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Compressive Sensing

Given: A few linear measurements of an (approximately) k-sparse
vector x € R".
Goal: Recover x (approximately).
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Recovery algorithm
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(e.g. Count-Sketch)
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Algorithms for compressive sensing
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Algorithms for compressive sensing

@ Goal: recover approximately k-sparse x from y = ®x.
@ A lot of people use convex optimization:

min || x||1
st.dox=y
@ Also lterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....

@ For all of these:

» the time it takes to multiply by ¢ or &7 is the bottleneck.
» the Restricted Isometry Property is a sufficient condition.
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Restricted Isometry Property (RIP)

~

All of these submatrices

are well conditioned.

(1= llxIZ < oxz < (1 +€)l|x[13

for all k-sparse x € R".
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Goals

What properties should an RIP matrix have?
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Goals

What properties should an RIP matrix have?
@ Good compression: m small
» Random Gaussian matrix: ©(k log(n/k)) rows.
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Goals

What properties should an RIP matrix have?
@ Good compression: m small
» Random Gaussian matrix: ©(k log n) rows.
@ Fast multiplication:

» Reconstruction dominated by log n multiplications by ¢, ®7.
» Random Gaussian matrix: ©(nk log n) time.

@ Goal: an RIP matrix with O(nlog n) multiplication and small m.

* Talk will assume n®' < k < n%°, so log k ~ log n ~ log(n/k).
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An open question
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An open question

n
/—/E

(-

Let A contain random rows from a Fourier matrix.
You can multiply by Ain O(nlog n) time.
How many rows do you need to ensure that A has the RIP?
@ m = O(klog nlog? k) [CT06,RV08,CGV13,B14,HV15].
» Today: m = O(k log* n)
» Ideal: m= O(klog n)

» Subsampled Hadamard lower bound: m = O(k log nlog k)
[BLLMR19].

(Related: how about partial circulant matrices?)
@ m = O(klog* n) [RRT12,KMR12].
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Another motivation:
Johnson Lindenstrauss (JL) Transforms

High dimensional data
ScR”
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Another motivation:
Johnson Lindenstrauss (JL) Transforms

Linear map ¢

High dimensional data \

ScR"

¢ preserves the geometry of S . _
Low dimensional sketch

(1 —=o)llxll2 < [[Px][2 < (1 + €)lIx]|2 ®(S) e R7
(dx,dy) = (x,y) £ el x]l2]y]2
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Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss ’84)
Let x € R". A random Gaussian matrix ¢ will have

(1= alixllz < [|®x]l2 < (1 + €)llx]l2
with probability 1 — 4, so long as

Mz 5 log(1/5)
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Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss ’84)
Let x € R". A random Gaussian matrix ¢ will have

(1= alixllz < [|®x]l2 < (1 + €)llx]l2
with probability 1 — 4, so long as

Mz 5 log(1/5)

Set § = 1/2: embed 2% points into O(k) dimensions.
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What do we want in a JL matrix?

@ Target dimension should be small (close to g—zk for 2K points).
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What do we want in a JL matrix?

@ Target dimension should be small (close to g—zk for 2K points).

@ Fast multiplication.

» Approximate numerical algebra problems (e.g., linear regression,
low-rank approximation)
» k-means clustering

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 13/45



How do we get a JL matrix?
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» % nk multiplication time.
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How do we get a JL matrix?

@ Gaussians
» Dimension O(%k).
» % nk multiplication time.
@ Best way known for fast JL: by [Krahmer-Ward ’11], RIP = JL.
» Known results: dimension O(g—gk log® n).
» nlog n multiplication time.

@ And by [BDDW '08], JL = RIP; so equivalent.

TRound trip loses log n factor in dimension
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Concentration of Measure

Let X4 is unit-norm k-sparse vectors.
We want to show for our distribution ® on matrices that

E sup |[ox]z —[Ix]3| <.
XEX
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Concentration of Measure

Let X4 is unit-norm k-sparse vectors.
We want to show for our distribution ® on matrices that

E sup

XEX

[®x]3 ~ 1xI8| < e,

(Expectation of *) = *

Expected deviation of ®”® from mean I, in a funny norm.

