
RIP of Subsampled Fourier Matrix
Based off Rudelson-Vershynin

Eric Price

2020-10-27

σlarge σsmall

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 1 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 2 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 2 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 2 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 2 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 3 / 45



Compressive Sensing

Given: A few linear measurements of an (approximately) k -sparse
vector x ∈ Rn.
Goal: Recover x (approximately).

x

=

y

Φm

n
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Compressive Sensing Algorithms: Two Classes
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Algorithms for compressive sensing

Goal: recover approximately k -sparse x from y = Φx .

A lot of people use convex optimization:

min ‖x‖1
s.t. Φx = y

Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
For all of these:

I the time it takes to multiply by Φ or ΦT is the bottleneck.
I the Restricted Isometry Property is a sufficient condition.
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Restricted Isometry Property (RIP)

Φ

k

All of these submatrices
are well conditioned.

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22

for all k -sparse x ∈ Rn.
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Goals

What properties should an RIP matrix have?

Good compression: m small

I Random Gaussian matrix: Θ(k log(n/k)) rows.

Fast multiplication:

I Reconstruction dominated by log n multiplications by Φ,ΦT .
I Random Gaussian matrix: Θ(nk log n) time.

Goal: an RIP matrix with O(n log n) multiplication and small m.

* Talk will assume n0.1 < k < n0.9, so log k ' log n ' log(n/k).
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An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.

You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].

I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.

How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].

I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].

I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].

I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].
I Today: m = O(k log4 n)

I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].
I Today: m = O(k log4 n)
I Ideal: m = O(k log n)

I Subsampled Hadamard lower bound: m = O(k log n log k)
[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].
I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].
I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



An open question

A = Fm

n

Let A contain random rows from a Fourier matrix.
You can multiply by A in O(n log n) time.
How many rows do you need to ensure that A has the RIP?

m = O(k log n log2 k) [CT06,RV08,CGV13,B14,HV15].
I Today: m = O(k log4 n)
I Ideal: m = O(k log n)
I Subsampled Hadamard lower bound: m = O(k log n log k)

[BLLMR19].

(Related: how about partial circulant matrices?)
m = O(k log4 n) [RRT12,KMR12].

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 9 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 10 / 45



Another motivation:
Johnson Lindenstrauss (JL) Transforms

High dimensional data
S ⊂ Rn
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Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss ’84)
Let x ∈ Rn. A random Gaussian matrix Φ will have

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2

with probability 1− δ, so long as

m &
1
ε2

log(1/δ)

Set δ = 1/2k : embed 2k points into O(k) dimensions.
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What do we want in a JL matrix?

Target dimension should be small (close to 1
ε2

k for 2k points).
Fast multiplication.

I Approximate numerical algebra problems (e.g., linear regression,
low-rank approximation)

I k -means clustering
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How do we get a JL matrix?

Gaussians

I Dimension O( 1
ε2 k).

I 1
ε2 nk multiplication time.

Best way known for fast JL: by [Krahmer-Ward ’11], RIP⇒ JL.

I Known results: dimension O( 1
ε2 k log3 n).

I n log n multiplication time.

And by [BDDW ’08], JL⇒ RIP; so equivalent.

1

1Round trip loses log n factor in dimension
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Concentration of Measure

Let Σk is unit-norm k -sparse vectors.
We want to show for our distribution Φ on matrices that

E sup
x∈Σk

∣∣∣‖Φx‖22 − ‖x‖22
∣∣∣ < ε,

(Expectation of *) = *

Expected deviation of ΦT Φ from mean In, in a funny norm.

Probabilists have lots of tools to analyze this.
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Tools

Screwdriver

Drill

Bit sets

Bit
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Tools

Common interface: m drivers, n bits =⇒ mn combinations.

Hex shanks

Common interface
for drill bits

Gaussians

Common interface
for probability
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A Probabilist’s Toolbox

Convert to Gaussians

Symmetrization

Subgaussians

Berry-Esseen

Gaussian concentration

Hoeffding bound

Dudley’s entropy integral

Lipschitz concentration

Gaussian

Will prove: symmetrization and Dudley’s entropy integral.
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Symmetrization
Lemma (Symmetrization)
Suppose X1, . . . ,Xt are i.i.d. with mean µ. For any norm ‖·‖,

E

[∥∥∥∥∥1
t

∑
i

Xi − µ

∥∥∥∥∥
]
≤ 2E

[∥∥∥∥∥1
t

∑
i

siXi

∥∥∥∥∥
]

≤ 3E

[∥∥∥∥∥1
t

∑
i

giXi

∥∥∥∥∥
]

where si ∈ {±1} independently.

How well does X concentrate about its mean?

Example (RIP)
For some norm ‖·‖, RIP constant of subsampled Fourier

‖AT A− I‖ = ‖
∑

AT
i Ai − I‖.
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where si ∈ {±1} independently.

