
Compressed Sensing using Generative Models

Ashish Bora∗ Ajil Jalal† Eric Price‡ Alexandros G. Dimakis§

Abstract

The goal of compressed sensing is to estimate a vector from an underdetermined system of noisy linear measure-
ments, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results
in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees
similar to standard compressed sensing but without employing sparsity at all. Instead, we suppose that vectors lie
near the range of a generative model G : Rk → Rn. Our main theorem is that, if G is L-Lipschitz, then roughly
O(k logL) random Gaussian measurements suffice for an `2/`2 recovery guarantee. We demonstrate our results
using generative models from published variational autoencoder and generative adversarial networks. Our method
can use 5-10x fewer measurements than Lasso for the same accuracy.

1 Introduction

Compressive or compressed sensing is the problem of reconstructing an unknown vector x∗ ∈ Rn after observing
m < n linear measurements of its entries, possibly with added noise:

y = Ax∗ + η,

where A ∈ Rm×n is called the measurement matrix and η ∈ Rm is noise. Even without noise, this is an under-
determined system of linear equations, so recovery is impossible unless we make an assumption on the structure of
the unknown vector x∗. We need to assume that the unknown vector is “natural,” or “simple,” in some application-
dependent way.

The most common structural assumption is that the vector x∗ is k-sparse in some known basis (or approximately
k-sparse). Finding the sparsest solution to an underdetermined system of linear equations is NP-hard, but still convex
optimization can provably recover the true sparse vector x∗ if the matrix A satisfies conditions such as the Restricted
Isometry Property (RIP) or the related Restricted Eigenvalue Condition (REC) [35, 7, 14, 6]. The problem is also called
high-dimensional sparse linear regression and there is vast literature on establishing conditions for different recovery
algorithms, different assumptions on the design of A and generalizations of RIP and REC for other structures, see
e.g. [6, 33, 1, 30, 3].

This significant interest is justified since a large number of applications can be expressed as recovering an unknown
vector from noisy linear measurements. For example, many tomography problems can be expressed in this frame-
work: x∗ is the unknown true tomographic image and the linear measurements are obtained by x-ray or other physical
sensing system that produces sums or more general linear projections of the unknown pixels. Compressed sensing
has been studied extensively for medical applications including computed tomography (CT) [8], rapid MRI [31] and
neuronal spike train recovery [21]. Another impressive application is the “single pixel camera” [15], where digital
micro-mirrors provide linear combinations to a single pixel sensor that then uses compressed sensing reconstruction
algorithms to reconstruct an image. These results have been extended by combining sparsity with additional structural
assumptions [4, 22], and by generalizations such as translating sparse vectors into low-rank matrices [33, 3, 17]. These
∗University of Texas at Austin, Department of Computer Science, email: ashish.bora@utexas.edu
†University of Texas at Austin, Department of Electrical and Computer Engineering, email: ajiljalal@utexas.edu
‡University of Texas at Austin, Department of Computer Science, email: ecprice@cs.utexas.edu
§University of Texas at Austin, Department of Electrical and Computer Engineering, email: dimakis@austin.utexas.edu

1

ar
X

iv
:1

70
3.

03
20

8v
1

 [
st

at
.M

L
]

 9
 M

ar
 2

01
7

results can improve performance when the structural assumptions fit the sensed signals. Other works perform “dictio-
nary learning,” seeking overcomplete bases where the data is more sparse (see [9] and references therein).

In this paper instead of relying on sparsity, we use structure from a generative model. Recently, several neural net-
work based generative models such as variational auto-encoders (VAEs) [26] and generative adversarial networks
(GANs) [19] have found success at modeling data distributions. In these models, the generative part learns a mapping
from a low dimensional representation space z ∈ Rk to the high dimensional sample space G(z) ∈ Rn. While train-
ing, this mapping is encouraged to produce vectors that resemble the vectors in the training dataset. We can therefore
use any pre-trained generator to approximately capture the notion of an vector being “natural” in our domain: the
generator defines a probability distribution over vectors in sample space and tries to assign higher probability to more
likely vectors, for the dataset it has been trained on. We expect that vectors “natural” to our domain will be close to
some point in the support of this distribution, i.e., in the range of G.

Our Contributions: We present an algorithm that uses generative models for compressed sensing. Our algorithm
simply uses gradient descent to optimize the representation z ∈ Rk such that the corresponding image G(z) has small
measurement error ‖AG(z)− y‖22. While this is a nonconvex objective to optimize, we empirically find that gradient
descent works well, and the results can significantly outperform Lasso with relatively few measurements.

We obtain theoretical results showing that, as long as gradient descent finds a good approximate solution to our
objective, our output G(z) will be almost as close to the true x∗ as the closest possible point in the range of G.

The proof is based on a generalization of the Restricted Eigenvalue Condition (REC) that we call the Set-Restricted
Eigenvalue Condition (S-REC). Our main theorem is that if a measurement matrix satisfies the S-REC for the range
of a given generator G, then the measurement error minimization optimum is close to the true x∗. Furthermore, we
show that random Gaussian measurement matrices satisfy the S-REC condition with high probability for large classes
of generators. Specifically, for d-layer neural networks such as VAEs and GANs, we show that O(kd log n) Gaussian
measurements suffice to guarantee good reconstruction with high probability. One result, for ReLU-based networks,
is the following:

Theorem 1.1. Let G : Rk → Rn be a generative model from a d-layer neural network using ReLU activations. Let
A ∈ Rm×n be a random Gaussian matrix for m = O(kd log n), scaled so Ai,j ∼ N(0, 1/m). For any x∗ ∈ Rn
and any observation y = Ax∗ + η, let ẑ minimize ‖y − AG(z)‖2 to within additive ε of the optimum. Then with
1− e−Ω(m) probability,

‖G(ẑ)− x∗‖2 ≤ 6 min
z∗∈Rk

‖G(z∗)− x∗‖2 + 3‖η‖2 + 2ε.

Let us examine the terms in our error bound in more detail. The first two are the minimum possible error of any vector
in the range of the generator and the norm of the noise; these are necessary for such a technique, and have direct
analogs in standard compressed sensing guarantees. The third term ε comes from gradient descent not necessarily
converging to the global optimum; empirically, ε does seem to converge to zero, and one can check post-observation
that this is small by computing the upper bound ‖y −AG(ẑ)‖2.

While the above is restricted to ReLU-based neural networks, we also show similar results for arbitrary L-Lipschitz
generative models, for m ≈ O(k logL). Typical neural networks have poly(n)-bounded weights in each layer, so
L ≤ nO(d), giving for all activation functions the same O(kd log n) sample complexity as for ReLU networks.