Probabilists have lots of tools to analyze this.
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0 Introduction
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Tools

Common interface: m drivers, n bits = mn combinations.
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Tools

Common interface: m drivers, n bits = mn combinations.

Common interface

for drill bits
Hex shanks
Common interface
for probability
Gaussians
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A Probabilist’s Toolbox

Convert to Gaussians

Symmetrization

Subgaussians

Gaussian concentration

Hoeffding bound

Berry-Esseen

Eric Price ()
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A Probabilist’s Toolbox

Convert to Gaussians

Gaussian concentration

Hoeffding bound

Subgaussians

Berry-Esseen

Gaussian

Lipschitz concentration

Will prove: symmetrization and Dudley’s entropy integral.
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean .. For any norm ||-||,

1 Xu 172s»¢-”
i i

where s; € {£1} independently.

E <2E
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 Xu 1YZS,-XIH
i i

where s; € {£1} independently.

E <2E

Proof.
Draw X{, ..., X{ independently from the same distribution.

Ell13 32X — Bl 3 X101 < B[l 3706 - X))l

1
, , , =E[H;Zsf(Xf—X,-’)H]
and apply the triangle inequality.

O]

v
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Symmetrization
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., X; are i.i.d. with mean .. For any norm ||-||,
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i i i
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Symmetrization
Lemma (Symmetrization)
Suppose Xy, ..., Xt are i.i.d. with mean p. For any norm ||-||,
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Symmetrization
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Symmetrization
Lemma (Symmetrization)
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Symmetrization
Lemma (Symmetrization)
Suppose Xi, ..., Xt are i.i.d. with mean p. For any norm ||-||,

1 X 1YZS,-XIH 13 g%
i i i

where s; € {+1} independently and g; ~ N(0, 1) independently.

E <2E <3E

|

Proof.
We have El[|g|] ~ .8 > 2/3.

2E[Y_ siXilll < 3E[Y_ sEllgill Xil]
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= 3E[| 3 il =
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0 Introduction

e Concentration of measure: a toolbox

@ Gaussian Processes

9 Proof

e Conclusion
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
@ Standard problem: E sup,c 1 Gy.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E||Al2=E  sup uTAv=E  sup Gu,v

u,veSm—1x gn—1 u,veSm—=1xgn—-1

@ Depends on the geometry of T.
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
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Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E||Al2=E  sup uTAv=E  sup Gu,v
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Gaussian Processes

@ Gaussian process Gy: a Gaussian at each point x € T.
@ Standard problem: E sup,c 1 Gy.

Example (Maximum singular value of random Gaussian matrix)

Let A be arandom m x n Gaussian matrix. For any u € R™ and

v € R", define
Guy = uTAv = (uvT,A>.

Then Gy, ~ N(O, [luvT|2).

E||Al2=E  sup uTAv=E  sup Gu,v

u,veSm—1x gn—1 u,veSm—1x gn—1

@ Depends on the geometry of T.
@ Distance: ||x — y|| is standard deviation of Gx — Gy,.

@ Inexample: ||(u,v) — (U, V)| = [luvT — u'V'T|.
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
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Gaussian Processes
@ Goal: Esup,c7 Gx, where Gx — Gy ~ N(0, ||x — y||?).

° Position = x
O max Color = Gy
(@] [ ] @]
¥ G0
(@]
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
@ Ignoring geometry:

° Position = x
O max Color = Gy
(@] [ ] @]
¥ G0
(@]
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
@ Ignoring geometry:
> Pr[GX > Umaxt] S 67[2/2

Position = x
O max Color = Gy

¥60:0
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
@ Ignoring geometry:

> Pr[GX > Umaxt] S 67[2/2
» Union bound: with high probability, Gy < omax+/log n.

Position = x
O max Color = Gy
(@] [ ] @]
¥ G0
(@]
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
@ Ignoring geometry:

> Pr[GX > Umaxt] S 67[2/2
» Union bound: with high probability, Gy < omax+/log n.
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
@ Ignoring geometry:

> Pr[GX > Umaxt] S 67[2/2
» Union bound: with high probability, Gy < omax+/log n.

