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1 Overview

In this lecture we would like to discuss the problem of graph sketching, specifically the use of
algorithms that utilized limited number of linear measurements on the graph to determine properties
of it. The main algorithm to be learned in the course was introduced by Ahn, Guha, and McGregor
in 2012 [AGM12]. To get an intuition on how to deal with graph sketching problem, topics will be
covered as follows.

1. Define Graph Sketching problem

2. Find a random edge across a cut on the graph

3. Find the number of edges in a cut

4. Find a spanning forest

5. Test for properties

For detail in l0 sampling algorithm, the basic paper provided are:

1. Review of Count-Sketch algorithm originates in a paper by Charikar, Chen, and Farach-
Colton. [CCF02]

2. Finishing an improved version of Count-Sktech introduced by Minton and Price. [MP14]

Many of the materials covered are from the surveys provided by Horlescu and McGregor[SIG14].

2 Preliminaries for Graph Sketching

A graph can be formally defined as a set of pairs (V,E), where

• V is a nonemtpy set defined by all the vertices in a graph

• E is a collection of two-element subsets of V , which represents edges inside a graph

A cut C is defined as a partition of the vertices of a graph into two disjoint subsets.(ie.,S, SC).
One of the ways which we are familiar to is representing the graph G explicitly by the associating
adjacency matrix. However, to ease up the discuss today we would use incidence matrix instead.

1



Given a undirected graph with n vertices, an incidence matrix Z is a Rm×n matrix where m = Cn
2 .

Edges are associate to the row elements of the incidence matrix. To be more precise, given an edge
e across vertices a and b, an element of some matrix M is defined as,

Me,w =


1 if w = a ,

−1 if w = b ,

0 otherwise .

(1)

Define matrix DE ∈ Rm×m to be diagonal and,

(
DE

)
e

=

{
1 if e ∈ E ,

0 otherwise .
(2)

The matrix DE ·M would give us the desired incidence matrix.

Let A ∈ Rs×m, s ≤ m, be a linear sketch. The product of A · DE ·M is the information to be
stored. Now given the stored information, we would like complete the following tasks,

• Find spanning tree or forest

• Test whether the graph is bipartite or not

3 Application of l0 Sampling Algorithm

For instance, we can design A to give answer to

• a random edge crossing some cut C = (S, Sc) on the graph

• the number of edges crossing some cut C = (S, Sc) on the graph

To solve the problem, recall the l0 sampling problem from which the following lemma is provided.

Lemma 1. There exist a random matrix Q ∈ Rd×m with d = O(log2m) such that for any vector
r ∈ Rm, Qr will be some support of r with high probability.

Proof. The proof is straight forward based on the previous results from class. One can check for
fundamental results and details about the problem.

To sample a random edge crossing some cut C = (S, Sc) on the graph we can choose the matrix
A to be the l0 sampling matrix. To calculate the number of edges crossing some cut C on the
graph, we should choose the matrix A to be the l2 sampling matrix given that the summation over
a subset of vertices in an incidence matrix give us the number of edges crossing the cut.
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4 Spanning Forest

Given the results from above, we are capable of sampling a random edge crossing given cuts. Now
let us try to utilize this tool to find a spanning tree/forest on the graph.

Naive Method —First Try

1. Choose a random cut S0 where S0 contains only one vertex u.

2. Use the algorithm above to sample a edge on the cut, which would give us the vertex v
on the other end of the edge.

3. Update Sn as Sn = Sn−1 ∪ {v}, back to the previous step.

If the algorithm worked, how about repeatedly sample the same cut and getting all the edges
crossing the cut in the end? The methods are tempting at the first place, but actually it some flaws
in it. Thus they do not work.

1. Loss of Independence: The first issue is the simple observation that if we repeatedly update
and query S, the random neighbors returned will not be independent. More precisely, it will
depend on the matrix A chosen at the first place.

2. Sketch Updates must be Non-Adaptive: The second issue is more insidious. Suppose we
query the edge crossing cut C and are returned node u. Can we somehow get the sketch Sc

to yield an additional neighbor of v? One idea would be to update Sc by removing u from the
neighborhood of v and then query the updated sketch of Sc. However, this clearly does not
work because otherwise we could repeat the process multiple times and return all neighbors
of v from the O(log2nlogδ−1) size sketch! The issue is that we may not adaptively update
the data being sketched based on the sketch itself.[AGM12]

The correct algorithm is illustrated as figure 1 and summarized as below:

1. Pick a l0 sampling matrix A

2. Sample the edge from all vertices using the l0 sampling algorithm. The algorithm will return
a neighbor(if any) for each vertex. Make the connected vertices a set which also creates a cut
and a subgraph associate to it.

3. Pick another l0 sampling matrix A . For Independence

4. Sample the edge from each cut associates to the sets.

5. If any of the resulting subgraphs is connected, group them to form a new set.

6. Return to step 3 until there is only one component to deal with.
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Figure 1: The algorithm stops since the subgraph is actually the whole graph.

5 Bipartitness problem

First of all, lets review the basic definition of a bipartite graph.

Definition. A graph is bipartite if we can divide its vertices into two sets such that every edge
connects from a set to another.

Or in other words, the vertices in each set is disconnected from one another.

Now the problem is that we have to find way to test bipartitness of the graph using the l0 sampling
algorithm. This can actually be done by a special construction of a new graph G′ from the original
graph G. The construction is stated as below:

1. For every edge e = (u, v), duplicate vertices to have u(1), u(2), v(1), v(2).

2. Connect u(1), v(2) and u(1), v(2) to have two edges. This step would create a bipartite double
cover from the original graph.

The relationship between bipartite double cover and the original graph would give us the following
lemma:

Lemma 2. The original graph G is bipartite if and only if the bipartite double cover G′ has twice
more connected component than G.

Proof. We know that G is bipartite if and only if G contains no odd length cycle. Let u be a node
in some odd cycle of G(assume G is not bipartite). Then the cycle in G corresponds to a path from
u(1) to u(2) in G′. Since G is connected there exists a path from any v to u in G. So there is a
path from any v to u(1) to u(2) in G′. Since there is also a path from u(1) to u(2) in G′, then G′ is
connected. Now lets assume there is only one connected component in G′. If G′ has one connected
component then there is path from u(1) to u(2) in G′. Then there must exist an odd length cycle
in G. Thus G cannot be bipartite.

Now that we know the bipartite double cover G′ would have twice more connected component than
G, we can utilize the property to test bipartitness of the graph. More specifically, since we have
duplicate the vertices, the two set of {u(1), v(2), ...} and {u(2), v(1), ...} must be disconnected if the
original graph is bipartite.

6 Further reading

For detailed proof on complexity and discussion about graph sketching algorithms which guaran-
tees the use of O(logc n) spaces, the paper from Ahn,Guha,and McGregor[ACM12][AGM12] are
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highly recommended. Also for general results, McGregor[SIG14] and Horlescu also have some light
tutorials online.
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