1 Overview

In the last lecture we showed lower bounds for non-adaptive compressed sensing and we proved that we need $k \log \left(\frac{n}{k} \right)$ linear measurements.

In this lecture we are going to discuss how to beat that lower bound with adaptive measurements.

2 Setting

Assume that x is k-sparse and that w denotes the (gaussian) noise. In adaptive sensing, we pick the measurement vector $v^{(i)}$ and we learn $<v^{(i)}, x + w>$. Then, after learning $<v^{(i)}, x + w>$ we can pick $v^{(i+1)}$ and repeat the process for every $i \in [m]$. The goal is to eventually output an \hat{x} such that $||\hat{x} - x||_2 \leq O(1)||w||_2$

3 $k=1$

3.1 Lower bound

Let's consider the case $k = 1$.

In the non-adaptive case we showed that the problem is hard even if $x_i = e_i, w \sim N(0, \frac{1}{100n}I_n)$. Specifically we showed about the mutual information that $I(<v, x + w>; <v, x>) \leq \frac{1}{2} \log(1 + \frac{E[<v, x + w>^2]}{E[<v, x>^2]}) = \frac{1}{2} \log(1 + \frac{E[|v_i|^2]}{E[|v|^2]}) = \frac{1}{2} \log(1 + \frac{|v|^2}{100n}) = O(1)$, which means that the information we can learn is only a constant. However, the mutual information required for any valid recovery is $I(\hat{x}, x) = \Omega(\log n)$, so we needed $m = \Omega(\log n)$ measurements.

Question: Why would it be possible to overcome this bound? Why does this bound not apply for the adaptive case?

The problem lies with the equation $E[|v_i|^2] = |v|^2/n$. Recall that to prove this we used that v and x are uncorrelated, i.e. $E[|v_i|^2] = \sum_{j=1}^n E[|v_j|^2 * I_{x=e_j}] = |v|^2/n$. But the whole point of having adaptivity is that with each step we learn more about x and can make better queries.

For example, for the first query we might have that $E[|v_1^{(1)}|^2] = |v^{(1)}|^2/n$, but at the end we can even have that $E[|v_i^{(m)}|^2] = |v^{(m)}|^2$. So the mutual information bound would become $I(<
Let’s get a better bound. The information we gain in round r is $I(< v, x + w >; < v, x >) \leq \frac{1}{2} \log(1 + n)$. This naive bound essentially says that once we know the location of the answer, we can learn it in constant measurements.

Suppose at round r we know b bits of information about i. Let’s assume that these are the first b bits of the answer’s index i, i.e. i is in an interval of width $\frac{n}{2^b}$. Then we could set v to be 1 over that interval, which means $E[||v_i^{(r)}||^2] = 1$ and $||v||^2 = n/2^b$. This would make the mutual information for the r-th round $\frac{1}{2} \log(1 + 100 * 2^b) \approx b/2$. So if we know b bits of information about i, in two measurements we can learn b more bits. Effectively, we could hope to learn 1 bit for the first two measurements, 2 bits for the next two measurements, 4 for the next two, etc. We would then need $\log \log n$ measurements to learn the full answer. This analysis can be made tight (even without the assumption of i being concentrated in an interval, and that our knowledge of i being its first few bits) to show a lower bound of $O(\log \log n)$.

3.2 Algorithm

We need to know $\Omega(\log(SNR))$ bits per measurement (since the lower bound says that’s optimal).

Consider first the case with $SNR = \infty$. (i.e. $x = a e_i$, $w = 0$). In this noiseless case, we can set $v^{(1)} = (1, 1, 1,.., 1)$ and $v^{(2)} = (1, 2, 3,.., n)$ with $i = \frac{<v^{(2)}, x>}{<v^{(1)}, x>} = \frac{a_i}{a}$.

Next, let’s assume SNR is bounded, i.e. $||w||_1 \leq \frac{a}{R}$, the same v’s give $\frac{<v^{(2)}, x + w>}{<v^{(1)}, x + w>} = \frac{a_i + an/R}{a + a/R} \approx i \pm O(n/R)$. So we can learn i exactly if $R \geq O(n)$.

However, even if R is less than that, we get that after a round with $SNR=R$, we can restrict i to $O(n/R)$ possibilities. This gives us the following algorithm idea.

\begin{verbatim}
1: $R \leftarrow O(1)$
2: $k \leftarrow n/2, \Delta \leftarrow n/2$ \hspace{1cm} $i \in [k \pm \Delta]$
3: repeat
4: $S \leftarrow \{k + j||j| \leq \Delta\}$
5: $y_1 \leftarrow \sum_{j \in S} x_j$
6: $y_2 \leftarrow \sum_{j \in S} j * x_j$
7: $k \leftarrow \frac{y_2}{y_1}$
8: $\Delta \leftarrow \Delta / R$
9: until $\Delta \leq 1$
\end{verbatim}

However, we can notice that our SNR increases with every step. This is because the region that i lies in is becoming smaller. Recall that $R \geq \frac{a}{||w||_1}$, but $R' \geq \frac{a}{||w_s||_1}$, and $||w_s||_1 \approx \frac{|S|}{n} ||w||_1 = R ||w||$. Hence $R' \geq \frac{a}{||w_s||_1} \approx R^2$, if we assume that the noise w is spread out evenly.

To make this work even if w isn’t sufficiently spread out we can virtually permute x (probe the permuted indices of x), so the expected value of w is the same.

However this has some probability of failure $\delta_i = \delta / i^2$ for each round. We can counteract this by setting $R' = R^2 \delta_i$ without slowing the algorithm down significantly (it still scales doubly exponen-
Overall, this solves the \(k = 1 \) case.

\section{\(k = 2 \)}

An idea to extend this for higher \(k \) would be to use multiple equations (instead of just \((1,1,1\ldots,1)\) and \((1,2,3,4\ldots,n)\)).

A simpler idea is to sample at rate \(\frac{1}{k} \) and run the algorithm on this sample, which gives a \(k \cdot \frac{1}{k}(1 - \frac{1}{k})^n \approx \frac{1}{e} \) chance of sampling exactly one of the \(k \) heavy hitters. Then the noise is \(E[||w_s||_1] = \frac{||w||_1}{k} \).

This means that with \(O(\log \log n) \) measurements we have \(\frac{1}{e} \) chance of finding 1 heavy hitter.

Extending this to find all heavy hitters, we can sample \(x \) as above into \(k \) samples and run the algorithm in each, so the probability to not find some heavy hitter is for it to never have been sampled alone. So \(\text{Pr}[\text{any given HH not found}] \leq (1 - \frac{1}{k})(1 - \frac{1}{k})^{k-1}O(k) \approx 2^{-O(1)} \), which is a small constant. So every heavy hitter will be found with constant probability, and we will get a constant fraction of the heavy hitters (but still not all).

One way is to take \(O(k)\log(k) \) samples which gives \(2^{-O(1)\log k} \) and a \(O(k\log(\log(n))\log(k)) \) bound, which is good only for small \(k \).

Another option is to repeat the process. Since with \(O(k\log\log n) \) measurements we find 90\% of the heavy hitters we can repeat the process for \(k' = k/10 \). This gives a \(O(k\log\log n) + O(\frac{k}{10}\log\log n) + O(\frac{k}{100}\log\log n) = O(k\log\log n) \) lower bound.