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Lecture 2: Distinct element counting
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1 Overview

In the last lecture we looked at examples of property testing, streaming, and testing distributions.

In this lecture we cover estimation of a Bernoulli random variable and the number of distinct
elements in a stream.

2 Bernoulli random variables

Given a weighted coin (comes up heads with probability p € [0, 1]), how many flips do we need to
estimate p? Lets assume we take k samples. We will call the sample mean p. As n — oco,p — p,
meaning that this is a reasonable way to guess the value of p. In order to figure out how big we
need to make n for our answer to be reasonable, it would be useful to find the variance of p.
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This tells us that the standard deviation of p is at most /np. Thus we can expect that with n

samples we will get that p € [p — \/19/7,19 + \/]%]

Suppose you want to estimate p within an additive error of e while having a failure probabil-
ity of at most %. What n value would we need? By the above reasoning, we get that setting
n =20 (e%) gives us that p € [p -0 (%) ,p+ O (%)] with sufficient probability (by Chebyshev’s

inequality).



3 Basic probability inequalities

There are two simple inequalities that show up a lot when dealing with probabilities. Markov’s
inequality gives us that for any non-negative random variable z, P [x > t] < %. Chebyshev’s in-
equality gives us that for any integrable random variable with finite mean p and standard deviation
o, Pllz — pu| > to] < t% Note that this tells us that the 1plrobzaubility that a random variable is more

than 2 standard deviations from the mean is less than i

4 Mean estimation

Suppose I have an unknown distribution D with an unknown mean p whose standard deviation is
at most 0. How many samples will I need from D to estimate p to within an additive factor of eo
with % probability?

We will take the empirical mean as the variable . We know that Var(i) < o%/n, where n is
the number of samples we take. Thus setting n = ;% gives us that the standard deviation of f is
at most ;7“ By Chebyshev’s inequality, this implies that i € [u — €0, u + eo] with a probability of
at least .
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5 Streaming distinct elements

Let’s say you have a stream of items that you only get to pass through once. Your goal is to esti-
mate the number of distinct elements (n) in the stream. What is the least amount of information
you need to store to get a good estimate of the number of distinct elements in the stream? Lets
start with a simpler problem: we are promised that either n < T or n > 27" and we want to tell
which is true.

To solve this we will first construct a random hash function h : U — [T]. We will then pick k
elements of T and for each selected element of T', we will increment a counter the first time that
a hash hits it. We know that each element of T" has a probability of (1 — %)n ~ e T to get an
element of the stream to hash to it. When n < T this gives us a probability of at most .63 and
when n > 2T the probability is at least .86. Thus our problem gets reduced to selecting a large
enough k (here, representing the number of parallel runs) such that we can distinguish between
these two Bernoulli random variables. From before, we know that O (E%) space should be enough
to distinguish between (1 — €)T" and (1 + €)7T" unique elements.

We now move to the original question of estimating number of unique elements. One idea is to
repeat the above algorithm in parallel for different values of 7'. In order to get (1+e) error guarantee,
we can repeat the above algorithm in parallel for T =1, (1 +¢€), (1 +€)2,-- -, (1 + €)l91+<(N)  For
most of the T values, the algorithm will say either less than or greater than. But a few of the runs
in middle will be confused as they don’t satisfy < T or > 2T condition.

A solution to deal with this is to repeat many times. We saw earlier in the coin flip example that to
get constant success probability, O(1/¢2) flips are required. We’ll see later in the course it’s possible
to get > 1 — ¢ success probability by tossing O (e%log (%)) flips. Therefore, using this information,



and doing union bound over constant failure probability of all the runs, the space needed for is:
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In order to get success probability > 1 — §, the space required is:
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We now look at another simpler algorithm. We’ll hash the incoming units to a value between [0, 1].
That is, we consider a hash function h : U — [0, 1]. Let’s analyze the expected minimum value that
any unit is hashed to. Let S be the set comprising all elements we see. Let y = 7)7(127; h(X), then
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We analyze the variance of y
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Algorithm: Hash the incoming units to a value between [0,1]. Let y = 1;{%7; h(X). Output i — 1.
€

The above algorithm won’t work well because Variance of y is low. Basically, the minimum hashed
value has good variation in it. Therefore, we’ll use the same old technique of repeating experiment
many times and taking the average



Algorithm: Hash the incoming units to a value between [0,1] on r different hash functions. let
; = min hy(X). Output +—r— — 1.
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Note that (1 £ €) factor approximation to % > i1 yi will translate to (1 & €) factor approximation

for ﬁ too. Therefore, we focus on getting
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where o is the std. deviation as we calculated above. Using Chebyshev’s inequality, we get that

the number of samples r needed is r = O (6%)

1 T
;Zyi e(l+£eE
=1

E

€
<
“n+1

= €0

Space Complexity: Need O(1/€?) hash functions, to estimate each ;. The space required to store
y; depends on the resolution. A resolution of 1/n? is sufficient for our purposes, but we can do
better. Since we only need y; to a (1 & €) multiplicative factor, we can round our y; to the nearest
(1+€)~" for i € Z. This gives 1 log (n) possible values for y;, which only requires log (1 log(n)) bits
of storage. This gives us a final space complexity of O (6% log(% log(n))).