Theorem 1.2. Let G : Rk → Rn be an L-Lipschitz function. Let A ∈ Rm×n be a random Gaussian matrix for
m = O(k log Lr

δ), scaled so Ai,j ∼ N(0, 1/m). For any x∗ ∈ Rn and any observation y = Ax∗ + η, let ẑ minimize
‖y −AG(z)‖2 to within additive ε of the optimum over vectors with ‖ẑ‖2 ≤ r. Then with 1− e−Ω(m) probability,

‖G(ẑ)− x∗‖2 ≤ 6 min
z∗∈Rk

‖z∗‖2≤r

‖G(z∗)− x∗‖2 + 3‖η‖2 + 2ε+ 2δ.

The downside is two minor technical conditions: we only optimize over representations z with ‖z‖ bounded by r,
and our error gains an additive δ term. Since the dependence on these parameters is log(rL/δ), and L is something
like nO(d), we may set r = nO(d) and δ = 1/nO(d) while only losing constant factors, making these conditions

2

very mild. In fact, generative models normally have the coordinates of z be independent uniform or Gaussian, so
‖z‖ ≈

√
k � nd, and a constant signal-to-noise ratio would have ‖η‖2 ≈ ‖x∗‖ ≈

√
n� 1/nd.

We remark that, while these theorems are stated in terms of Gaussian matrices, the proofs only involve the distribu-
tional Johnson-Lindenstrauss property of such matrices. Hence the same results hold for matrices with subgaussian
entries or fast-JL matrices [2].

2 Our Algorithm

All norms are 2-norms unless specified otherwise.

Let x∗ ∈ Rn be the vector we wish to sense. Let A ∈ Rm×n be the measurement matrix and η ∈ Rm be the noise
vector. We observe the measurements y = Ax∗ + η. Given y and A, our task is to find a reconstruction x̂ close to
x∗.

A generative model is given by a deterministic functionG : Rk → Rn, and a distribution PZ over z ∈ Rk. To generate
a sample from the generator, we can draw z ∼ PZ and the sample then is G(z). Typically, we have k � n, i.e. the
generative model maps from a low dimensional representation space to a high dimensional sample space.

Our approach is to find a vector in representation space such that the corresponding vector in the sample space matches
the observed measurements. We thus define the objective to be

loss(z) = ‖AG(z)− y‖2 (1)

By using any optimization procedure, we can minimize loss(z) with respect to z. In particular, if the generative model
G is differentiable, we can evaluate the gradients of the loss with respect to z using backpropagation and use standard
gradient based optimizers. If the optimization procedure terminates at ẑ, our reconstruction for x∗ is G(ẑ). We define
the measurement error to be ‖AG(ẑ)− y‖2 and the reconstruction error to be ‖G(ẑ)− x∗‖2.

3 Related Work

Several recent lines of work explore generative models for reconstruction. The first line of work attempts to project an
image on to the representation space of the generator. These works assume full knowledge of the image, and are special
cases of the linear measurements framework where the measurement matrix A is identity. Excellent reconstruction
results with SGD in the representation space to find an image in the generator range have been reported by [28] with
stochastic clipping and [11] with logistic measurement loss. A different approach is introduced in [16] and [12]. In
their method, a recognition network that maps from the sample space vector x to the representation space vector z is
learned jointly with the generator in an adversarial setting.

A second line of work explores reconstruction with structured partial observations. The inpainting problem consists of
predicting the values of missing pixels given a part of the image. This is a special case of linear measurements where
each measurement corresponds to an observed pixel. The use of Generative models for this task has been studied
in [38], where the objective is taken to be a combination of L1 error in measurements and a perceptual loss term given
by the discriminator. Super-resolution is a related task that attempts to increase the resolution of an image. We can
view this problem as observing local spatial averages of the unknown higher resolution image and hence cast this as
another special case of linear measurements. For prior work on super-resolution see e.g. [37, 13, 23] and references
therein.

We also take note of the related work of [18] that connects model-based compressed sensing with the invertibility of
Convolutional Neural Networks.

A related result appears in [5], which studies the measurement complexity of an RIP condition for smooth manifolds.
This is analogous to our S-REC for the range of G, but the range of G is neither smooth (because of ReLUs) nor a
manifold (because of self-intersection). Their recovery result was extended in [20] to unions of two manifolds.

3

4 Theoretical Results

We begin with a brief review of the Restricted Eigenvalue Condition (REC) in standard compressed sensing. The REC
is a sufficient condition on A for robust recovery to be possible. The REC essentially requires that all “approximately
sparse” vectors are far from the nullspace of the matrix A. More specifically, A satisfies REC for a constant γ > 0 if
for all approximately sparse vectors x,

‖Ax‖ ≥ γ‖x‖. (2)

It can be shown that this condition is sufficient for recovery of sparse vectors using Lasso. If one examines the
structure of Lasso recovery proofs, a key property that is used is that the difference of any two sparse vectors is
also approximately sparse (for sparsity up to 2k). This is a coincidence that is particular to sparsity. By contrast,
the difference of two vectors “natural” to our domain may not itself be natural. The condition we need is that the
difference of any two natural vectors is far from the nullspace of A.

We propose a generalized version of the REC for a set S ⊆ Rn of vectors, the Set-Restricted Eigenvalue Condition
(S-REC):

Definition 1. Let S ⊆ Rn. For some parameters γ > 0, δ ≥ 0, a matrix A ∈ Rm×n is said to satisfy the
S-REC(S, γ, δ) if ∀ x1, x2 ∈ S,

‖A(x1 − x2)‖ ≥ γ‖x1 − x2‖ − δ.

There are two main differences between the S-REC and the standard REC in compressed sensing. First, the condition
applies to differences of vectors in an arbitrary set S of “natural” vectors, rather than just the set of approximately
k-sparse vectors in some basis. This will let us apply the definition to S being the range of a generative model.

Second, we allow an additive slack term δ. This is necessary for us to achieve the S-REC when S is the output of
general Lipschitz functions. Without it, the S-REC depends on the behavior of S at arbitrarily small scales. Since
there are arbitrarily many such local regions, one cannot guarantee the existence of an A that works for all these local
regions. Fortunately, as we shall see, poor behavior at a small scale δ will only increase our error by O(δ).

The S-REC definition requires that for any two vectors in S, if they are significantly different (so the right hand side is
large), then the corresponding measurements should also be significantly different (left hand side). Hence we can hope
to approximate the unknown vector from the measurements, if the measurement matrix satisfies the S-REC.

But how can we find such a matrix? To answer this, we present two lemmas showing that random Gaussian matrices of
relatively few measurements m satisfy the S-REC for the outputs of large and practically useful classes of generative
models G : Rk → Rn.

