‖x‖22/m)

=⇒ ‖Ax‖22 =
∑
i

(
∑
j

Aijxj)
2 ∼ subgamma(‖x‖42/m, ‖x‖

2
2/m) (2)

Since E[‖Ax‖22] = ‖x‖22, we can use subgamma’s tail bound to prove concentration of ‖Ax‖22:

P(|‖Ax‖22 − ‖x‖
2
2| ≥ ε‖x‖

2
2) ≤ 2e−

1
2
min(ε2m,εm) = 2e−

1
2
ε2m ≤ δ,

where the last inequality follows from the assumption that m = O(1
ε2

log 1
δ).

Overview of this lecture. We will talk about two problems:

1. Storing the linear mapping A requires O(mn) space, can we do better (sublinear in n)?

2. How to find the most frequent items (“heavy hitters”) in a data stream?

2 AMS-sketch

In order to reduce the space usage of storing A, we relax the original full independence assumption
to limited independence, and use hash functions to generate binary values for Aij . Here is a formal
definition for k−wise independence.

1

Definition 1. H = {h : [m]→ [l]} is a k-wise independent hash family if ∀i1 6= i2 6= · · · 6= ik ∈ [n]
and ∀j1, j2, · · · , jk ∈ [l],

P
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

lk
.

The key idea of using 4-wise independent hash function comes from the famous AMS sketch1, which
originates in a paper by Alon, Matias and Szegedy [AMS99]. It is initially designed to estimate the
second frequency moments of streaming data. The algorithm works as follows.

1. Pick m random hash function h1, h2, ..., hm from a 4-wise independent hash family H = {h :
[n]→ {− 1√

m
,+ 1√

m
}.

2. Let Aij = hi(j), and compute yi =
∑

j Aijxj , for all i = 1, 2, ..,m.

3. Output
∑

i y
2
i , which is essentially ‖Ax‖22.

To see how this algorithm performs, we now compute the mean and variance of
∑

i y
2
i . And we will

make use of the property of 4-wise independence.

E[
∑
i

y2i] = mE[y21] = mE[(
∑
j

A1jxj)
2] = mE[

∑
j

x2j/m+
∑
j 6=k

A1jA1kxjxk] = ‖x‖22.

Var(
∑
i

y2i) = Var(‖Ax‖22) = E[(
∑
i

(
∑
j

Aijxj)
2 − ‖x‖22)

2] = O(‖x‖42/m), (3)

where that last equality comes from the fact that (
∑

i(
∑

j Aijxj)
2 − ‖x‖22)2 only involves upto

4 terms of Aij , and with 4-wise independence, we can directly use the result achieved by full
independence. The O(‖x‖42/m) is implied by the previous Eq. (2).

We have shown that the AMS algorithm outputs an unbiased estimator of ‖x‖22 with variance
O(‖x‖42/m). Using Chebyshev’s inequality gives the JL guarantee in Eq. (1) with probability at
least 3/4:

P(|‖Ax‖22 − ‖x‖
2
2| ≥ ε‖x‖

2
2) ≤

Var(
∑

i y
2
i)

ε2‖x‖42
= O(

1

ε2m
) ≤ 1/4,

where the last inequality holds for m = O(1
ε2

).

2.1 High-probability bound

There are two ways to get a high-probability bound with dependence log 1
δ . The first method

is to use the “median of mean” trick: we can perform the algorithm O(log 1
δ) times and output

the median. Using Chernoff’s inequality2, we can show that the median satisfies Eq. (1) with
probability at least 1− δ. The total space usage is O(1

ε2
log 1

δ log n).

Another way of achieving O(log 1
δ) dependence is to use higher moments’ bound. As shown in

Figure 1, the bounds achieved by higher moments are better in the tail, but are worse otherwise (due
to larger constants). In general, the k-th moment bound of a subguassian (reps. subexponential)
variable has the form of kk/2/tk (reps. kk/tk).

1It is sometimes called the “tug-of-war” estimator.
2To be more specific, we only need to bound the probability that more than half of the variables are bad.

2

0 1 2 3 4 5 6
10

-10

10
-5

10
0

10
5

Standard Gaussian

1/t
2

6/t
4

Figure 1: A comparison of different moments’ bound: higher moments perform better in the tail,
but worse close in (due to larger constants).