Proof.

Draw X ′1, . . . ,X
′
t independently from the same distribution.

E[‖1
t

∑
Xi − E[

1
t

∑
X ′i ]‖] ≤ E[‖1

t

∑
(Xi − X ′i )‖]

= E[‖1
t

∑
si(Xi − X ′i )‖]

and apply the triangle inequality.
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Proof.

We have E[|gi |] ≈ .8 > 2/3.
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∑

siXi‖]

≤ 3E[‖
∑

siEEE[[[|||gi|||]]]Xi‖]

≤ 3E[‖
∑
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∑

giXi‖].

Because gi = si E[|gi |] and E[|gi |] > 2/3.
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Gaussian Processes
Gaussian process Gx : a Gaussian at each point x ∈ T .

Standard problem: E supx∈T Gx .

Example (Maximum singular value of random Gaussian matrix)
Let A be a random m × n Gaussian matrix. For any u ∈ Rm and
v ∈ Rn, define

Gu,v := uT Av = 〈uvT ,A〉.

Then Gu,v ∼ N(0, ‖uvT‖2F ).

E‖A‖2 = E sup
u,v∈Sm−1×Sn−1

uT Av = E sup
u,v∈Sm−1×Sn−1

Gu,v

Depends on the geometry of T .
Distance: ‖x − y‖ is standard deviation of Gx −Gy .
In example: ‖(u, v)− (u′, v ′)‖ = ‖uvT − u′v ′T‖F .
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Gaussian Processes

Goal: E supx∈T Gx , where Gx −Gy ∼ N(0, ‖x − y‖2).

Ignoring geometry:

I Pr[Gx > σmax t ] ≤ e−t2/2

I Union bound: with high probability, Gx . σmax
√

log n.
I E supx∈T Gx . σmax

√
log n

Two levels: σmax
√

log 4 + σsmall
√

log n.
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Position = x
Color = Gx

G0 = 0
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Gaussian Processes: chaining
Bound E supx∈T Gx , where Gx −Gy has variance ‖x − y‖2.
Two levels: σmax

√
log 4 + σsmall

√
log n.

Why stop at two?

E sup
x∈T

Gx . σ1
√

log N(σ2) +

σ2
√

log N(σ3) + σ3
√

log N(σ4) +

· · ·

σmax

σsmall
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ‖·‖ of a Gaussian process G by

‖x − y‖ = standard deviation of (Gx −Gy ).

Then

γ2(T , ‖·‖) :=

E sup
x∈T

Gx .
∫ ∞

0

√
log N(T , ‖·‖,u)du

Bound a random variable using geometry.
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A Probabilist’s Toolbox (recap)

Convert to Gaussians

Symmetrization

Subgaussians

Berry-Esseen

Gaussian concentration

Hoeffding bound

Dudley’s entropy integral

Lipschitz concentration

Gaussian
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Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion
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Goal

Let Ω ⊂ [n] have each i ∈ [n] independently with probability m/n. Let

A =
1√
m

FΩ

For Σk denoting unit-norm k -sparse vectors, we want

E
Ω

sup
x∈Σk

∣∣∣‖Ax‖22 − ‖x‖22
∣∣∣ < ε,

(Expectation of *) = *
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Proof outline: Rudelson-Vershynin
Rudelson-Vershynin: subsampled Fourier, O(k log4 n) rows.

Expected
sup deviation

E sup

xT (AT A− I)x

Symmetrization

Expected
sup norm

of Gaussian

Dudley

Covering
number

N(Σk , ‖·‖,u)

Maurey:
randomize

Expected
deviation

Symmetrization

Expected
norm

of Gaussian

Union bound

Answer!

log2 n loss log n loss

γ2 : supremum of Gaussian process

Σk : k -sparse unit vectors

‖·‖ : a norm that depends on A

(specified in a few slides)
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Setup
Let δi = 1i∈Ω. Then Pr[δi ] = m/n, independently for all i .

Ax =
1√
m

n∑
i=1

δiFix .

where Fij = e2π
√
−1ij/n. We would like to analyze the RIP constant

RΩ := sup
x∈Σk

|xT AT Ax − 1|.

