Problem Set 2

Sublinear Algorithms

Due Tuesday, September 15

In the gap Hamming problem GapHamming_n , Alice and Bob are respectively given vectors $x, y \in \{0, 1\}^n$. It is guaranteed that the Hamming distance between x and y is either at least $n/2 + \sqrt{n}$ or at most $n/2 - \sqrt{n}$. Alice and Bob must communicate to figure out which situation they are in, i.e., at the end of the communication Bob should output YES if $||x - y||_1 > n/2 + \sqrt{n}$ and NO if $||x - y||_1 < n/2 - \sqrt{n}$, with 99% probability.

- 1. Prove that the communication complexity of gap Hamming is $\Omega(n)$, as follows.
 - (a) Let $x \in \{-1,1\}^n$ be any fixed vector, and let $r \in \{-1,1\}^n$ be uniformly distributed. For every $i \in [n]$, show that

$$\Pr_{r}[\operatorname{sign}(\langle x, r \rangle) \neq x_{i}r_{i}] \leq \frac{1}{2} - \Omega(\frac{1}{\sqrt{n}})$$

when n is odd.

(b) Let $x \in \{-1, 1\}^n$ be any fixed vector, and $i \in [n]$ be fixed. Let $r^{(1)}, \ldots, r^{(m)} \in \{-1, 1\}^n$ be iid uniformly random. Define

$$u_j := \operatorname{sign}(\langle x, r^{(j)} \rangle)$$
$$v_j := \operatorname{sign}(\langle e_i, r^{(j)} \rangle)$$

Using your bound from part (a), analyze the mean and variance of $||u - v||_1$. In particular, you should be able to show that 90% of the time when $x_i = 1$, $||u - v||_1$ is "small"; and 90% of the time when $x_i = -1$, $||u - v||_1$ is "large".

- (c) Describe how this means a randomized protocol for GapHamming leads to a randomized protocol for Index. Conclude with an $\Omega(n)$ lower bound for one-way randomized protocols for GapHamming on n bits.¹
- 2. Using reductions from the gap Hamming problem:
 - (a) Show that any insertion-only streaming algorithm for distinct elements over [n] must use $\Omega(\min(n, 1/\epsilon^2))$ space.
 - (b) Show that any insertion-only streaming algorithm for estimating $||x||_2$ must use $\Omega(\min(n, 1/\epsilon^2))$ bits.

¹The $\Omega(n)$ bound even holds with general (multiway) communication, but the proof is more involved.