The idea of using higher moments is a simple extension of what we have done in Eq. (3): instead
of using 4-wise independence to bound the second moment, more generally, if we have 2k-wise
independence, we can then compute the k-th moment of |‖Ax‖22 − ‖x‖

2
2| by treating all the Aij ’s

as independent. In other words, |‖Ax‖22−‖x‖
2
2|
k should have the same behavior as that of an i.i.d.

subgaussian matrix. More specifically, according to Eq. (2), ‖Ax‖22 − ‖x‖
2
2 should behave like a

subexponential3 variable with parameter ‖x‖22/
√
m, i.e.,

E[|‖Ax‖22 − ‖x‖
2
2|
k] ≤ kk(‖x‖22/

√
m)k.

Using the Chebyshev bound, we get

P(|‖Ax‖22 − ‖x‖
2
2| > ε‖x‖22) = P(|‖Ax‖22 − ‖x‖

2
2|
k > εk‖x‖2k2)

≤
E[|‖Ax‖22 − ‖x‖

2
2|
k]

εk‖x‖2k2

≤ kk

(ε
√
m)k

. (4)

The above bound holds for any k as long as we use 2k-wise independent hash function, so we can
optimize over k to get the best bound. Taking the derivate of k log(k

ε
√
m

) and setting it to be zero,

we get k = ε
√
m/e and

P(|‖Ax‖22 − ‖x‖
2
2| > ε‖x‖22) ≤ min

k

kk

(ε
√
m)k

= e−ε
√
m/e.

Setting the failure probability to be at most δ gives us the desired m = O(1
ε2

log 1
δ). Compared to

the 4-wise independent hash family used in the original AMS sketch, we now need to use O(ε
√
m/e)-

wise hash family. The space complexity for this method is O(1
ε2

log 1
δ log n).

3According the definition of subgamma distribution, a subgamma(‖x‖42/m, ‖x‖22/m) variable is also a
subgamma(‖x‖42/m, ‖x‖22/

√
m) variable, and hence is subexponetial.

3

3 Heavy hitters

The next problem that we are going to study is the Heavy Hitter problem. Given a (turnstile) stream
of items, our goal is to find the “heavy hitters”, i.e., the most frequent items. More formally, we
are given a data stream S = (s1, s2, · · ·), where si ∈ [n]. Let x ∈ Rn be the final histogram, i.e., xi
represents the number of times that item i appears. The goal is to find (approximately)

{ (i, xi) | xi is “large” }.

Furthermore, we want to get an estimate x̂ ∈ Rn of x, such that ‖x̂− x‖∞ ≤ bound.

How small can the bound be? Here is a summary of results achieved by three algorithms.

Guarantee Method Bound Space

l∞/l1 Heavy Hitters ε‖x‖1 O(lognε)

l∞/l1 Count-min Sketch [CM05] 1
K ‖x− xK‖1 O(K log n)

l∞/l2 Count Sketch [CCF02] 1√
K
‖x− xK‖2 O(K log n)

Remarks:

• Let xK ∈ Rn denote the K largest entries of x. Then ‖x− xK‖1 represents total numbers of
of less frequent items.

• In homework, we will show that 1√
K
‖x− x2K‖2 ≤

1
K ‖x− xK‖1.

3.1 Preliminaries

First, we are interested in how {xi} usually behaves in practice.

Zipf’s Law: The ith most common word in English appears approximately 1/i times.

Power Law: The ith largest xi appears approximately 1/iα for some α > 0.

Power law has been widely observed in URLs in web, frequencies in music, population in cities, etc.
Empirically, power law approximately holds for large entries.

Given power law, we can calculate different norms of x with parameter α,

‖x‖1 =

n∑
i=1

1

iα
=

1 if α > 1
log n if α = 1
n1−α if α < 1

‖x‖2 =

√√√√ n∑
i=1

1

i2α
=

1 if α > 1/2√

log n if α = 1/2

n1/2−α if α < 1/2

4

(a) Ideal power law (b) Actual data, often

Figure 2: The log log plot of power law: it empirically holds for large values.

And we can also calculate ‖x− xK‖,

‖x− xK‖1 =

n∑
i=K+1

1

iα
=

K1−α if α > 1
log n

K if α = 1
n1−α if α < 1

‖x− xK‖2 =

√√√√ n∑
i=K+1

1

i2α
=

K1/2−α if α > 1/2√

log n
K if α = 1/2

n1/2−α if α < 1/2

The following table summarizes how the bounds of different methods behave

Method Bound equals α > 1 1/2 < α < 1

Heavy Hitters 1
K ‖x‖1 = 1/K n1−α/K

Count-min Sketch 1
K ‖x− xK‖1 = 1/Kα n1−α/K

Count Sketch 1√
K
‖x− xK‖2 = 1/Kα 1/Kα

We see count-sketch is much better than others when 1/2 < α < 1, which is the most common
regime.