» Esupycr Gx S omaxy/logn

)
......... o
0900 Position = x
O max Ce®
Color = Gy
o%e o%e Osmall
SR . oy oo
0% Gyo=0
9.:.:...
oo..o
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Gaussian Processes

@ Goal: Esup,.r Gx, where Gy — G, ~ N(0, ||x — y|]2).
@ Ignoring geometry:

> Pr[GX > Umaxt] S 67[2/2
» Union bound: with high probability, Gy < omax+/log n.
» Esupycr Gx S omaxy/logn

@ Two levels: omaxv/1og 4 + osmany/log n.

oS Position = x
Color = Gy

O max

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27

24/ 45



Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.
@ Two levels: omaxv/1og 4 + ogmany/log .

o. o.o.o.o
eoeo
0 max ®
%@ %@
N WAL
0000 0000
Oe® OO0
@%@
000 0@
e
0@
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.
@ Two levels: omaxv/1og 4 + ogmany/log .
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.
@ Two levels: omaxv/1og 4 + ogmany/log .

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

E sup Gx S o1+/log N(o2) +
xeT

oo # balls necessary:
N(o2)

(covering number
dependson T,|-|)
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

Esup Gx < o14/log N(Uz) + 024/ log N(O’g) +

xeT
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

E sup Gx S o014/ log N(Uz) + 0’2\/|Og N(O’g) + U3\/|0g N(O’4) +

xeT
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

Esup Gy < 01+/log N(02) 4 02+/log N(03) + 03+/log N(o4) + - - -

xeT
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.

@ Why stop at two?

Ei:g Gx S Z or \/ 2r+1

— 0.1/21'
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

Esup Gx < Z 71 log N (L) log N(o)

=o01/2"
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Gaussian Processes: chaining
@ Bound Esup,. 7 Gx, where Gx — Gy has variance | x — y|°.

@ Two levels: o1/log N(o2) + 02+/log n.
@ Why stop at two?

E sup Gx 5/ Vlog N(o)do log N(7)
0

xeT
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ||-|| of a Gaussian process G by

||lx — y|| = standard deviation of (Gx — Gy).
Then -
Esup Gy < / Vlog N(T, 1T, u)du
0

xeT
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ||-|| of a Gaussian process G by

||lx — y|| = standard deviation of (Gx — Gy).
Then

72T, M) = Esup Gy < / iog N(T, 1T, u)du
XeT 0
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Gaussian Processes
Dudley’s Entropy Integral, Talagrand’s generic chaining

Theorem (Dudley’s Entropy Integral)
Define the norm ||-|| of a Gaussian process G by

||lx — y|| = standard deviation of (Gx — Gy).
Then

7o(T,|) = Esup Gy < / Viog N(T. T u)clu
XeT 0

@ Bound a random variable using geometry.
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A Probabilist’s Toolbox (recap)

Convert to Gaussians

Subgaussians

Gaussian concentration

Hoeffding bound

Berry-Esseen

Eric Price ()

Gaussian

Lipschitz concentration

RIP of Subsampled Fourier Matrix 2020-10-27

27/45



Outline

0 Introduction

e Concentration of measure: a toolbox

e Proof

@ Overview

@ cConclusion
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Goal

Let Q C [n] have each i € [n] independently with probability m/n. Let

’
7=

For X, denoting unit-norm k-sparse vectors, we want

A= ——F

E sup [[IAx[3 - |IxI3] < e,

XEX )

(Expectation of *) =

Eric Price () RIP of Subsampled Fourier Matrix
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.

E sup
xT(ATA—1D)x
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.

