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1 Sparse Recovery - L1 minimization

Recall the sparse-recovery problem. We are given noisy measurements y = Ax + e. We wish
to recover x € R™ from the available noisy measurements y € R™. A € R™*" is known. We are
particularly interested in the vastly under-determined setting where m << n. As such, the problem
is of course ill-posed but suppose x is k-sparse i.e. ||z|lo < k. This premise radically changes the
problem, making the search for solutions feasible.

However, in general, finding sparse solutions to under-determined systems of linear equations is
NP-hard. For example, we can formulate the problem of finding the sparsest solution as:

min [zl
! (PO)
st. |JAx —yll2 <e

To the best of our knowledge, solving PO requires exhaustive searches over all subsets of columns
of A, a procedure which clearly is combinatorial in nature and has exponential complexity. This
computational intractability has led to several different formulations. One widely studied formu-
lation, known as basis pursuit (Chen et al. (2001); Candes and Tao (2005); Candes et al. (2006,
2008)), is to do a convex relaxation and solve the following problem instead:

min ||z
! (P1)
st. |Ax—yl2 <e

Unlike the £y norm, ¢; is convex and thus P1 reduces to a convex program.
Suppose x* is the optimal solution to P1. Then, we have the following result relating x* to x.

Theorem 1. Assume A satisfies RIP, ||e||2 <€, x is k-sparse and X* is the solution to P1 then:

X" = xl[l2 < O(e) (1)

Before we prove Theorem 1, we introduce a definition and a lemma which we use in the proof.

Definition 1. Restricted Eigenvalue Condition (REC): A satisfies the Restricted Eigenvalue
Condition if for any z, if 35 s.t. ||zs||1 > ||zgll1, then |Az|2 2 ||2]-.

Lemma 1. (RIP — REC). Suppose A satisfies RIP(O(3k),€). Also, let z be such that there
exists a support of size k, say S, which contains more than half of its mass — i.e. ||(z)s|/1 > ||(z)g]|1-
Then, ||lzll2 < |[Az|2.



Proof. We will prove this by a “shelling” argument. Suppose we sort the co-ordinates of z in
decreasing order of magnitude. Then split the co-ordinates into groups of k i.e. z; denote the
top-k coordinates of z, zy denote the next top-k coordinates and so on i.e. z = ZZL:/ ’f z;. Note
that if 3 a support S of size k, such that ||(z)s||1 > ||(z)g]l1, then Supp(z1) must be one such S
— 50 ||z1|l1 > ||z2 + 23 + ... ||1. Also, since each z; is k-sparse by construction, then (z; + z;1) is

2k-sparse. Then:

|z + ziv1ll2 < V2K||2i + Zit1]loo <

1
Y 2k:’
The last inequality follows because the average value of the previous two shells is bigger than the
maximum value in the current two shells.

|Zi—2 + zi—1]|1 (2)

Now, the rest of the proof is as follows:

|Az|2 > ||A(z1 + 22 + 23)|]2 — || A(Z4 + 25)||2 — ||[A(z6 + 27)||]2 — ... (by the triangle inequality)
> (1—e)||z1 + 22+ z3|l2 — (1 + €)(||za + 25|2 + ||z6 + 2z7||2 + ...) (A satisfies RIP of O(3k))
1+e . .
> (1—e)||z1 + 22 + z3|]2 — E(HZQ + 231 + ||z4 + z5]|1 + .. .) (using Equation 2)
1+e .
=(1—¢)|z1 + 22+ 232 — |z2 + z3 + 24 + 25 + . . . ||1(z; have disjoint supports)

vV 2k
1+e¢

=z (1 =€)lzllz - Eﬂzz +z3tzat+z5+... |1
1+e¢

> (1—¢)|z1]]2 — ﬁﬂzlﬂl (recall that ||z1|1 > ||ze + 23+ ...]|1)
1+e€, .