Now, for any fixed x ,

E
Ω

[xT AT Ax ] =
1
n

xT F T Fx = ‖x‖22

and hence

E
Ω

[RΩ] = E
Ω

sup
x∈Σk

∣∣∣‖Ax‖22 − ‖x‖22
∣∣∣ = E

Ω
sup

x∈Σk

∣∣∣∣‖Ax‖22 − E
Ω

[‖Ax‖22]

∣∣∣∣
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Proof part 1: symmetrization

E[RΩ] = E
Ω

sup
x∈Σk

∣∣∣‖Ax‖22 − ‖x‖22
∣∣∣

=
1
m

E
δ

sup
x∈Σk

∣∣∣∣∣
n∑

i=1

δi〈Fi , x〉2 − E[
n∑

i=1

δi〈Fi , x〉2]

∣∣∣∣∣
≤ 1

m
3 E
δ,g

sup
x∈Σk

∣∣∣∣∣
n∑

i=1

giδi〈Fi , x〉2
∣∣∣∣∣

≤ 1
m

3E
Ω
E
g

sup
x∈Σk

∣∣∣∣∣∑
i∈Ω

gi〈Fi , x〉2
∣∣∣∣∣ .
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The Gaussian Process
So by symmetrization,

mE[RΩ] . E
Ω
E
g

sup
x∈Σk

∣∣∣∣∣∑
i∈Ω

gi〈Fi , x〉2
∣∣∣∣∣ .

Now fix Ω, and define the Gaussian process

Gx =
∑
i∈Ω

gi〈Fi , x〉2.

which induces the norm

‖x − y‖2G = E[(Gx −Gy )2] =
∑
i∈Ω

(〈Fi , x〉2 − 〈Fi , y〉2)2

so that

mE[R] . E
Ω
E sup

x∈Σk

Gx =: E
Ω
γ2(Σk , ‖ · ‖G)

≤ E
Ω

∫ ∞
0

√
log N(Σk , ‖ · ‖G,u)du

by Dudley’s entropy integral.
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Simplifying the norm

‖x − y‖2G =
∑
i∈Ω

(〈Fi , x〉2 − 〈Fi , y〉2)2

=
∑
i∈Ω

(〈Fi , x + y〉 · 〈Fi , x − y〉)2

≤ (
∑
i∈Ω

〈Fi , x + y〉2) max
i∈Ω
〈Fi , x − y〉2

≤ (4 sup
x ′∈Σk

∑
i∈Ω

〈Fi , x ′〉2) max
i∈[n]
〈Fi , x − y〉2

≤ 4m(1 + RΩ)‖F (x − y)‖2∞.
If we define ‖x‖F := ‖Fx‖∞, this means

mE[RΩ] . E
Ω

∫ ∞
0

√
log N(Σk , ‖ · ‖F ,u/

√
1 + RΩ)du

≤ E
Ω

√
m(1 + RΩ)

∫ ∞
0

√
log N(Σk , ‖ · ‖F ,u)du
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New goal

Have:

mE[RΩ] .

(
E
Ω

√
m(1 + RΩ)

)∫ ∞
0

√
log N(Σk , ‖ · ‖F ,u)du

Will show: ∫ ∞
0

√
log N(Σk , ‖ · ‖F ,u)du . ε

√
m

for ε < 1. This implies that E[RΩ] . εE[
√

1 + RΩ], and hence

E[RΩ] . ε.
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Progress

Expected
sup deviation

E sup

xT (AT A− I)x

Symmetrization

Expected
sup norm

of Gaussian
γ2(Σk , ‖·‖)

Dudley

Covering
number

N(Σk , ‖·‖,u)

Maurey:
randomize

Expected
deviation

E ‖z− E[z]‖

Symmetrization

Expected
norm

of Gaussian
E ‖g‖

Union bound

Answer!

log2 n loss log n loss

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 36 / 45



Outline

1 Introduction
Compressive sensing
Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox
Overview
Symmetrization
Gaussian Processes

3 Proof
Overview
Covering Number

4 Conclusion
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Covering Number Bound

N(Σk , ‖·‖F ,u)

≤ N(B1, ‖·‖F ,u/
√

k)

u

Σk = {k -sparse x | ‖x‖2 ≤ 1}

⊂
√

kB1 = {x | ‖x‖1 ≤
√

k}
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Covering number bound

N(B1, ‖·‖F ,u)

Simpler to imagine: what about `2?
How many `2 balls of radius u required to cover B1?

N(B1, ‖·‖2,u) .

{
(1/u)O(n)

by an easy volume argument
nO(1/u2) trickier; next few slides

Latter bound is better when u � 1/
√

n.
Maurey’s empirical method: generalizes to arbitrary norms
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Covering Number Bound
Maurey’s empirical method

How many balls of radius u required to cover B

+

1 ?

Consider any x ∈ B+
1 .

Let z1, . . . , zt be i.i.d. randomized roundings of x to simplex.
The sample mean z = 1

t
∑

zi converges to x as t →∞.
Let t be large enough that, regardless of x ,

E[‖z− x‖] ≤ u.

All x lie within u of at least one possible z.

I Then N(B1, ‖·‖,u) ≤ number of z

≤ (n + 1)t .
I Only (n + 1)t possible tuples (z1, . . . , zt ) =⇒ z.
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Covering Number Bound
Goal: E[‖z− x‖F ] .