In the first lemma, we assume that the generative model G(·) is L-Lipschitz, i.e., ∀ z1, z2 ∈ Rk, we have

‖G(z1)−G(z2)‖ ≤ L‖z1 − z2‖.

Note that state of the art neural network architectures with linear layers, (transposed) convolutions, max-pooling,
residual connections, and all popular non-linearities satisfy this assumption. In Lemma 8.5 in the Appendix we give a
simple bound on L in terms of parameters of the network; for typical networks this is nO(d). We also require the input
z to the generator to have bounded norm. Since generative models such as VAEs and GANs typically assume their
input z is drawn with independent uniform or Gaussian inputs, this only prunes an exponentially unlikely fraction of
the possible outputs.

Lemma 4.1. Let G : Rk → Rn be L-Lipschitz. Let

Bk(r) = {z | z ∈ Rk, ‖z‖ ≤ r}

be an L2-norm ball in Rk. For α < 1, if

m = Ω

(
k

α2
log

Lr

δ

)
,

then a random matrixA ∈ Rm×n with IID entries such thatAij ∼ N
(
0, 1

m

)
satisfies the S-REC(G(Bk(r)), 1−α, δ)

with 1− e−Ω(α2m) probability.

4

All proofs, including this one, are deferred to Appendix A.

Note that even though we proved the lemma for an L2 ball, the same technique works for any compact set.

For our second lemma, we assume that the generative model is a neural network with such that each layer is a compo-
sition of a linear transformation followed by a pointwise non-linearity. Many common generative models have such
architectures. We also assume that all non-linearities are piecewise linear with at most two pieces. The popular ReLU
or LeakyReLU non-linearities satisfy this assumption. We do not make any other assumption, and in particular, the
magnitude of the weights in the network do not affect our guarantee.

Lemma 4.2. Let G : Rk → Rn be a d-layer neural network, where each layer is a linear transformation followed by a
pointwise non-linearity. Suppose there are at most c nodes per layer, and the non-linearities are piecewise linear with
at most two pieces, and let

m = Ω

(
1

α2
kd log c

)
for some α < 1. Then a random matrixA ∈ Rm×n with IID entriesAij ∼ N (0, 1

m) satisfies the S-REC(G(Rk), 1−
α, 0) with 1− e−Ω(α2m) probability.

To show Theorems 1.1 and 1.2, we just need to show that the S-REC implies good recovery. In order to make our
error guarantee relative to `2 error in the image space Rn, rather than in the measurement space Rm, we also need
that A preserves norms with high probability [10]. Fortunately, Gaussian matrices (or other distributional JL matrices)
satisfy this property.

Lemma 4.3. Let A ∈ Rm×n by drawn from a distribution that (1) satisfies the S-REC(S, γ, δ) with probability 1−p
and (2) has for every fixed x ∈ Rn, ‖Ax‖ ≤ 2‖x‖ with probability 1− p.

For any x∗ ∈ Rn and noise η, let y = Ax∗ + η. Let x̂ approximately minimize ‖y −Ax‖ over x ∈ S, i.e.,

‖y −Ax̂‖ ≤ min
x∈S
‖y −Ax‖+ ε.

Then,

‖x̂− x∗‖ ≤
(

4

γ
+ 1

)
min
x∈S
‖x∗ − x‖+

1

γ
(2‖η‖+ ε+ δ)

with probability 1− 2p.

Combining Lemma 4.1, Lemma 4.2, and Lemma 4.3 gives Theorems 1.1 and 1.2. In our setting, S is the range of the
generator, and x̂ in the theorem above is the reconstruction G(ẑ) returned by our algorithm.

5 Models

In this section we describe the generative models used in our experiments. We used two image datasets and two
different generative model types (a VAE and a GAN). This provides some evidence that our approach can work with
many types of models and datasets.

In our experiments, we found that it was helpful to add a regularization term L(z) to the objective to encourage the
optimization to explore more in the regions that are preferred by the respective generative models (see comparison to
unregularized versions in Fig. 1). Thus the objective function we use for minimization is

‖AG(z)− y‖2 + L(z).

Both VAE and GAN typically imposes an isotropic Gaussian prior on z. Thus ‖z‖2 is proportional to the negative
log-likelihood under this prior. Accordingly, we use the following regularizer:

L(z) = λ‖z‖2, (3)

where λ measures the relative importance of the prior as compared to the measurement error.

5

1
0

2
5

5
0

1
0

0

2
0

0

3
0

0
4

0
0

5
0

0

7
5

0

Number of measurements

0.00

0.02

0.04

0.06

0.08

0.10

0.12
R

e
co

n
st

ru
ct

io
n
 e

rr
o
r

(p
e
r

p
ix

e
l)

Lasso

VAE

VAE+Reg

(a) Results on MNIST

2
0

5
0

1
0
0

2
0
0

5
0
0

1
0
0
0

2
5
0
0

5
0
0
0

7
5
0
0

1
0
0
0
0

Number of measurements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

(p
e
r

p
ix

e
l)

Lasso (DCT)

Lasso (Wavelet)

DCGAN

DCGAN+Reg

(b) Results on celebA

Figure 1: We compare the performance of our algorithm with baselines. We show a plot of per pixel reconstruction
error as we vary the number of measurements. The vertical bars indicate 95% confidence intervals.

5.1 MNIST with VAE

The MNIST dataset consists of about 60, 000 images of handwritten digits, where each image is of size 28× 28 [27].
Each pixel value is either 0 (background) or 1 (foreground). No pre-processing was performed. We trained VAE
on this dataset. The input to the VAE is a vectorized binary image of input dimension 784. We set the size of the
representation space k = 20. The recognition network is a fully connected 784 − 500 − 500 − 20 network. The
generator is also fully connected with the architecture 20 − 500 − 500 − 784. We train the VAE using the Adam
optimizer [25] with a mini-batch size 100 and a learning rate of 0.001.

We found that using λ = 0.1 in Eqn. (3) gave the best performance, and we use this value in our experiments.

The digit images are reasonably sparse in the pixel space. Thus, as a baseline, we use the pixel values directly for
sparse recovery using Lasso. We set shrinkage parameter to be 0.1 for all the experiments.

5.2 CelebA with DCGAN

CelebA is a dataset of more than 200, 000 face images of celebrities [29]. The input images were cropped to a 64× 64
RGB image, giving 64× 64× 3 = 12288 inputs per image. Each pixel value was scaled so that all values are between
[−1, 1]. We trained a DCGAN 1 [34, 24] on this dataset. We set the input dimension k = 100 and use a standard
normal distribution. The architecture follows that of [34]. The model was trained by one update to the discriminator
and two updates to the generator per cycle. Each update used the Adam optimizer [25] with minibatch size 64, learning
rate 0.0002 and β1 = 0.5.

