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1 Overview

In the last lecture we talked about quantile estimation with two methods, sampling and merge-
and-reduce.

In this lecture we will do streaming algorithms to determine the elements that appear the most
often in a stream - the Heavy Hitters problem.

2 Heavy Hitters

Given a stream of URLS uq,uo,...,uny € U. Let x, = vazl 1,,=u, that is, the number of occur-
rences of u in the stream. The goal is to store the elements in the universe that occur the most
often. For instance, the universe could be the set of URLSs, and we might be interested in the most
common ones. In many domains, (for example, words in book, # of friends, etc), the ith most
common element occurs with frequency decaying as a power law, for instance proportional to 1/3%7.
This motivates the interest in the elements that occur the most often, as sometimes they can occur
considerably more often than the other elements.

We could solve our problem by keeping track of how often each element occurs, however, by a
reduction from the indexing problem we can see that solving this exactly would require Q(n) space.
Instead we focus on the following:

1. Estimation version: output Z, such that |z, — x,| is small with high probability.

2. Heavy Hitters version: Keep track of just the most common elements, without caring
about exactly how often they occur. That is, find S C [n] such that

(a) u€ S for all u such that z,, > Z¥
(b) u & S for all u such that z, < &

Note that this means |S| < k.



2.1 Frequent Elements and Misra-Gries

Here we look at a deterministic algorithm to get estimates Z,, in the insertion only model.

Lets first look at the problem of identifying a single majority element, if it exists. If a majority
does not exist, we may output any element.

To solve this, we keep track of a candidate element, and a counter. We initialize the counter to
1, and the candidate element to be the first element in the stream. Whenever the next element in
the stream is the candidate element, we increment the counter by 1. Whenever the next element
is different, we decrement the counter by 1. If the counter ever hits 0, we replace the candidate
element by the most recent element, and set the counter to 1 again. We output the candidate
element.

For example, suppose the stream was “A”, “B”, “B”, “C”,“A”, “B”, “B”. Then after each element
was seen our state would be (“A4”,1),(“B”,1),(“B”,2),(“B”,1),(“A”,1),(“B”,1),(“B”,2). We
output “B”, which is the correct majority.

We can extend this to keep track of more elements. Suppose we kept track of the number of times
each element occurs. That is, we store a map from elements to their count, and increment the
count for an element whenever we it. If there are more than k elements, we remove an element. We
cannot just remove the element with the smallest count (see what happens when we are limiting
ourselves to keeping track of 3 elements and we see the stream (“A”, “B”, “C”, “D”, “D") - we will
not get D). Instead, if we overflow, we decrement each counter currently in our map by 1. If any
counter reaches 0, we delete that element and insert our new element with count 1.

Algorithm 1: Misra-Gries
Input :k
Output: Table

1 Table < {};

2 for element in stream do

3 if element in Table then

4 | Table [element |+ = 1;

5 else

6 if |Table | < k then

7 ‘ Table [element | =1

8 else

9 for i € [k] do

10 Table [i|— = 1; // decrement step
11 if Table [i] = 0 then

12 ‘ Table \ i;

We use the counts in Table once all of the elements have been seen as our estimates Z,,.

Claim 1. Upon termination of Algorithm (1), for each element u, we have
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Furthermore, if the stream restricted to only its a most frequent elements is denoted H,(x), we have
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Proof. The counts Z, for each element u are always underestimates of the true frequency z,,, since
the element may have been in the Table when decrement step was executed. In particular, if the
decrement step is executed D times over the course of the entire algorithm, then it was executed
at most D times when element u was in the Table, and so we have

Furthermore, since each decrement step decreases k from the total count of all elements in the
table, we can only execute decrement step at most
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times. If we keep track of the total count across every entry in the table, >, &,, we know that we
reduce this count by k£ on every decrement step and increase the count by 1 for every insertion,

so we have exactly that
> Eu+Dk=) wy=|lzll.
u u

We can say more in terms of how concentrated the stream is around its most frequent elements.
Let H,(x) denote the stream restricted to only its a most frequent elements, which we denote

UL, U2, "+, Ug. We have
k k
2 2 ) Dk
DT £ Tt
i=1 i=1
- Dk
< Zl'u + 7

2.2 Count-Min

Now, we would like to solve the problem for the general case, including deletions: that is, you are
given updates (u,«) in a stream, which corresponds to the operation z,, < x, + a, where « is not
necessarily nonnegative.



To do this, recall how hash tables operate: you store an array of values. The index in this array
that you operate on given a certain input is given by a hash function on the input, and collisions
are handled by “chaining”. So, a potential solution would be to create a hash table on the inputs,
and update the value in the hash table corresponding to this hash. However, this requires linear
space in the number of inputs, and so is too much storage.

So, instead, simply don’t do chaining, and allow colliding hash values to use the same entry in your
hash table. In particular, take a pairwise independent hash function h : U — [B], where B = O(k),

and let
yi= >,
u:h(u)=j

Estimate &y, as y(,). Note that in strict turnstile, z,, < &y, Further, the error is, in expectation,
similar to what we had earlier:
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where we have used that the hash function is pairwise independent.

However, the issue with this is that || — 2|/~ is large, since many small values could hash to the
same location as the largest ones, causing lots of error on those coordinates.

So, as usual, to fix this, we repeat this process R times, with R hash functions, getting D 2@ 26 7

such that N
Vu,Vr € [R],E[z{") — z,] < =

Now, all of these estimates are going to be larger than the true value, and so the minimum of them
is likely to be close to the true value.
Claim 2. If we take Z,, = min, a%(f), then
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Proof. By Markov’s inequality, we have that for some fixed r,
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So, since all of the R instances are independent,
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So, union bounding over all the indices, we get the claim. O

In particular, if we take R = O(log |U|), we can get the result with high probability.



Count-Min Frequent Elements

Space
Estimate
Update time
Recovery time

Misc

Klog|U| O(K)
Overestimate Underestimate
O(log |U]) time O(1) average, O(K) worst case
O(|U]) (iterate over everything) Simply output dict
Supports deletions Is deterministic