E sup
xT(ATA—1D)x
~2 : supremum of Gaussian process
Y, : k-sparse unit vectors
Y2(Zk, (11

||I|| - @ norm that depends on A
(specified in a few slides)
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Il : @ norm that depends on A
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.
E sup
xT(ATA—1D)x

Y2(Zk, [I-11)

N(Zkv ””7”)

Q!H
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O( klog n) rows.
E sup
xT(ATA

)

Y2(Zk, [I-11)

N(Zkv ””7”)

Qm
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.
E sup
xT(ATA—1D)x

Elz - E[]|
Y2(Zk, [I-11)

Elgl

N(Zkv ””7”)
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.
E sup
xT(ATA—1D)x

Elz - E[]|
Y2(Zk, [I-11)

log? n loss

Elgl
N(Zkv ””7”)

lilll
HELE
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Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, O(k log* n) rows.
E sup
xT(ATA—1D)x

Ellz—E[]]|
72(Zks 1)

log? n loss

Ellgl
N(zkv“"“7 U)

lilll
HELE
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Setup
Let 6; = 1jcq- Then Pr[é;] = m/n, independently for all /.

1 n
Ax = — 0iFix.
X \/F'; i IX

where Fj; = e2™V~1i/7 We would like to analyze the RIP constant
Rq := sup [xTATAx —1|.
XEX |
Now, for any fixed x,
Igz[xTATAx] = :—7XTFTFX = ||x|3

and hence

E[Ra] = E sup |IAx|3 — [xI3] = E sup |IAx|3 ~ E[|Ax|3]
Q Q xex, Q2 xexy Q

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27
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Proof part 1:

E[Rq]

Eric Price ()

symmetrization

|3~ X1

2(5 (F;, x)? E[Zé (F;, x)?] ‘

i=1

:IE sup

1
= — E sup
XEZk

3

n

Zg/ <F/7X>

i=1

> gilFi,x)?

ieQ

IN

—3 IE sup
7gX€2k

3

IA
3=

SEE sup
Q9 XEX

RIP of Subsampled Fourier Matrix 2020-10-27
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The Gaussian Process
So by symmetrization,

mE[Rq] < EIE sup
erk

Zg/ FhX

ieQ
Now fix ©, and define the Gaussian process
GX = Zgi<,:iux>2
i€Q

which induces the norm
Ix = yI% =E[(Gx — Gy)?1 = > _((Fi,x)2 — (Fi,y)?)?
icQ
so that

mE[R] SEE sup Gx =: Eva(Xx, | - lla)
XEX |

<E [ VioENELT o u)d

by Dudley’s entropy integral.
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Simplifying the norm

Ix = yl1% =D "((Fi, x)? = (Fi,y)?)?

icQ
= ((Fx+y)- (Fix = y))?

ieQ

< Q_(Fiox+y)?) max(Fi, x - y)®

i€Q

4 su Fi, x"V2) max(F;, x — y)?
<( Xlegkiesz i X') )ie[n]< X =)

< 4m(1 + Ra)l|F(x — y)||%.
If we define || x||r := ||FX||, this means

mE[Ra) B [ \logN(Eic |- v/ T+ o)y
<E/m(i + RQ)/O Jiog N(=r. |- TI7, u)du

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27
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New goal

Have:

melRa) < (54 ) [ Ve N - ujd

Will show:

/ Viog N~ Tr> 0)du < ev/m
0

for e < 1. This implies that E[Rq] < ¢E[v/1 + Rq], and hence

E[Rq] < .

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27
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Progress

Esup Expected
xT(ATA-1)x I sup deviation I Ellz - Efz]]|
' Symmetrization '
Expected
72(Zks 1) sup norm
of Gaussian
| log® n loss |—>( Dudley

E|g
I )
N(Ex. ). )

Eric Price ()
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Outline

0 Introduction

e Concentration of measure: a toolbox

9 Proof

@ Covering Number

e Conclusion
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Covering Number Bound

Nk [I-lF, u)

Y = {k-sparse x | [[x]2 <1}
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Covering Number Bound

N(Ek [-llF. u) < NBy. ||, u/Vk)

Y = {k-sparse x | [[x]2 <1}

c VkB; = {x | |lx]ls < Vk}
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Covering number bound

N(B,|-|IF, u)

Eric Price ()

=] =
RIP of Subsampled Fourier Matrix



Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
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Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B‘h ||||27 U)
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Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||27 U) S

~

{ (1/u)9(M by an easy volume argument
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Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||27 U) S

~

(1/u)9(M by an easy volume argument
nO(1/¥)  trickier; next few slides
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Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||27 U) S

~

(1/u)9(M by an easy volume argument
nO(1/¥)  trickier; next few slides

@ Latter bound is better when u > 1//n.
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Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||2a U) S

~

(1/u)9(M by an easy volume argument
nO(1/¥)  trickier; next few slides

@ Latter bound is better when u > 1//n.
@ Maurey’s empirical method: generalizes to arbitrary norms
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Covering number bound

N(B,|-|IF, u)

@ Simpler to imagine: what about />?
@ How many ¢, balls of radius u required to cover By?