We found that using λ = 0.001 in Eqn. (3) gave the best results and thus, we use this value in our experiments.

For baselines, we perform sparse recovery using Lasso on the images in two domains: (a) 2D Discrete Cosine Trans-
form (2D-DCT) and (b) 2D Daubechies-1 Wavelet Transform (2D-DB1). While the we provide Gaussian measure-
ments of the original pixel values, the L1 penalty is on either the DCT coefficients or the DB1 coefficients of each
color channel of an image. For all experiments, we set the shrinkage parameter to be 0.1 and 0.00001 respectively for
2D-DCT, and 2D-DB1.

1Code reused from https://github.com/carpedm20/DCGAN-tensorflow

6

 https://github.com/carpedm20/DCGAN-tensorflow

(a) We show original images (top row) and reconstructions by
Lasso (middle row) and our algorithm (bottom row).

(b) We show original images (top row), low resolution version
of original images (middle row) and reconstructions (last row).

Figure 2: Results on MNIST. Reconstruction with 100 measurements (left) and Super-resolution (right)

6 Experiments and Results

6.1 Reconstruction from Gaussian measurements

We takeA to be a random matrix with IID Gaussian entries with zero mean and standard deviation of 1/m. Each entry
of noise vector η is also an IID Gaussian random variable. We compare performance of different sensing algorithms
qualitatively and quantitatively. For quantitative comparison, we use the reconstruction error = ‖x̂ − x∗‖2, where x̂
is an estimate of x∗ returned by the algorithm. In all cases, we report the results on a held out test set, unseen by the
generative model at training time.

6.1.1 MNIST

The standard deviation of the noise vector is set such that
√

E[‖η‖2] = 0.1. We use Adam optimizer [25], with a
learning rate of 0.01. We do 10 random restarts with 1000 steps per restart and pick the reconstruction with best
measurement error.

In Fig. 1a, we show the reconstruction error as we change the number of measurements both for Lasso and our
algorithm. We observe that our algorithm is able to get low errors with far fewer measurements. For example, our
algorithm’s performance with 25 measurements matches Lasso’s performance with 400 measurements. Fig. 2a shows
sample reconstructions by Lasso and our algorithm.

However, our algorithm is limited since its output is constrained to be in the range of the generator. After 100 mea-
surements, our algorithm’s performance saturates, and additional measurements give no additional performance. Since
Lasso has no such limitation, it eventually surpasses our algorithm, but this takes more than 500 measurements of the
784-dimensional vector. We expect that a more powerful generative model with representation dimension k > 20 can
make better use of additional measurements.

6.1.2 celebA

The standard deviation of entries in the noise vector is set such that
√
E[‖η‖2] = 0.01. We optimize use Adam

optimizer [25], with a learning rate of 0.1. We do 2 random restarts with 500 update steps per restart and pick the
reconstruction with best measurement error.

In Fig. 1b, we show the reconstruction error as we change the number of measurements both for Lasso and our
algorithm. In Fig. 3 we show sample reconstructions by Lasso and our algorithm. We observe that our algorithm
is able to produce reasonable reconstructions with as few as 500 measurements, while the output of the baseline
algorithms is quite blurry. Similar to the results on MNIST, if we continue to give more measurements, our algorithm
saturates, and for more than 5000 measurements, Lasso gets a better reconstruction. We again expect that a more
powerful generative model with k > 100 would perform better in the high-measurement regime.

7

Figure 3: Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We
show original images (top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis
(third row), and our algorithm (last row).

6.2 Super-resolution

Super-resolution is the task of constructing a high resolution image from a low resolution version of the same image.
This problem can be thought of as special case of our general framework of linear measurements, where the measure-
ments correspond to local spatial averages of the pixel values. Thus, we try to use our recovery algorithm to perform
this task with measurement matrix A tailored to give only the relevant observations. We note that this measurement
matrix may not satisfy the S-REC condition (with good constants γ and δ), and consequently, our theorems may not
be applicable.

6.2.1 MNIST

We construct a low resolution image by spatial 2 × 2 pooling with a stride of 2 to produce a 14 × 14 image. These
measurements are used to reconstruct the original 28 × 28 image. Fig. 2b shows reconstructions produced by our
algorithm on images from a held out test set. We observe sharp reconstructions which closely match the fine structure
in the ground truth.

6.2.2 celebA

We construct a low resolution image by spatial 4 × 4 pooling with a stride of 4 to produce a 16 × 16 image. These
measurements are used to reconstruct the original 64× 64 image. In Fig. 4 we show results on images from a held out
test set. We see that our algorithm is able to fill in the details to match the original image.

6.3 Understanding sources of error

Although better than baselines, our reconstructions still admit some error. There are three sources of this error: (a)
Representation error: the image being sensed is far from the range of the generator (b) Measurement error: The finite
set of random measurements do not contain all the information about the unknown image (c) Optimization error: The
optimization procedure did not find the best z.

In this section we present some experiments that suggest that the representation error is the dominant term. In our first
experiment, we ensure that the representation error is zero, and try to minimize the sum of other two errors. In the
second experiment, we ensure that the measurement error is zero, and try to minimize the sum of other two.

8

Figure 4: Super-resolution results on celebA. Top row has the original images. Second row shows the low resolution
(4x smaller) version of the original image. Last row shows the images produced by our algorithm.

Figure 5: Results on the representation error experiments on celebA. Top row shows original images and the bottom
row shows closest images found in the range of the generator.

10 25 50 10
0

20
0

30
0

40
0

50
0

Number of measurements

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
ec

on
st

ru
ct

io
n

er
ro

r(
pe

rp
ix

el
) From test set

From generator

(a) Results on MNIST

20 50 10
0

20
0

50
0

10
00

25
00

Number of measurements

0.00

0.05

0.10

0.15

0.20

0.25

R
ec

on
st

ru
ct

io
n

er
ro

r(
pe

rp
ix

el
) From test set

From generator

(b) Results on celebA

Figure 6: Reconstruction error for images in the range of the generator. The vertical bars indicate 95% confidence
intervals.

Figure 7: Results on the representation error experiments on MNIST. Top row shows original images and the bottom
row shows closest images found in the range of the generator.

9

6.3.1 Sensing images from the range of the generator

Our first approach is to sense an image that is in the range of the generator. More concretely, we sample a z∗ from
PZ . Then we pass it through the generator to get x∗ = G(z∗). Now, we pretend that this is a real image and try to
sense that. This method eliminates the representation error and allows us to check if our gradient based optimization
procedure is able to find z∗ by minimizing the objective.

