Problem Set 8

Sublinear Algorithms

Due Thursday, November 12

1. In class we have shown various algorithms for sparse recovery that tolerate noise and use $O(k \log(n/k))$ measurements, and shown that any ℓ_1/ℓ_1 sparse recovery algorithm must use this many measurements. But what if we don’t care about tolerating noise, and only want to recover x from Ax when x is exactly k-sparse?

Consider the matrix

$$A = \begin{pmatrix}
\alpha^1_1 & 1 & \cdots & \alpha^1_n \\
\alpha^2_1 & \alpha^2_2 & \cdots & \alpha^2_n \\
\vdots & \vdots & \ddots & \vdots \\
\alpha^{2k-1}_1 & \alpha^{2k-1}_2 & \cdots & \alpha^{2k-1}_n
\end{pmatrix}$$

for distinct α^i_i.

(a) Prove that any $2k \times 2k$ submatrix of A is invertible. (Hint: look up the Vandermonde determinant.)

(b) Give an $n^{O(k)}$ time algorithm to recover x from Ax under the assumption that x is k-sparse.

(c) [Optional] Give an $n^{O(1)}$ time algorithm to recover x from Ax under the assumption that x is k-sparse. You may choose specific values for the α^i_i. Hint: look up syndrome decoding of Reed-Solomon codes.

2. In order to show that SSMP makes progress in each stage, we used a lemma that we will show in this problem.
Let \(x_1, \ldots, x_k \in \mathbb{R}^d \), and suppose that

\[
\sum_{i=1}^k \|x_i\|_1 \leq (1 + \delta) \|\sum_{i=1}^k x_i\|_1
\]

for some small enough \(\delta \) (say, \(\delta = 1/10 \)). In some sense, this is saying that there is not much “slack” in they are lined up head-to-tail.

(a) Let \(z = \sum_{i=1}^k x_i \). Show that \(\mathbb{E}_{i \in [k]} \|z - x_i\|_1 \leq (1 - \Omega(1)/k) \|z\|_1 \).

(b) Now suppose \(z = \sum_{i=1}^k x_i + w \) for some \(w \in \mathbb{R}^d \) with \(\|w\|_1 \leq \epsilon \|z\|_1 \) for small enough constant \(\epsilon \). Again, show that there exists an \(i \) such that \(\|z - x_i\|_1 \leq (1 - \Omega(1)/k) \|z\|_1 \).