
Problem Set 2

Sublinear Algorithms

Due Tuesday, October 4

1. [Deferred from problem set 1] Recall the AMS sketch from class for
‖·‖2 estimation: a random m×n matrix A with entries Aij ∈ {±1/

√
m}

is drawn for m = O(1/ε2), and ‖x‖22 is estimated as ‖Ax‖22. With at
least 3/4 probability, we had

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22. (1)

(a) Consider the following matrix instead: for each i ∈ [n], let the ith
column of A have a single ±1 in a random row, and 0s elsewhere.
Because this matrix is sparse, it can be maintained under turnstile
updates in constant time. Show that this A still satisfies (1) with
3/4 probability for m = O(1/ε2).

(b) Using constant-wise independent hash functions, show how to gen-
erate A using only O(log n) bits of randomness. Think about: how
much independence do you need?

2. We saw a couple different norms for sparse recovery in our study of
Count-Min and Count-Sketch, and we will see more in the future.

We say that (k, C)-approximate `p/`q recovery of a vector x finds an x
such that

‖x− x‖p ≤ C min
k-sparse x′

‖x− x′‖q

In this problem we study implications among the various guarantees.
We say that (k, C) `p/`q recovery “implies” (k′, C ′) `p′/`q′ recovery if,
given any vector x satisfying the former, we can construct a vector x′

satisfying the latter.
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Some of the parts below describe the transformation required to get the
implication, while for others you need to identify the transformation.
Suppose that C > 1 and 0 < ε < 1.

(a) (k, ε/k) `∞/`1 recovery implies (k, 1 +O(ε)) `1/`1 recovery by re-
stricting to the largest k coordinates.

(b) (k,
√
ε/k) `∞/`2 recovery implies (k, 1 + O(ε)) `2/`2 recovery by

restricting to the largest 2k coordinates.

(c) (2k, C) `2/`2 recovery implies (k, C/
√
k) `2/`1 recovery.

(d) (k, C/
√
k) `2/`1 recovery implies (k,O(C)) `1/`1 recovery.

3. The power dissipated by a resistor with resistance r going between two
vertices of voltage v1 and v2 is (v1 − v2)

2/r. We can think about a
resistor network as a multigraph, where each edge is associated with a
resistance re. If we assign a set of voltages vi to the vertices, then the
total power dissipated is simply the sum over all resistors of the power
dissipated by that resistor.

Consider maintaining a resistor network under a stream with two kinds
of updates:

• Insert((i, j), “tag”, r) which inserts a new resistor labeled “tag”
of resistance r between i and j.

• Delete((i, j), “tag”, r) which deletes the resistor labeled “tag” of
resistance r between i and j.

(a) Give a streaming algorithm to maintain a sketch such that, for
any set S of vertices, you can estimate the energy used by the
circuit if the nodes of S are set to 1 volt and the rest are set to
0 volts. You should use O(n 1

ε2
log(1/δ)) words to get an 1 ± ε

approximation with probability 1− δ for each S.

(b) Extend this to estimate the energy used by the circuit for any
assignment v1, . . . , vn of voltages to vertices, to error 1 ± ε with
probability 1− δ.

(c) Suppose now that we only allow insertions of resistors. Show how
to use O( n

ε2
logc n) bits to have a sketch that with high probability

can estimate the energy of every assignment of voltages to vertices
up to 1± ε error.
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Hint: You may use the fact that spectral sparsifiers exist. In
particular, for any weighted graph G on n vertices, there is an
efficient offline algorithm to construct a graph H on those vertices
with only O( n

ε2
logc n) edges that matches the energy of every as-

signment of voltages to vertices up to 1± ε error.
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