> ||z1]]2(1 — e — —=) (since ||z1]li < [|z1]|2Vk)

Hence, ||z1]j2 < O(1)||Azl||2. Also, note that:

|z —z1ll2 = ||lz2 + 23 + ... |2

< \/||z2 + 234 ... ||lso|lz2 + 23+ ... |1 (using Hélder’s inequality)

< ('k”> Jeall

1211
- Vk
< ||z1]|2 (4)

Hence, using Equation (4), we get that ||z||2 < [|z1|l2+||z—2z1]|2 < 2||z1]]2 < ||Az||2. This concludes
the proof. |

We are now ready to prove Theorem 1.

Proof of Theorem 1: In this proof, we consider the case of |e|ls = e. However, this proof



can be easily extended to the general case of |le]|2 < e.
Let z = x* — x. Since x* solves P1, it is also feasible and thus we have:
[Ax" —yl2 <€

=||Ax" — (Ax+e)|2 <€

=[[A(x" —x) —e[2 <€

=[|Az —e[3 < ¢ = e|l3

T

=||Az|3 + |le]3 — 2¢" Az < |le]3

=[|Az| < 2¢" Az < 2|le[|2[| Azl

=[|Azly < 2[le[l2 (5)

Now, we can use the fact that since x* is the minimizer of P1 : ||x*||; < ||x||1 = ||xs|/1 where
S = Supp(x). Using this we have:

[xslly =[xy
= |Ixslly + [Ixgllh
=[x+ 2)sl + I(x + z)glh
= |[(x +2)s][1 + [|zg]]1 ... since S = Supp(x).
> |Ixs|l1 — l|lzs|l1 + |lzgll1 ... by the triangle inequality.
= Jlzslls > Izl (©)

From Equation 6 we see that most of the mass of z is concentrated in S (i.e. its top k coordinates).
Now since Equation 6 holds, using Lemma 1, we have that ||z||2 < ||Az||2. Plugging this in Equa-
tion 5, we get: ||z]2 S 2||e|l2 = [|x* — x]j2 < O(e).

This concludes the proof of Theorem 1.

2 Packing and Covering Numbers

Consider a metric space (X, d). Note that d must satisfy the following properties:

An example of a metric space is (R™, ||.||,) which is the m-dimensional real space with the ¢, norm.

Definition 2. An e-cover of X with respect to d is a set of points {x1,...,z,} € X such that ¥V
y € X, 3 i € [n] satisfying d(y, x;) < €. Further, the covering number, N (e, X,d), of X with respect
to d is defined as follows:

N(e, X,d) := minimum n such that 3 an e-cover of X with respect to d.



Also:

log(N (e, X,d)) := “metric entropy”, i.e. the information to describe X to within € precision.

As an example, consider X = [—1,1] and d(x,y) = |x — y|, i.e. the unit line. It is easy to see that
{0, +2¢, t4e, ...} forms an e-cover of X w.r.t d —so in this case, N(e, X, d) < % + 1.
Generalizing the above to m dimensions, we get that:

NG L7 o) < (14 2) " (7)

Definition 3. An e-packing of X with respect to d is a set of points {x1,...,zp,} € X such that
d(zi,x;) > € Vi # j. Further, the packing number, M (e, X,d), of X with respect to d is defined as
follows:

M(e, X, d) := maximum n such that 3 an e-packing of X with respect to d.
Lemma 2. M (2¢,X,d) < N(e,X,d) < M(e, X, d).

The second inequality in Lemma 2, i.e. N(e, X, d) < M(e, X, d) can be explained as follows. Let us
make a greedy construction for the cover, such that at each step, we increment our cover to include
all points which are more than ¢ away from the current cover that we have. Eventually, when we
stop, there would be no point that is more than e away from the final cover (and so this an e-cover).
But by this greedy construction, every point is € away from the previous chosen points and hence
this gives us a packing too! Hence, there exists a packing with size at least the maximum cover.

Also recall the volume argument that we made in the lecture on 10/06 for ¢o balls. This actu-
ally works for any ¢, ball, and gives us the following bound:

Lemma 3. Suppose X is the unit £, ball in R™, say B,, and d = ||.||,. Then:
1 2\m
= SNEB ) < (1+2)

Compare the result in Lemma 3 for the /o, case to the actual bound that we got above (eq. (7)).
Notice that the result of Lemma 3 is tight upto constant factors.
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