N(B17 ||||F7 U) S

~

(v/log n/u)®"M by an easy volume argument
nOllog n/u?) trickier; next few slides

@ Latter bound is better when u > 1//n.
@ Maurey’s empirical method: generalizes to arbitrary norms
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B, ?
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?
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Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?
@ Consider any x € By".
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Covering Number Bound
Maurey’s empirical method

Z1
@ How many balls of radius u required to cover B1+?

@ Consider any x € By".
@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

22

@ How many balls of radius u required to cover B1+?
@ Consider any x € By".
@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

Z3
@ How many balls of radius u required to cover B1+?

@ Consider any x € By".
@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27

40/ 45



Covering Number Bound

Maurey’s empirical method
Z4

@ How many balls of radius u required to cover B1+?
@ Consider any x € By".
@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
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Covering Number Bound
Maurey’s empirical method

Z5
@ How many balls of radius u required to cover B1+?

@ Consider any x € By".
@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27

40/ 45



Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 40/45



Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 40/45



Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 40/45



Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 40/45



Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 40/45



Covering Number Bound
Maurey’s empirical method

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27 40/45



Covering Number Bound
Maurey’s empirical method

Radius u

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz = x| < u.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

RN

@ How many balls of radius u required to cover B1+?
@ Consider any x € By".
@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.
@ Let t be large enough that, regardless of x,
E[llz - x|] < u.

@ All x lie within u of at least one possible z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

RN

@ How many balls of radius u required to cover B1+?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz = x| < u.

@ All x lie within u of at least one possible z.
» Then N(By, ||-||, u) < number of z
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

RN

@ How many balls of radius u required to cover B; ?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

@ Let t be large enough that, regardless of x,

Efllz = x| < u.

@ All x lie within u of at least one possible z.
» Then N(Bi, ||-||, u) < number of z < (n+ 1)
» Only (n+ 1)! possible tuples (zi,...,z;) = z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

RN

@ How many balls of radius u required to cover B; ?

@ Consider any x € By".

@ Let zy,..., 2z be i.i.d. randomized roundings of x to simplex.
@ The sample mean z = } >~ zj converges to x as t — oc.

@ Let t be large enough that, regardless of x,

Eflz - x|l < w.

@ All x lie within u of at least one possible z.
» Then N(Bi, ||-||, u) < number of z < (n+ 1)
» Only (n+ 1)! possible tuples (zi,...,z;) = z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

RN

Will show: E[||z — x||g] < 1/t

@ Let zy,..., 2 be i.i.d. randomized roundings of x to simplex.

@ The sample mean z = } >~ zj converges to x as t — cc.
@ Let t be large enough that, regardless of x,

Efllz- x|l < u.
@ All x lie within u of at least one possible z.

» Then N(Bi, ||-||, u) < number of z < (n+ 1)
» Only (n+ 1)! possible tuples (z1,...,2) = z.
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Covering Number Bound
Maurey’s empirical method

Radius u
1/t {

RN

Will show: E[||z — x||¢] < v/1/t = N(T, |||, u) < n'/¥

@ Let zy,..., 2 be i.i.d. randomized roundings of x to simplex.

@ The sample mean z = } >~ zj converges to x as t — cc.
@ Let t be large enough that, regardless of x,

Efllz- x|l < u.
@ All x lie within u of at least one possible z.

» Then N(Bi, ||-||, u) < number of z < (n+ 1)
» Only (n+ 1)! possible tuples (z1,...,2) = z.
Eric Price ()
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Covering Number Bound

@ Goal: E[||z — x||f] < /logn/t.
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Covering Number Bound
@ Goal: E[||z — x||f] < /logn/t.

