CS 395T: Sublinear Algorithms, Fall 2020 October 22nd, 2020

Lecture 17: Adaptive k-sparse compressed sensing
Prof. Eric Price Scribe: Nikos Mouzakis
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we showed lower bounds for non-adaptive compressed sensing and we proved
that we need klog(%) linear measurements.

In this lecture we are going to discuss how to beat that lower bound with adaptive measurements.

2 Setting

Assume that x is k-sparse and that w denotes the (gaussian) noise. In adaptive sensing, we pick
the measurement vector v(¥ and we learn < v,z + w >. Then, after learning < o@Dz +w > we
can pick v("t1) and repeat the process for every i € [m]. The goal is to eventually output an Z such
that [|2 — z[[< O(1)[|w||2

3 k=1

3.1 Lower bound

Lets consider the case kK = 1.

In the non-adaptive case we showed that the problem is hard even if x; = e;,w ~ N(0, ﬁ[n).

Specifically we showed about the mutual information that I(< v,z +w >;< v,z >) < %log(l +

El<v,z>? 1 E[||vi]? 1 2 . . .
%) = 5log(1+ %) = 5log(1 + HMTQH%) = O(1), which means that the information
we can learn is only a constant. However, the mutual information required for any valid recovery

is I(z,x) = Q(logn), so we needed m = Q(logn) measurements.

Question: Why would it be possible to overcome this bound? Why does this bound not apply
for the adaptive case?

The problem lies with the equation E[||v;||[|?] = [|v||?/n. Recall that to prove this we used that v
and x are uncorrelated, i.e. E[||v;]|[|?] = > i1 E[||v|[? * Iy—,;] = [|v[|?/n. But the whole point of
having adaptivity is that with each step we learn more about and can make better queries.

For example, for the first query we might have that E[Hv(l)HQ] = |[v™M||?/n, but at the end we

%

can even have that E[||Uz(m)||2] = [|o™||?. So the mutual information bound would become I(<

v, 7 +w >;< v,z >) < $log(l 4+ n). This naive bound essentially says that once we know the
location of the answer, we can learn it in constant measurements.

Let’s get a better bound. The information we gain in round 7 is I(< v,z + w >;< v,z >) <
i B(Jv;" 2]

3log(1 + oo)

Suppose at round r we know b bits of information about i. Let’s assume that these are the first b
bits of the answer’s index i, i.e. 7 is in an interval of width % Then we could set v to be 1 over that

interval, which means E[||v§r)\|2} = 1 and |[v||> = n/2°. This would make the mutual information
for the r-th round %log(l + 100 * 2°) =~ b/2. So if we know b bits of information about i, in two
measurements we can learn b more bits. Effectively, we could hope to learn 1 bit for the first two
measurements, 2 bits for the next two measurements, 4 for the next two, etc. We would then need
loglogn measurements to learn the full answer. This analysis can be made tight (even without the
assumption of ¢ being concentrated in an interval, and that our knowledge of i being its first few
bits) to show a lower bound of O(loglogn).

3.2 Algorithm

We need to know Q(log(SN R)) bits per measurement (since the lower bound says that’s optimal).

Consider first the case with SNR =oco. (i.e. # = ae;, w = 0). In this noiseless case, we can set

o) = (1,1,1.,1) and v = (1,2,3..,n) with i = Sur> = st

. . a 5 . <v(2),w+w> _ aifan/R __
Next, lets assume SNR is bounded, i.e. [[w|[1 < %, the same v’s give o atws = ata/R

i+£0(n/R). So we can learn i exactly if R > O(n).

However, even if R is less than that, we get that after a round with SNR=R, we can restrict ¢ to
O(n/R) possibilities. This gives us the following algorithm idea.

1. R+ O(1)

2 k+n/2,A + n/2 i€k+A]
3: repeat

£ S {k+jlljl < A}

S s

6: y2<—zg‘esj*$j
7 k + z%

8: A(—A/R

9: until A <1

However, we can notice that our SNR increases with every step. This is because the region that ¢
lies in is becoming smaller. Recall that R > m, but R’ > m, and ||ws||1 = %Hw“l = R||w]|.
Hence R’ > m ~ R?, if we assume that the noise w is spread out evenly.

To make this work even if w isn’t sufficiently spread out we can virtually permute = (probe the
permuted indices of x), so the expected value of w is the same.

However this has some probability of failure d; = §/i? for each round. We can counteract this by
setting R’ = R?6; without slowing the algorithm down significantly (it still scales doubly exponen-

tially).

Overall, this solves the k = 1 case.

4 k=2

An idea to extend this for higher & would be to use multiple equations (instead of just (1,1,1...,1)
and (1,2,3,4...,n)).

A simpler idea is to sample at rate % and run the algorithm on this sample, which gives a k * %(1 —

)" &~ 1 chance of sampling exactly one of the k heavy hitters. Then the noise is E[||ws|[1] =

This means that with O(log log n) measurements we have % chance of finding 1 heavy hitter.

[[wl]x
o

Extending this to find all heavy hitters, we can sample x as above into k samples and run the
algorithm in each, so the probability to not find some heavy hitter is for it to never have been
sampled alone. So Pr[any given HH not found] < (1 — +(1 — £)k=1)0%k) ~ 2=0M) which is a small
constant. So every heavy hitter will be found with constant probability, and we will get a constant
fraction of the heavy hitters (but still not all).

One way is to take O(k)log(k) samples which gives 299k and a O(klog(log(n))log(k)) bound,
which is good only for small k.

Another option is to repeat the process. Since with O(kloglogn) measurements we find 90% of the
heavy hitters we can repeat the process for k' = k/10. This gives a O(kloglogn) + O(%loglogn) +
O(%loglogn) = O(kloglogn) lower bound.

