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1 Sparse Recovery - L1 minimization

Recall the sparse-recovery problem. We are given noisy measurements y = Ax + e. We wish
to recover x ∈ Rn from the available noisy measurements y ∈ Rn. A ∈ Rm×n is known. We are
particularly interested in the vastly under-determined setting where m << n. As such, the problem
is of course ill-posed but suppose x is k-sparse i.e. ‖x‖0 ≤ k. This premise radically changes the
problem, making the search for solutions feasible.
However, in general, finding sparse solutions to under-determined systems of linear equations is
NP-hard. For example, we can formulate the problem of finding the sparsest solution as:

min
x

‖x‖0

s.t. ‖Ax− y‖2 ≤ ε
(P0)

To the best of our knowledge, solving P0 requires exhaustive searches over all subsets of columns
of A, a procedure which clearly is combinatorial in nature and has exponential complexity. This
computational intractability has led to several different formulations. One widely studied formu-
lation, known as basis pursuit (Chen et al. (2001); Candes and Tao (2005); Candes et al. (2006,
2008)), is to do a convex relaxation and solve the following problem instead:

min
x

‖x‖1

s.t. ‖Ax− y‖2 ≤ ε
(P1)

Unlike the `0 norm, `1 is convex and thus P1 reduces to a convex program.

Suppose x∗ is the optimal solution to P1. Then, we have the following result relating x∗ to x.

Theorem 1. Assume A satisfies RIP, ‖e‖2 ≤ ε, x is k-sparse and x∗ is the solution to P1 then:

‖x∗ − x‖2 ≤ O(ε) (1)

Before we prove Theorem 1, we introduce a definition and a lemma which we use in the proof.

Definition 1. Restricted Eigenvalue Condition (REC): A satisfies the Restricted Eigenvalue
Condition if for any z, if ∃ S s.t. ‖zS‖1 ≥ ‖zS‖1, then ‖Az‖2 & ‖z‖2.

Lemma 1. (RIP =⇒ REC). Suppose A satisfies RIP(O(3k), ε). Also, let z be such that there
exists a support of size k, say S, which contains more than half of its mass – i.e. ‖(z)S‖1 ≥ ‖(z)S‖1.
Then, ‖z‖2 . ‖Az‖2.
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Proof. We will prove this by a “shelling” argument. Suppose we sort the co-ordinates of z in
decreasing order of magnitude. Then split the co-ordinates into groups of k i.e. z1 denote the

top-k coordinates of z, z2 denote the next top-k coordinates and so on i.e. z =
∑n/k

i=1 zi. Note
that if ∃ a support S of size k, such that ‖(z)S‖1 ≥ ‖(z)S‖1, then Supp(z1) must be one such S
– so ‖z1‖1 ≥ ‖z2 + z3 + . . . ‖1. Also, since each zi is k-sparse by construction, then (zi + zi+1) is
2k-sparse. Then:

‖zi + zi+1‖2 ≤
√

2k‖zi + zi+1‖∞ ≤
1√
2k
‖zi−2 + zi−1‖1 (2)

The last inequality follows because the average value of the previous two shells is bigger than the
maximum value in the current two shells.

Now, the rest of the proof is as follows:

‖Az‖2 ≥ ‖A(z1 + z2 + z3)‖2 − ‖A(z4 + z5)‖2 − ‖A(z6 + z7)‖2 − . . . (by the triangle inequality)

≥ (1− ε)‖z1 + z2 + z3‖2 − (1 + ε)(‖z4 + z5‖2 + ‖z6 + z7‖2 + . . . ) (A satisfies RIP of O(3k))

≥ (1− ε)‖z1 + z2 + z3‖2 −
1 + ε√

2k
(‖z2 + z3‖1 + ‖z4 + z5‖1 + . . . ) (using Equation 2)

= (1− ε)‖z1 + z2 + z3‖2 −
1 + ε√

2k
‖z2 + z3 + z4 + z5 + . . . ‖1(zi have disjoint supports)

≥ (1− ε)‖z1‖2 −
1 + ε√

2k
‖z2 + z3 + z4 + z5 + . . . ‖1

≥ (1− ε)‖z1‖2 −
1 + ε√

2k
‖z1‖1 (recall that ‖z1‖1 ≥ ‖z2 + z3 + . . . ‖1)

≥ ‖z1‖2(1− ε−
1 + ε√

2
) (since ‖z1‖1 ≤ ‖z1‖2

√
k)

& ‖z1‖2
(3)

Hence, ‖z1‖2 ≤ O(1)‖Az‖2. Also, note that:

‖z− z1‖2 = ‖z2 + z3 + . . . ‖2

≤
√
‖z2 + z3 + . . . ‖∞‖̇z2 + z3 + . . . ‖1 (using Hölder’s inequality)

≤

√√√√(‖z1‖1
k

)
‖z1‖1

≤ ‖z1‖1√
k

≤ ‖z1‖2 (4)