@ Symmetrize!

B[+ " 2~ xlle]
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Covering Number Bound
@ Goal: E[||z — x||f] < /logn/t.

@ Symmetrize!

Bllly 3z~ xlIF S Bl Y gl
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Covering Number Bound
@ Goal: E[||z — x||f] < /logn/t.

@ Symmetrize!
1 1
Efll+ > zi—x|A S Efll+ > 9izilF]
1
= —E
7 [llgllF]

where g € R" has

g; ~ N(O, number <;f z; at ej)

independently in each coordinate.
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Covering Number Bound
@ Goal: E[||z — x||f] < /logn/t.

@ Symmetrize!
1 1
Efll+ > zi—x|A S Efll+ > 9izilF]
1
= —E
7 [llgllF]

where g € R" has

g; ~ N(O, number ?f z; at e,-)

independently in each coordinate.
@ Foreach i, (Fg); ~ N(0,1).
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Covering Number Bound
@ Goal: E[||z — x||f] < /logn/t.

@ Symmetrize!

Bllly 3z~ xlIF S Bl Y gl
1
= W]E[HQHF]

where g € R" has

ber of z; at g
ngN(O’num er;) zia e,)

independently in each coordinate.
@ Foreach i, (Fg); ~ N(0,1).

@ Hence ||g|lF = ||F9llc < Vlog n with high probability (& in
expectation).
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Covering Number Bound
@ Goal: E[||z — x||f] < /logn/t.

@ Symmetrize!

Bllly 3z~ xlIF S Bl Y gl
1
= W]E[HQHF]

where g € R" has

ber of z; at g
ngN(O’num er;) zia ej)

independently in each coordinate.
@ Foreach i, (Fg); ~ N(0,1).

@ Hence ||g|lF = ||F9llc < Vlog n with high probability (& in
expectation).

@ Thus t = log n/u? suffices, for N(Bj, |||, u) < nOlesm/v*,

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27
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L
log N(B1, |||lF, u) S zlogn

K
log N [I-Il7, 1) 5 5 log? n

And hence

n
log N(Z. ||-I[£, u)du < 1/ klog* n
1/nm\/og (Zk, Iy u)du < 4/ klog
Se\/m

it m> Lklog* n, which is what we needed.
[Note: Small u are negligible by the volume argument:

1/
J

]

n100 1/n100

V9og N(Z, |||F, u)du < \/ k log? n/ nlog(1/u)du < 1/n%
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Unrolling everything

E sup Expected Expected -
AR ela-ea
Symmetrization Symmetrization
Expected VEWGT
. . E
Y2(Zks 1) sup norm gl Vlogn
of Gaussian
Dudey ?
Coverin (CAnsvert )
N, [I], u) :

number

Union bound of [n] uses log n factor

o 5 =
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Unrolling everything

E sup Expected
xT(ATA—T)x | sup deviation
Symmetrization

Expected
sup norm
of Gaussian

Dudley

Covering
number

Elz -E[Z]| logn/t

E|gll Viogn

Maurey:
72(Zk, 111)

N, |11l v)

Sample mean z expects to lie within u of x for t > log n/u?

o 5 =
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Unrolling everything

E sup Expected
xT(ATA—T)x | sup deviation
Symmetrization

Expected
sup norm
of Gaussian

Dudley

Elz -E[Z]| logn/t

72(Zk, 1)

E|gll Viogn

pklog n/u? N(Zk, -]l u)

Covering number of By is (n + 1)lee /¥

o 5 =
RIP of Subsampled Fourier Matrix
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Unrolling everything

E sup Expected
s ’ slz-mal /gt
?
\Vklog*n  2(E«l) q Elgl  +/logn
o/ N IL0) a0

Entropy integral is 1/ %1%
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Unrolling everything

Esup
xT(ATA—T)x

=
?