In Fig. 6a and Fig. 6b, we show the reconstruction error for images in the range of the generators trained on MNIST
and celebA datasets respectively. We see that we get almost perfect reconstruction with very few measurements. This
suggests that objective is being properly minimized and we indeed get ẑ close to z∗. i.e. the sum of optimization error
and the measurement error is not very large, in the absence of the representation error.

6.3.2 Quantifying representation error

We saw that in absence of the representation error, the overall error is small. However from Fig. 1, we know that the
overall error is still non-zero. So, in this experiment, we seek to quantify the representation error, i.e., how far are the
real images from the range of the generator?

From the previous experiment, we know that the ẑ recovered by our algorithm is close to z∗, the best possible value,
if the image being sensed is in the range of the generator. Based on this, we make an assumption that this property is
also true for real images. With this assumption, we get an estimate to the representation error as follows: We sample
real images from the test set. Then we use the full image in our algorithm, i.e., our measurement matrix A is identity.
This eliminates the measurement error. Using these measurements, we get the reconstructed image G(ẑ) through our
algorithm. The estimated representation error is then ‖G(ẑ) − x∗‖2. We repeat this procedure several times over
randomly sampled images from our dataset and report average representation error values. The task of finding the
closest image in the range of the generator has been studied in prior work [11, 16, 12].

On the MNIST dataset, we get average per pixel representation error of 0.005. The recovered images are shown in
Fig. 7. In contrast with only 100 Gaussian measurements, we are able to get a per pixel reconstruction error of about
0.009.

On the celebA dataset, we get average per pixel representation error of 0.020. The recovered images are shown in
Fig. 5. On the other hand, with only 500 Gaussian measurements, we get a per pixel reconstruction error of about
0.028.

These experiments suggest that the representation error is the major component of the total error. Thus, a more flexible
generative model can help to decrease the overall error on both datasets.

7 Conclusion

We demonstrate how to perform compressed sensing using generative models from neural nets. These models can rep-
resent data distributions more concisely than standard sparsity models, while their differentiability allows for fast signal
reconstruction. This will allow compressed sensing applications to make significantly fewer measurements.

Our theorems and experiments both suggest that, after relatively few measurements, the signal reconstruction gets
close to the optimal within the range of the generator. To reach the full potential of this technique, one should use
larger generative models as the number of measurements increase. Whether this can be expressed more concisely than
by training multiple independent generative models of different sizes is an open question.

Generative models are an active area of research with ongoing rapid improvements. Because our framework applies to
general generative models, this improvement will immediately yield better reconstructions with fewer measurements.
We also believe that one could also use the performance of generative models for our task as one benchmark for the
quality of different models.

10

Acknowledgements

We would like to thank Philipp Krähenbühl for helpful discussions.

References

[1] Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence rates of gradient methods
for high-dimensional statistical recovery. In Advances in Neural Information Processing Systems, pages 37–45,
2010.

[2] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate nearest neighbors.
SIAM Journal on Computing, 39(1):302–322, 2009.

[3] Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization with sparsity-inducing
penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106, 2012.

[4] Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. Model-based compressive sensing.
IEEE Transactions on Information Theory, 56(4):1982–2001, 2010.

[5] Richard G Baraniuk and Michael B Wakin. Random projections of smooth manifolds. Foundations of computa-
tional mathematics, 9(1):51–77, 2009.

[6] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and dantzig selector.
The Annals of Statistics, pages 1705–1732, 2009.

[7] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete and inaccurate
measurements. Communications on pure and applied mathematics, 59(8):1207–1223, 2006.

[8] Guang-Hong Chen, Jie Tang, and Shuai Leng. Prior image constrained compressed sensing (piccs): a method
to accurately reconstruct dynamic ct images from highly undersampled projection data sets. Medical physics,
35(2):660–663, 2008.

[9] Guangliang Chen and Deanna Needell. Compressed sensing and dictionary learning. Proceedings of Symposia
in Applied Mathematics, 73, 2016.

[10] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. J. Amer. Math. Soc,
22(1):211–231, 2009.

[11] Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial network. arXiv
preprint arXiv:1611.05644, 2016.

[12] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

[13] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep convolutional
networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):295–307, 2016.

[14] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306, 2006.

[15] Marco F Duarte, Mark A Davenport, Dharmpal Takbar, Jason N Laska, Ting Sun, Kevin F Kelly, and Richard G
Baraniuk. Single-pixel imaging via compressive sampling. IEEE signal processing magazine, 25(2):83–91,
2008.

[16] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron
Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

[17] Rina Foygel and Lester Mackey. Corrupted sensing: Novel guarantees for separating structured signals. IEEE
Transactions on Information Theory, 60(2):1223–1247, 2014.

11

[18] Anna C. Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. Towards understanding the invertibility
of convolutional neural networks. 2017.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[20] Chinmay Hegde and Richard G Baraniuk. Signal recovery on incoherent manifolds. IEEE Transactions on
Information Theory, 58(12):7204–7214, 2012.

[21] Chinmay Hegde, Marco F Duarte, and Volkan Cevher. Compressive sensing recovery of spike trains using a
structured sparsity model. In SPARS’09-Signal Processing with Adaptive Sparse Structured Representations,
2009.

[22] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A nearly-linear time framework for graph-structured sparsity.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 928–937, 2015.

[23] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convolu-
tional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1646–1654, 2016.

[24] Taehoon Kim. A tensorflow implementation of “deep convolutional generative adversarial networks”.
https://github.com/carpedm20/DCGAN-tensorflow, 2017.

[25] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[26] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[28] Zachary C Lipton and Subarna Tripathi. Precise recovery of latent vectors from generative adversarial networks.
arXiv preprint arXiv:1702.04782, 2017.

[29] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings
of the IEEE International Conference on Computer Vision, pages 3730–3738, 2015.

[30] Po-Ling Loh and Martin J Wainwright. High-dimensional regression with noisy and missing data: Provable
guarantees with non-convexity. In Advances in Neural Information Processing Systems, pages 2726–2734, 2011.

[31] Michael Lustig, David Donoho, and John M Pauly. Sparse mri: The application of compressed sensing for rapid
mr imaging. Magnetic resonance in medicine, 58(6):1182–1195, 2007.

[32] Jiřı́ Matoušek. Lectures on discrete geometry, volume 212. Springer Science & Business Media, 2002.

[33] Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified framework for high-
dimensional analysis of m-estimators with decomposable regularizers. In Advances in Neural Information Pro-
cessing Systems, pages 1348–1356, 2009.

[34] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[35] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267–288, 1996.

[36] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

[37] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution via sparse representation.
IEEE transactions on image processing, 19(11):2861–2873, 2010.

[38] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N Do. Semantic image inpaint-
ing with perceptual and contextual losses. arXiv preprint arXiv:1607.07539, 2016.