Hence, using Equation (4), we get that ‖z‖2 ≤ ‖z1‖2+‖z−z1‖2 ≤ 2‖z1‖2 . ‖Az‖2. This concludes
the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1: In this proof, we consider the case of ‖e‖2 = ε. However, this proof
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can be easily extended to the general case of ‖e‖2 ≤ ε.
Let z = x∗ − x. Since x∗ solves P1, it is also feasible and thus we have:

‖Ax∗ − y‖2 ≤ ε
⇒‖Ax∗ − (Ax + e)‖2 ≤ ε
⇒‖A(x∗ − x)− e‖2 ≤ ε
⇒‖Az− e‖22 ≤ ε2 = ‖e‖22
⇒‖Az‖22 + ‖e‖22 − 2eTAz ≤ ‖e‖22
⇒‖Az‖22 ≤ 2eTAz ≤ 2‖e‖2‖Az‖2
⇒‖Az‖2 ≤ 2‖e‖2 (5)

Now, we can use the fact that since x∗ is the minimizer of P1 : ‖x∗‖1 ≤ ‖x‖1 = ‖xS‖1 where
S = Supp(x). Using this we have:

‖xS‖1 ≥ ‖x∗‖1
= ‖x∗S‖1 + ‖x∗

S
‖1

= ‖(x + z)S‖1 + ‖(x + z)S‖1
= ‖(x + z)S‖1 + ‖zS‖1 ... since S = Supp(x).

≥ ‖xS‖1 − ‖zS‖1 + ‖zS‖1 ... by the triangle inequality.

⇒ ‖zS‖1 ≥ ‖zS‖1 (6)

From Equation 6 we see that most of the mass of z is concentrated in S (i.e. its top k coordinates).
Now since Equation 6 holds, using Lemma 1, we have that ‖z‖2 . ‖Az‖2. Plugging this in Equa-
tion 5, we get: ‖z‖2 . 2‖e‖2 ⇒ ‖x∗ − x‖2 ≤ O(ε).

This concludes the proof of Theorem 1.

2 Packing and Covering Numbers

Consider a metric space (X , d). Note that d must satisfy the following properties:

� d(x, y) ≥ 0 ∀ x, y ∈ X .

� d(x, y) = d(y, x) ∀ x, y ∈ X .

� d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X .

� d(x, y) = 0 ⇐⇒ x = y ∀ x, y ∈ X .

An example of a metric space is (Rm, ‖.‖p) which is the m-dimensional real space with the `p norm.

Definition 2. An ε-cover of X with respect to d is a set of points {x1, . . . , xn} ∈ X such that ∀
y ∈ X , ∃ i ∈ [n] satisfying d(y, xi) ≤ ε. Further, the covering number, N(ε,X , d), of X with respect
to d is defined as follows:

N(ε,X , d) := minimum n such that ∃ an ε-cover of X with respect to d.
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Also:

log(N(ε,X , d)) := “metric entropy”, i.e. the information to describe X to within ε precision.

As an example, consider X = [−1, 1] and d(x, y) = |x− y|, i.e. the unit line. It is easy to see that
{0,±2ε,±4ε, . . .} forms an ε-cover of X w.r.t d – so in this case, N(ε,X , d) ≤ 1

ε + 1.
Generalizing the above to m dimensions, we get that:

N(ε, [−1, 1]m, ‖.‖∞) ≤
(

1 +
1

ε

)m
. (7)

Definition 3. An ε-packing of X with respect to d is a set of points {x1, . . . , xn} ∈ X such that
d(xi, xj) ≥ ε ∀ i 6= j. Further, the packing number, M(ε,X , d), of X with respect to d is defined as
follows:

M(ε,X , d) := maximum n such that ∃ an ε-packing of X with respect to d.

Lemma 2. M(2ε,X , d) ≤ N(ε,X , d) ≤M(ε,X , d).

The second inequality in Lemma 2, i.e. N(ε,X , d) ≤M(ε,X , d) can be explained as follows. Let us
make a greedy construction for the cover, such that at each step, we increment our cover to include
all points which are more than ε away from the current cover that we have. Eventually, when we
stop, there would be no point that is more than ε away from the final cover (and so this an ε-cover).
But by this greedy construction, every point is ε away from the previous chosen points and hence
this gives us a packing too! Hence, there exists a packing with size at least the maximum cover.

Also recall the volume argument that we made in the lecture on 10/06 for `2 balls. This actu-
ally works for any `p ball, and gives us the following bound:

Lemma 3. Suppose X is the unit `p ball in Rm, say Bp, and d = ‖.‖p. Then:

1

εm
≤ N(ε,Bp, ‖.‖p) ≤

(
1 +

2

ε

)m
.

Compare the result in Lemma 3 for the `∞ case to the actual bound that we got above (eq. (7)).
Notice that the result of Lemma 3 is tight upto constant factors.
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