’ Ellz - E[Z]| logn/t

i

klog* n
RIP constant e S {/ ~—=——
m
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Summary

@ Symmetrization and covering numbers are very general tools!
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Thoughts on loss
@ Recall that

N(Bj, b, u) < n'/¥*
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Thoughts on loss
@ Recall that ,
N(By, lz,u) < n'/"

@ So the entropy integral gives
v2(By, £2) < log¥2 n.
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Thoughts on loss
@ Recall that ,
N(By, lz,u) < n'/"

@ So the entropy integral gives
v2(By, £2) < log¥2 n.
@ But the associated Gaussian process is just:

v2(Bi,£2) = EE sup (g, x)
XEB;y

for g ~ N(0, In). (Check: E[({(g, x) — (g, y))?] = [Ix - y3)
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@ But the associated Gaussian process is just:

v2(Bi,£2) = EE sup (g, x)
XEB;y

for g ~ N(0, In). (Check: E[({(g, x) — (g, y))?] = [Ix - y3)
@ We can compute this directly:

E sup (g, x) = [[gllcc = /log .

XEB;4
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Thoughts on loss
@ Recall that ,
N(By, lz,u) < n'/"

@ So the entropy integral gives
v2(B1, l2) < Iog3/2 n.
@ But the associated Gaussian process is just:

72(B1,£2) = E sup (g, x)
XEB;y

for g ~ N(0, Iy). (Check: E[((g, x) — (g, ¥))?] = Ix — y|3)
@ We can compute this directly:

E sup (g, x) = [[gllcc = /log .

XEB;4
@ Generic chaining: there exists a partition A1, Ao, ... such that

v2 ~sup Y \/log|Ai1]d(x, A)
X
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Thoughts on loss
@ Recall that ,
N(By, o, u) < n'/¥

@ So the entropy integral gives
v2(B1, l2) < Iog3/2 n.
@ But the associated Gaussian process is just:

72(B1,£2) = E sup (g, x)
XEB;y

for g ~ N(0, Iy). (Check: E[((g, x) — (g, ¥))?] = Ix — y|3)
@ We can compute this directly:

E sup (g, x) = [[gllcc = /log .

XEB;4
@ Generic chaining: there exists a partition A1, Ao, ... such that

v2 ~sup Y \/log|Ai1]d(x, A)
X

@ Dudley: choose A, so supd(x, A)) < oy/2'.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27
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Covering Number Bound
Maurey’s empirical method
@ Answer is n!, where t is such that

1
E=Bll; Y z-x]<u
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Covering Number Bound
Maurey’s empirical method
@ Answer is n!, where t is such that E[} Y 7]
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Covering Number Bound
Maurey’s empirical method
@ Answer is n!, where t is such that E[1 Y z]

1
E:=E[l;Y z-Xl<u.
@ Symmetrize:

1
E< FE[HZQ/'Z/'H]
for gi ~ N(0,1) i.i.d.
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Covering Number Bound
Maurey’s empirical method
@ Answer is n!, where t is such that E[} S z)]

1
E=Bll; Y z-x]<u

@ Symmetrize:
1
E << ElIY gzl

for gi ~ N(0,1) i.i.d.
@ Then g := > g;z; is an independent Gaussian in each coordinate.
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Covering Number Bound
Maurey’s empirical method
@ Answer is n!, where t is such that IE[} S z)]

1
E=Bll; Y z-x]<u

@ Symmetrize:
1
E < S EIY_giz]
for gi ~ N(0,1) i.i.d.
@ Then g := > g;z; is an independent Gaussian in each coordinate.
@ In lo,

1 1 v/number nonzero z; 1
~Ellgll2l < ZEllgI3"/2 = t <

<

giving an n°1/¥*) pound.
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Bounding the norm in our case (part 1)

@ x € ¥, /vk C By rounded to zy, ..., z; symmetrized to g.

G(x) = E lglla
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Bounding the norm in our case (part 1)

@ x € ¥, /vk C By rounded to zy, ..., z; symmetrized to g.
G(x) = E glla
@ First: split x into “large” and “small” coordinates.

G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
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Bounding the norm in our case (part 1)
@ xc Zk/\/F C By rounded to zq, ...,z symmetrized to g.
G(x) = E llglla
@ First: split x into “large” and “small” coordinates.