12

8 Appendix A

Lemma 8.1. Given S ⊆ Rn, y ∈ Rm, A ∈ Rm×n, and γ, δ, ε1, ε2 > 0, if matrix A satisfies the S-REC(S, γ, δ),
then for any two x1, x2 ∈ S, such that ‖Ax1 − y‖ ≤ ε1 and ‖Ax2 − y‖ ≤ ε2, we have

‖x1 − x2‖ ≤
ε1 + ε2 + δ

γ
.

Proof.

‖x1 − x2‖ ≤
1

γ
(‖Ax1 −Ax2‖+ δ) ,

=
1

γ
(‖(Ax1 − y)− (Ax2 − y)‖+ δ) ,

≤ 1

γ
(‖(Ax1 − y)‖+ ‖(Ax2 − y)‖+ δ) ,

≤ ε1 + ε2 + δ

γ
.

8.1 Proof of Lemma 4.1

Definition 2. A random variable X is said to be subgamma(σ,B) if ∀ε ≥ 0, we have

P (|X − E[X]| ≥ ε) ≤ 2 max
(
e−ε

2/(2σ2), e−Bε/2
)
.

Lemma 8.2. Let G : Rk → Rn be an L-Lipschitz function. Let Bk(r) be the L2-ball in Rk with radius r, S =

G(Bk(r)), and M be a δ/L-net on Bk(r) such that |M | ≤ k log

(
4Lr

δ

)
. Let A be a Rm×n random matrix with IID

Gaussian entries with zero mean and variance 1/m. If

m = Ω

(
k log

Lr

δ

)
,

then for any x ∈ S, if x′ = arg minx̂∈G(M) ‖x− x̂‖, we have ‖A(x− x′)‖ = O(δ) with probability 1− e−Ω(m).

Note that for any given point x′ in S, if we try to find its nearest neighbor of that point in an δ-net on S, then the
difference between the two is at most the δ. In words, this lemma says that even if we consider measurements made
on these points, i.e. a linear projection using a random matrix A, then as long as there are enough measurements, the
difference between measurements is of the same order δ. If the point x′ was in the net, then this can be easily achieved
by Johnson-Lindenstrauss Lemma. But to argue that this is true for all x′ in S, which can be an uncountably large set,
we construct a chain of nets on S. We now present the formal proof.

Proof. Observe that
‖Ax‖2

‖x‖2
is subgamma

(
1√
m
,

1

m

)
. Thus, for any f > 0,

ε ≥ 2 +
4

m
log

2

f
≥ max

(√
2

m
log

2

f
,

2

m
log

2

f

)
is sufficient to ensure that

P (‖Ax‖ ≥ (1 + ε)‖x‖) ≤ f.

13

Now, let M = M0 ⊆ M1 ⊆ M2, · · · ⊆ Ml be a chain of epsilon nets of Bk(r) such that Mi is a δi/L-net and
δi = δ0/2

i, with δ0 = δ. We know that there exist nets such that

log |Mi| ≤ k log

(
4Lr

δi

)
≤ ik + k log

(
4Lr

δ0

)
.

Let Ni = G(Mi). Then due to Lipschitzness of G, Ni’s form a chain of epsilon nets such that Ni is a δi-net of
S = G(Bk(r)), with |Ni| = |Mi|.

For i ∈ {0, 1, 2 · · · , l − 1}, let
Ti = {xi+1 − xi | xi+1 ∈ Ni+1, xi ∈ Ni}.

Thus,

|Ti| ≤ |Ni+1||Ni|.
=⇒ log |Ti| ≤ log |Ni+1|+ | log |Ni|,

≤ (2i+ 1)k + 2k log

(
4Lr

δ0

)
,

≤ 3ik + 2k log

(
4Lr

δ0

)
.

Now assume m = 3k log

(
4Lr

δ0

)
,

log(fi) = −(m+ 4ik),

and

εi = 2 +
4

m
log

2

fi
,

= 2 +
4

m
log 2 + 4 +

16ik

m
,

= O(1) +
16ik

m
.

By choice of fi and εi, we have ∀i ∈ [l − 1],∀t ∈ Ti,

P (‖At‖ > (1 + εi)‖t‖) ≤ fi.

Thus by union bound, we have

P (‖At‖ ≤ (1 + εi)‖t‖,∀i,∀t ∈ Ti) ≥ 1−
l−1∑
i=0

|Ti|fi.

Now,

log(|Ti|fi) = log(|Ti|) + log(fi),

≤ −k log

(
4Lr

δ0

)
− ik,

= −m/3− ik.

=⇒
l−1∑
i=0

|Ti|fi ≤ e−m/3
l−1∑
i=0

e−ik,

≤ e−m/3
(

1

1− e−1

)
,

≤ 2e−m/3.

14

Observe that for any x ∈ S, we can write

x = x0 + (x1 − x0) + (x2 − x1) . . . (xl − xl−1) + xf .

x− x0 =

l−1∑
i=0

(xi+1 − xi) + xf .

where xi ∈ Ni and xf = x− xl.

Since each xi+1 − xi ∈ Ti, with probability at least 1− 2e−m/3, we have

l−1∑
i=0

‖A(xi+1 − xi)‖ =

l−1∑
i=0

(1 + εi)‖(xi+1 − xi)‖,

≤
l−1∑
i=0

(1 + εi)δi,

= δ0

l−1∑
i=0

1

2i

(
O(1) +

16ik

m

)
,

= O(δ0) + δ0
16k

m

l−1∑
i=0

(
i

2i

)
,

= O(δ0).

Now, ‖xf‖ = ‖x − xl‖ ≤ dl =
δ0
2l

, and ‖xi+1 − xi‖ ≤ δi due to properties of epsilon-nets. We know that

‖A‖ ≤ 2 +
√
n/m with probability at least 1 − 2e−m/2 (Corollary 5.35 [36]). By setting l = log(n), we get that,

‖A‖‖xf‖ ≤
(

2 +

√
n

m

)
δ0
2l

= O(δ0) with probability ≥ 1− 2e−m/2.

Combining these two results, and noting that it is possible to choose x′ = x0, we get that with probability 1− e−Ω(m),

‖A(x− x′)‖ = ‖A(x− x0)‖,

≤
l−1∑
i=0

‖A(xi+1 − xi)‖+ ‖Axf‖,

= O(δ0) + ‖A‖‖xf‖,
= O(δ).

Lemma. Let G : Rk → Rn be L-Lipschitz. Let

Bk(r) = {z | z ∈ Rk, ‖z‖ ≤ r}

be an L2-norm ball in Rk. For α < 1, if

m = Ω

(
k

α2
log

Lr

δ

)
,

then a random matrixA ∈ Rm×n with IID entries such thatAij ∼ N
(
0, 1

m

)
satisfies the S-REC(G(Bk(r)), 1−α, δ)

with 1− e−Ω(α2m) probability.

