
CS 395T: Sublinear Algorithms, Fall 2020 September 1st, 2020

Lecture 2: Distinct element counting

Prof. Eric Price Scribe: Devvrit, Niels Kornerup

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we looked at examples of property testing, streaming, and testing distributions.

In this lecture we cover estimation of a Bernoulli random variable and the number of distinct
elements in a stream.

2 Bernoulli random variables

Given a weighted coin (comes up heads with probability p ∈ [0, 1]), how many flips do we need to
estimate p? Lets assume we take k samples. We will call the sample mean p̂. As n → ∞, p̂ → p,
meaning that this is a reasonable way to guess the value of p. In order to figure out how big we
need to make n for our answer to be reasonable, it would be useful to find the variance of p̂.

Var(p̂) = Var(
1

n2

∑
xi)

=
1

n2
Var(

∑
xi)

=
1

n
Var(x1)

=
1

n
E
[
(x1 − E[x1])

2
]

=
1

n

(
p(1− p)2 + (1− p)p2

)
=

1

n
(p(1− p))

≤ 1

4n

This tells us that the standard deviation of p̂ is at most
√
np. Thus we can expect that with n

samples we will get that p̂ ∈
[
p−

√
p/n, p+

√
p/n

]
.

Suppose you want to estimate p within an additive error of ε while having a failure probabil-
ity of at most 1

4 . What n value would we need? By the above reasoning, we get that setting
n = O

(
1
ε2

)
gives us that p̂ ∈

[
p−O

(
1
ε

)
, p+O

(
1
ε

)]
with sufficient probability (by Chebyshev’s

inequality).

1

3 Basic probability inequalities

There are two simple inequalities that show up a lot when dealing with probabilities. Markov’s
inequality gives us that for any non-negative random variable x, P [x ≥ t] ≤ E[x]

t . Chebyshev’s in-
equality gives us that for any integrable random variable with finite mean µ and standard deviation
σ, P [|x− µ| ≥ tσ] ≤ 1

t2
. Note that this tells us that the probability that a random variable is more

than 2 standard deviations from the mean is less than 1
4 .

4 Mean estimation

Suppose I have an unknown distribution D with an unknown mean µ whose standard deviation is
at most σ. How many samples will I need from D to estimate µ to within an additive factor of εσ
with 3

4 probability?

We will take the empirical mean as the variable µ̂. We know that Var(µ̂) ≤ σ2/n, where n is
the number of samples we take. Thus setting n = 4

ε2
gives us that the standard deviation of µ̂ is

at most εσ
2 . By Chebyshev’s inequality, this implies that µ̂ ∈ [µ− εσ, µ+ εσ] with a probability of

at least 3
4 .

5 Streaming distinct elements

Let’s say you have a stream of items that you only get to pass through once. Your goal is to esti-
mate the number of distinct elements (n) in the stream. What is the least amount of information
you need to store to get a good estimate of the number of distinct elements in the stream? Lets
start with a simpler problem: we are promised that either n < T or n > 2T and we want to tell
which is true.

To solve this we will first construct a random hash function h : U → [T]. We will then pick k
elements of T and for each selected element of T , we will increment a counter the first time that
a hash hits it. We know that each element of T has a probability of

(
1− 1

T

)n ≈ e−n/T to get an
element of the stream to hash to it. When n < T this gives us a probability of at most .63 and
when n > 2T the probability is at least .86. Thus our problem gets reduced to selecting a large
enough k (here, representing the number of parallel runs) such that we can distinguish between
these two Bernoulli random variables. From before, we know that O

(
1
ε2

)
space should be enough

to distinguish between (1− ε)T and (1 + ε)T unique elements.