G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
||Xlarge||1
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G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
||Xlarge||1

» Given ||x||3 < 1/k, maximal ||X.age|1 if Spread out.
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@ x € ¥x/vVk C By rounded to zy, ...,z symmetrized to g.
G(x) = E llglla
@ First: split x into “large” and “small” coordinates.

G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
||Xlarge||1

» Given || x|3 < 1/k, maximal || Xigel|1 if spread out.
» k/(log? n) of value (log n)/k
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G(x) = E llglla
@ First: split x into “large” and “small” coordinates.

G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
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Bounding the norm in our case (part 1)

@ x € ¥x/vVk C By rounded to zy, ...,z symmetrized to g.
G(x) = Elgla
@ First: split x into “large” and “small” coordinates.

G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
» Bound:

| Xiargel[1 < 1/ log n.

» Given || x|3 < 1/k, maximal || Xigel|1 if spread out.
» k/(log? n) of value (log n)/k
» Absorbs the loss from union bound.
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Bounding the norm in our case (part 1)

@ x € ¥x/vVk C By rounded to zy, ...,z symmetrized to g.
g(x) = ZI?QHQHA
@ First: split x into “large” and “small” coordinates.

G(x) < G(Xiarge) + G (Xsman)

@ Xjage: LOcations where x; > (log n)/k
» Bound:
[ Xiargellr < 1/ log .

» Given || x|3 < 1/k, maximal || Xigel|1 if spread out.
» k/(log? n) of value (log n)/k
» Absorbs the loss from union bound.

@ So can focus on || x||oc < (logn)/k.

Eric Price () RIP of Subsampled Fourier Matrix 2020-10-27

49 /45



Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
9 [[X[loc < (logn)/k
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o [X]o < (logn)/k
@ g ~ N(0,02) for o2 = {#2 at vertex e;} /1
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o |[X| < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o |[X| < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor l:l
C = |Aillap - llollo 7/—’
2
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o x|l < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.

@ ||Aig|2 is C-Lipschitz with factor I:I
C = |Aillre-llolls 7/—’
2

@ Naive bound:

C S NAillF - VIIXllso/t
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o x|l < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.

@ ||Aig|2 is C-Lipschitz with factor I:I
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o x|l < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor l:l
C = [Aillar - [lolleo T
2

@ Naive bound:
C S 1Al - VIIXlloo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound:
1Al rip < log* n(VB + Vk)
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o x|l < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor l:l
C = [Aillar - [lolleo 7’
2

@ Naive bound:
C S 1Al - VIIXlloo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al rip < log* (VB + Vk) < ||Aj|l£/ log n.
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o x|l < (log n)/k
@ gi ~ N(0,02) for 02 = {#z; at vertex e;} /12 ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor l:l
C = [Aillar - [lolleo 7’
2

@ Naive bound:
C S 1Al - VIIXlloo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al rip < log* (VB + Vk) < ||Aj|l£/ log n.

o Gives

C < /B/(tlogn)
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o |||l < (log n)/k
@ g; ~ N(0,0?) for 02 = {#2z; at vertex g;}/t? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor E
C = [Aillar - [lolleo 7’
2

@ Naive bound:
C S 1Al - VIIXlloo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al rie < log* (VB + Vk) < ||Aill£/ log n.

o Gives
C < /B/(tlogn)

@ So with high probability, ||A;g|2 < /B/t+ Cy/logn < +/B/t.
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Bounding the norm in our case (part 2)
@ k-sparse x rounded to zy, ..., z; symmetrized to g.
o |||l < (log n)/k
@ g; ~ N(0,0?) for 02 = {#2z; at vertex g;}/t? ~ x;/t.

@ ||Aig||2 is C-Lipschitz with factor E
C = [Aillar - [lolleo 7’
2

@ Naive bound:
C S 1Al - VIIXlloo/t < VBk - \/log n/(kt) = \/Blog n/t
@ “Very weak” RIP bound: for some B = log® n,
1Al rie < log* (VB + Vk) < ||Aill£/ log n.

@ Gives

C < /B/(tlogn)
@ So with high probability, ||A;g|2 < /B/t+ Cy/logn < +/B/t.
o SoElglla = max|Agllz S v/BJE.
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