Proof. We construct a
δ

L
-net, N , on Bk(r). There exists a net such that

log |N | ≤ k log

(
4Lr

δ

)
.

15

Since N is a
δ

L
-cover of Bk(r), due to the L-Lipschitz property of G(·), we get that G(N) is a δ-cover of G(Bk(r)).

Let T denote the pairwise differences between the elements in G(N), i.e.,

T = {G(z1)−G(z2) | z1, z2 ∈ N}.

Then,

|T | ≤ |N |2,
=⇒ log |T | ≤ 2 log |N |,

≤ 2k log

(
4Lr

δ

)
.

For any z, z′ ∈ Bk, ∃ z1, z2 ∈ N , such thatG(z1), G(z2) are δ-close toG(z) andG(z′) respectively. Thus, by triangle
inequality,

‖G(z)−G(z′)‖ ≤ ‖G(z)−G(z1)‖+
‖G(z1)−G(z2)‖+
‖G(z2)−G(z′)‖,

≤ ‖G(z1)−G(z2)‖+ 2δ.

Again by triangle inequality,

‖AG(z1)−AG(z2)‖ ≤ ‖AG(z1)−AG(z)‖+
‖AG(z)−AG(z′)‖+
‖AG(z′)−AG(z2)‖.

Now, by Lemma 8.2, with probability 1− e−Ω(m), ‖AG(z1)− AG(z)‖ = O(δ), and ‖AG(z′)− AG(z2)‖ = O(δ).
Thus,

‖AG(z1)−AG(z2)‖ ≤ ‖AG(z)−AG(z′)‖+O(δ).

By the Johnson-Lindenstrauss Lemma, for a fixed x ∈ Rn, P
[
‖Ax‖2 < (1− α)‖x‖2

]
< exp(−α2m). Therefore,

we can union bound over all vectors in T to get

P(‖Ax‖2 ≥ (1− α)‖x‖2, ∀x ∈ T) ≥ 1− e−Ω(α2m).

Since α < 1, and z1, z2 ∈ N , G(z1)−G(z2) ∈ T , we have

(1− α)‖G(z1)−G(z2)‖ ≤
√

1− α‖G(z1)−G(z2)‖,
≤ ‖AG(z1)−AG(z2)‖.

Combining the three results above we get that with probability 1− e−Ω(α2m),

(1− α)‖G(z)−G(z′)‖ ≤ (1− α)‖G(z1)−G(z2)‖+O(δ),

≤ ‖AG(z1)−AG(z2)‖+O(δ),

≤ ‖AG(z)−AG(z′)‖+O(δ).

Thus, A satisfies S-REC(S, 1− α, δ) with probability 1− e−Ω(α2m).

16

8.2 Proof of Lemma 4.2

Lemma 8.3. Consider c different k − 1 dimensional hyperplanes in Rk. Consider the k-dimensional faces (here-
after called k-faces) generated by the hyperplanes, i.e. the elements in the partition of Rk such that relative to each
hyperplane, all points inside a partition are on the same side. Then, the number of k-faces is O(ck).

Proof. Proof is by induction, and follows [32].

Let f(c, k) denote the number of k−faces generated in Rk by c different (k − 1)-dimensional hyperplanes. As a base
case, let k = 1. Then (k − 1)-dimensional hyperplanes are just points on a line. c points partition R into c+ 1 pieces.
This gives f(c, 1) = O(c).

Now, assuming that f(c, k − 1) = O(ck−1) is true, we need to show f(c, k) = O(ck). Assume we have (c − 1)
different hyperplanes H = {h1, h2, . . . , hc−1} ⊂ Rk, and a new hyperplane hc is added. hc intersects H at (c − 1)
different (k − 2)-faces given by F = {fj | fj = hj ∩ hc, 1 ≤ j ≤ (c − 1)}. The (k − 2)-faces in F partition hc
into f(c− 1, k − 1) different (k − 1)-faces. Additionally, each (k − 1)-face in hc divides an existing k-face into two.
Hence the number of new k-faces introduced by the addition of hc is f(c− 1, k − 1). This gives the recursion

f(c, k) = f(c− 1, k) + f(c− 1, k − 1),

= f(c− 1, k) +O(ck−1),

= O(ck).

Lemma. Let G : Rk → Rn be a d-layer neural network, where each layer is a linear transformation followed by a
pointwise non-linearity. Suppose there are at most c nodes per layer, and the non-linearities are piecewise linear with
at most two pieces, and let

m = Ω

(
1

α2
kd log c

)
for some α < 1. Then a random matrixA ∈ Rm×n with IID entriesAij ∼ N (0, 1

m) satisfies the S-REC(G(Rk), 1−
α, 0) with 1− e−Ω(α2m) probability.

Proof. Consider the first layer of G. Each node in this layer can be represented as a hyperplane in Rk, where the
points on the hyperplane are those where the input to the node switches from one linear piece to the other. Since there
are at most c nodes in this layer, by Lemma 8.3, the input space is partitioned by at most c different hyperplanes, into
O(ck) k-faces. Applying this over the d layers of G, we get that the input space Rk is partitioned into at most ckd sets.

Recall that the non-linearities are piecewise linear, and the partition boundaries were made precisely at those points
where the non-linearities change from one piece to another. This means that within each set of the input partition, the
output is a linear function of the inputs. Thus G(Rk) is a union of ckd different k-faces in Rn.

We now use an oblivious subspace embedding to bound the number of measurements required to embed the range of
G(·). For a single k-face S ⊆ Rn, a random matrix A ∈ Rm×n with IID entries such that Aij ∼ N

(
0, 1

m

)
satisfies

S-REC(S, 1− α, 0) with probability 1− e−Ω(α2m) if m = Ω(k/α2).

Since the range ofG(·) is a union of ckd different k-faces, we can union bound over all of them, such thatA satisfies the
S-REC(G(Rk), 1−α, 0) with probability 1−ckde−Ω(α2m). Thus, we get thatA satisfies the S-REC(G(Rk), 1−α, 0)

with probability 1− e−Ω(α2m) if

m = Ω

(
kd log c

α2

)
.

17

8.3 Proof of Lemma 4.3

Lemma. LetA ∈ Rm×n by drawn from a distribution that (1) satisfies the S-REC(S, γ, δ) with probability 1−p and
(2) has for every fixed x ∈ Rn, ‖Ax‖ ≤ 2‖x‖ with probability 1− p. For any x∗ ∈ Rn and noise η, let y = Ax∗ + η.
Let x̂ approximately minimize ‖y −Ax‖ over x ∈ S, i.e.,

‖y −Ax̂‖ ≤ min
x∈S
‖y −Ax‖+ ε.