3.2 Heavy Hitters Algorithm

One potential way of (approximately) finding the heavy hitters is to sample a subset of the stream
and find the most frequent item in the sampled stream. However, the sampling method has two
issues: 1. It can not handle deletions; 2. It can not handle sparsity.

Another approach is to hash the stream to a smaller universe B = O(K). According to pigeonhole
principle, collision happens. However, in the following, we will argue that even count in the collided
items, it is still a good estimate.

5

Here is the “Heavy Hitters” algorithm:

1. For r = 1 to R = O(log n), in parallel:
(a) Pick a pairwise independent hash function hr : [n]→ [B].

(b) Record Y (r), where Y
(r)
j =

∑
u:hr(u)=j

xu, for j ∈ [B].

2. Estimate x̂
(r)
u = Y

(r)
h(u), for all r and u.

3. Compute x̂ = f(x(1), . . . , x(R)), where f is some function (we will specify later).

Analysis: We first focus on any fixed hash function r and fixed item u. Without loss of generality,
we let r = 1 and omit the superscription. Suppose it is the strict turnstile model: xu ≥ 0,∀u, then
the collisions only increase our estimate, x̂u − xu ≥ 0,∀u.

Taking the expectation of the residual gives

E[x̂u − xu] = E

[∑
u′:h(u′)=h(u),u′ 6=u

xu′

]

= E

[∑
u′ 6=u

xu · 1{h(u′) = h(u)}

]
=

∑
u′ 6=u

xu′ P[h(u′) = h(u)]

≤ ‖x‖1/B.

If B = 4K, by Markov inequality,

P

[
|x̂u − xu| >

‖x‖1
K

]
≤ E[x̂u − xu]

‖x‖1/K
≤
‖x‖1/B
‖x‖1/K

=
K

B
=

1

4
.

So for any fixed u, we get x̂u − xu ≤ ‖x‖1/K with probability at least 3/4.

To bound the infinity norm ‖x̂u − xu‖∞, we require P[|x̂u − xu| > ‖x‖1/K] < 1/4 for all u ∈ [n].
The idea is to create R independent hash functions, and take the minimum of the outputs, i.e.,

x̂u = min
r
x̂(r)u , ∀u ∈ [n].

Since we are considering the strict turnstile model: x̂
(r)
u ≥ xu, ∀r, taking the minimum over all R

estimates will get us closer to the true xu. The minimum value is bad if and only if all R estimates
are bad, so the failure probability is (recall R = O(log n))

P

[
|x̂u − xu| >

‖x‖1
K

]
≤ 1

4R
≤ O(

1

n2
).

Using the union bound, we have that ‖x̂− x‖∞ ≤ ‖x‖1/K with probability at least 1− 1/n.

The total space used is O(K log n), because each hashing uses O(K) space and we repeat R =
O(log n) times.

6

3.3 Extentions

• What if xu can be less than 0 (non-strict turnstile model) ?

1. We still have |x̂(r)u − xu| ≤ ‖x‖1/K with probability 3/4.
2. But min x̂(r) is bad. We can replace min with median, which gives worse constant under
the same assumptions.

• How to obtain bounds using ‖x− xK‖1/K?
We split x into two parts: the largest K items xK and the rest x − xK . The key idea is
to show that the probability of colliding with the top k most frequent items is small. More
specifically, the probability that item u collides with any of largest K entires of x is

P[h(u) = h(u′) for some other u′ in top K]

≤ K · P[h(u) = h(u′) for fixed u′ 6= u]

= K/B.

where the last equality follows from the pairwise independence of h. Therefore, with proba-
bility at least 1 −K/B, h(u) will not collide with any of top K items. We can then bound
E[x̂u − xu] in terms of ‖x− xK‖1/K as before.

References

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[LN16] Kasper Green Larsen and Jelani Nelson. Optimality of the Johnson-Lindenstrauss Lemma.
arXiv:1609.02094v1, 2016.

[AMS99] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the
Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[CM05] Graham Cormode, S Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55.1 (2005): 58-75.

[CCF02] Moses Charikar, Kevin Chen, Martin Farach-Colton. Finding frequent items in data
streams. International Colloquium on Automata, Languages, and Programming, Springer
Berlin Heidelberg, 2002.

7