√
log n/t .

Symmetrize!

E[‖1
t

∑
zi − x‖F ] . E[‖1

t

∑
gizi‖F ]

=:
1√
t
E[‖g‖F ]

where g ∈ Rn has

gj ∼ N(0,
number of zi at ej

t
)

independently in each coordinate.
For each i , (Fg)i ∼ N(0,1).
Hence ‖g‖F = ‖Fg‖∞ .

√
log n with high probability (& in

expectation).
Thus t = log n/u2 suffices, for N(B1, ‖·‖F ,u) ≤ nO(log n)/u2

.
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Progress

Expected
sup deviation

E sup

xT (AT A− I)x

Symmetrization

Expected
sup norm

of Gaussian
γ2(Σk , ‖·‖)

Dudley

Covering
number

N(Σk , ‖·‖,u)

Maurey:
randomize

Expected
deviation

E ‖z− E[z]‖

Symmetrization

Expected
norm

of Gaussian
E ‖g‖

Union bound

Answer!

log2 n loss log n loss
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log N(B1, ‖·‖F ,u) .
1
u2 log2 n

log N(Σk , ‖·‖F ,u) .
k
u2 log2 n

And hence ∫ n

1/n100

√
log N(Σk , ‖·‖F ,u)du .

√
k log4 n

≤ ε
√

m

if m ≥ 1
ε2

k log4 n, which is what we needed.
[Note: Small u are negligible by the volume argument:∫ 1/n100

0

√
log N(Σk , ‖·‖F ,u)du .

√
k log2 n

∫ 1/n100

0
n log(1/u)du � 1/n97 ≤ ε

√
m

]
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log n

√
log n/t

nk log n/u2

√
k log4 n

√
k log4 n

m

Union bound of [n] uses log n factorSample mean z expects to lie within u of x for t ≥ log n/u2Covering number of B1 is (n + 1)log n/u2
Entropy integral is

√
k log4 n

mRIP constant ε .

√
k log4 n

m
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Summary

Symmetrization and covering numbers are very general tools!
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Thoughts on loss
Recall that

N(B1, `2,u) ≤ n1/u2

So the entropy integral gives

γ2(B1, `2) ≤ log3/2 n.

But the associated Gaussian process is just:

γ2(B1, `2) = E sup
x∈B1

〈g, x〉

for g ∼ N(0, In). (Check: E[(〈g, x〉 − 〈g, y〉)2] = ‖x − y‖22)
We can compute this directly:

E sup
x∈B1

〈g, x〉 = ‖g‖∞ =
√

log n.

Generic chaining: there exists a partition A1,A2, . . . such that

γ2 ' sup
x

∑√
log|Ai+1|d(x ,Ai)

Dudley: choose Ai so sup d(x ,Ai) ≤ σ1/2i .
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Covering Number Bound
Maurey’s empirical method

Answer is nt , where t is such that

E := E[‖1
t

∑
zi − x‖] ≤ u.

E[1
t
∑

zi ]

Symmetrize:

E .
1
t
E[‖
∑

gizi‖]

for gi ∼ N(0,1) i.i.d.
Then g :=

∑
gizi is an independent Gaussian in each coordinate.

In `2,

1
t
E[‖g‖2] ≤ 1

t
E[‖g‖22]1/2 =

√
number nonzero zi

t
≤ 1√

t
.

giving an nO(1/u2) bound.
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Bounding the norm in our case (part 1)

x ∈ Σk/
√

k ⊂ B1 rounded to z1, . . . , zt symmetrized to g.

G(x) = E
z,g
‖g‖A

First: split x into “large” and “small” coordinates.

G(x) ≤ G(xlarge) + G(xsmall)

xlarge: Locations where xi > (log n)/k

I Bound:
‖xlarge‖1

≤ 1/ log n.

I Given ‖x‖2
2 ≤ 1/k , maximal ‖xlarge‖1 if spread out.

I k/(log2 n) of value (log n)/k
I Absorbs the loss from union bound.

So can focus on ‖x‖∞ < (log n)/k .
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Bounding the norm in our case (part 2)
k -sparse x rounded to z1, . . . , zt symmetrized to g.
‖x‖∞ < (log n)/k

gi ∼ N(0, σ2
i ) for σ2

i = {#zj at vertex ei}/t2

≈ xi/t .

‖Aig‖2 is C-Lipschitz with factor

C = ‖Ai‖RIP · ‖σ‖∞
Naive bound:

C . ‖Ai‖F ·
√
‖x‖∞/t

≤
√

Bk ·
√

log n/(kt) =
√

B log n/t

“Very weak” RIP bound:

for some B = logc n,

‖Ai‖RIP . log4 n(
√

B +
√
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