We now move to the original question of estimating number of unique elements. One idea is to
repeat the above algorithm in parallel for different values of T . In order to get (1±ε) error guarantee,
we can repeat the above algorithm in parallel for T = 1, (1 + ε), (1 + ε)2, · · · , (1 + ε)log1+ε(N). For
most of the T values, the algorithm will say either less than or greater than. But a few of the runs
in middle will be confused as they don’t satisfy < T or > 2T condition.
A solution to deal with this is to repeat many times. We saw earlier in the coin flip example that to
get constant success probability, O(1/ε2) flips are required. We’ll see later in the course it’s possible
to get ≥ 1− δ success probability by tossing O

(
1
ε2
log
(
1
δ

))
flips. Therefore, using this information,

2

and doing union bound over constant failure probability of all the runs, the space needed for is:

O

 log1+ε(N)︸ ︷︷ ︸
initial number of runs proposed

· 1

ε2︸︷︷︸
space complexity for each run

· log (log1+ε(N))︸ ︷︷ ︸
more runs for union-bounding failure prob


= O

(
1

ε
log(N) · 1

ε2
· log

(
1

ε
log(N)

))
In order to get success probability ≥ 1− δ, the space required is:

O

(
1

ε
log(N) · 1

ε2
· log

(
1

δε
log(N)

))

We now look at another simpler algorithm. We’ll hash the incoming units to a value between [0, 1].
That is, we consider a hash function h : U → [0, 1]. Let’s analyze the expected minimum value that
any unit is hashed to. Let S be the set comprising all elements we see. Let y = min

X∈S
h(X), then

E[y] =
1

n+ 1

Proof: P[y ≥ 1− t] = tn

=⇒ P[y = 1− t] = ntn−1 (From CDF to PDF by differentiating)

E[1− y] =

∫ 1

t=0
(ntn−1)tdt

=
n

n+ 1

=⇒ E[y] =
1

n+ 1

We analyze the variance of y

V ar(y) = V ar(1− y)

= E[(1− y)2]− (E[1− y])2

E[(1− y2)] =

∫ 1

t=0
(ntn−1)t2dt =

n

n+ 2

=⇒ V ar(y) =
n

n+ 2
−
(

n

n+ 1

)2

=
n

(n+ 2)2(n+ 1)

≈ 1

(n+ 1)2

Algorithm: Hash the incoming units to a value between [0, 1]. Let y = min
X∈S

h(X). Output 1
y − 1.

The above algorithm won’t work well because Variance of y is low. Basically, the minimum hashed
value has good variation in it. Therefore, we’ll use the same old technique of repeating experiment
many times and taking the average

3

Algorithm: Hash the incoming units to a value between [0, 1] on r different hash functions. let
yi = min

X∈S
hi(X). Output 1

1
r

∑r
i=1 yi

− 1.

Note that (1± ε) factor approximation to 1
r

∑r
i=1 yi will translate to (1± ε) factor approximation

for 1
1
r

∑r
i=1 yi

too. Therefore, we focus on getting

1

r

r∑
i=1

yi ∈ (1± ε)E

[
1

r

r∑
i=1

yi

]

E

[
1

r

r∑
i=1

yi

]
= E[y] =

1

n+ 1

=⇒ 1

r

r∑
i=1

yi ∈
1 + ε

n+ 1

=⇒

∣∣∣∣∣1r
r∑
i=1

yi −
1

n+ 1

∣∣∣∣∣ ≤ ε

n+ 1
= εσ

where σ is the std. deviation as we calculated above. Using Chebyshev’s inequality, we get that
the number of samples r needed is r = O

(
1
ε2

)
Space Complexity: Need O(1/ε2) hash functions, to estimate each yi. The space required to store
yi depends on the resolution. A resolution of 1/n2 is sufficient for our purposes, but we can do
better. Since we only need yi to a (1± ε) multiplicative factor, we can round our yi to the nearest
(1 + ε)−i for i ∈ Z. This gives 1

ε log (n) possible values for yi, which only requires log
(
1
ε log(n)

)
bits

of storage. This gives us a final space complexity of O
(
1
ε2

log(1ε log(n))
)
.

4