Then

‖x̂− x∗‖ ≤
(

4

γ
+ 1

)
min
x∈S
‖x∗ − x‖+

1

γ
(2‖η‖+ ε+ δ)

with probability 1− 2p.

Proof. Let x = arg minx∈S ‖x∗ − x‖. Then we have by Lemma 8.1 and the hypothesis on x̂ that

‖x− x̂‖ ≤ ‖Ax− y‖+ ‖Ax̂− y‖+ δ

γ
,

≤ 2‖Ax− y‖+ ε+ δ

γ
,

≤ 2‖A(x− x∗)‖+ 2‖η‖+ ε+ δ

γ
,

as long as A satisfies the S-REC, as happens with probability 1 − p. Now, since x and x∗ are independent of A, by
assumption we also have ‖A(x− x∗)‖ ≤ 2‖x− x∗‖ with probability 1− p. Therefore

‖x∗ − x̂‖ ≤ ‖x− x∗‖+
4‖x− x∗‖+ 2‖η‖+ ε+ δ

γ

as desired.

8.4 Lipschitzness of Neural Networks

Lemma 8.4. Consider any two functions f and g. If f is Lf -Lipschitz and g is Lg-Lipschitz, then their composition
f ◦ g is LfLg-Lipschitz.

Proof. For any two x1, x2,

‖f(g(x1))− f(g(x2))‖ ≤ Lf‖g(x1)− g(x2)‖,
≤ LfLg‖x1 − x2‖.

Lemma 8.5. If G is a d-layer neural network with at most c nodes per layer, all weights ≤ wmax in absolute value,
and M -Lipschitz non-linearity after each layer, then G(·) is L-Lipschitz with L = (Mcwmax)

d.

Proof. Consider any linear layer with input x, weight matrix W and bias vector b. Thus, f(x) = Wx + b. Now for
any two x1, x2,

‖f(x1)− f(x2)‖ = ‖Wx1 + b−Wx2 + b‖,
= ‖W (x1 − x2)‖,
≤ ‖W‖‖(x1 − x2)‖,
≤ cwmax‖(x1 − x2)‖.

Let fi(·), i ∈ [d] denote the function for the i-th layer in G. Since each layer is a composition of a linear function and
a non-linearity, by Lemma 8.4, have that fi is Mcwmax-Lipschitz.

SinceG = f1 ◦f2 ◦ . . . fd, by repeated application of Lemma 8.4, we get thatG is L-Lipschitz with L = (Mcwmax)
d.

18

9 Appendix B

10-2 10-1 100 101 102

Standard deviation of noise

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

(p
e
r

p
ix

e
l)

Lasso, m=500

VAE, m=100

VAE, m=500

(a) Results on MNIST.

10-2 10-1 100 101 102

Standard deviation of noise

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

(p
e
r

p
ix

e
l)

Lasso (DCT), m=2500

Lasso (Wavelet), m=2500

DCGAN+Reg, m=2500

(b) Results on celebA.

Figure 8: Noise tolerance. We show a plot of per pixel reconstruction error as we vary the noise level (
√
E[‖η‖2]).

The vertical bars indicate 95% confidence intervals.

9.1 Noise tolerance

To understand the noise tolerance of our algorithm, we do the following experiment: First we fix the number of
measurements so that Lasso does as well as our algorithm. From Fig. 1a, and Fig. 1b we see that this point is at
m = 500 for MNIST and m = 2500 for celebA. Now, we look at the performance as the noise level increases.
Hyperparameters are kept fixed as we change the noise level for both Lasso and for our algorithm.

In Fig. 8a, we show the results on the MNIST dataset. In Fig. 8a, we show the results on celebA dataset. We observe
that our algorithm has more noise tolerance than Lasso.

9.2 Other models

9.2.1 End to end training on MNIST

Instead of using a generative model to reconstruct the image, another approach is to learn from scratch a mapping
that takes the measurements and outputs the original image. A major drawback of this approach is that it necessitates
learning a new network if get a different set of measurements.

If we use a random matrix for every new image, the input to the network is essentially noise, and the network does not
learn at all. Instead we are forced to use a fixed measurement matrix. We explore two approaches. First is to randomly
sample and fix the measurement matrix and learn the rest of the mapping. In the second approach, we jointly optimize
the measurement matrix as well.

We do this for 10, 20 and 30 measurements for the MNIST dataset. We did not use additive noise. The reconstruction
errors are shown in Fig. 9. The reconstructions can be seen in Fig. 10.

9.3 More results

Here, we show more results on the reconstruction task, with varying number of measurements on both MNIST and
celebA. Fig. 11 shows reconstructions on MNIST with 25, 100 and 400 measurements. Fig. 12, Fig. 13 and Fig. 14
show results on celebA dataset.

19

1
0

2
5

5
0

1
0

0

2
0

0

3
0

0
4

0
0

5
0

0

7
5

0

Number of measurements

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

(p
e
r

p
ix

e
l)

Lasso

VAE

VAE+Reg

Fixed A

Learned A

Figure 9: Results on End to End model on MNIST. We show per pixel reconstruction error vs number of measure-
ments. ‘Fixed A’ and ‘Learned A’ are two end to end models. The end to end models get noiseless measurements,
while the other models get noisy ones. The vertical bars indicate 95% confidence intervals.

Figure 10: MNIST End to end learned model. Top row are original images. The next three are recovered by model
with fixed random A, with 10, 20 and 30 measurements. Bottom three rows are with learned A and 10, 20 and 30
measurements.

20

(a) 25 measurements

(b) 100 measurements

(c) 400 measurements

Figure 11: Reconstruction on MNIST. In each image, top row is ground truth, middle row is Lasso, bottom row is our
algorithm.

21

(a) 50 measurements

(b) 100 measurements

(c) 200 measurements

Figure 12: Reconstruction on celebA. In each image, top row is ground truth, subsequent two rows show reconstruc-
tions by Lasso (DCT) and Lasso (Wavelet) respectively. The bottom row is the reconstruction by our algorithm.

22

(a) 500 measurements

(b) 1000 measurements

(c) 2500 measurements

Figure 13: Reconstruction on celebA. In each image, top row is ground truth, subsequent two rows show reconstruc-
tions by Lasso (DCT) and Lasso (Wavelet) respectively. The bottom row is the reconstruction by our algorithm.

23

(a) 5000 measurements

(b) 7500 measurements

(c) 10000 measurements

Figure 14: Reconstruction on celebA. In each image, top row is ground truth, subsequent two rows show reconstruc-
tions by Lasso (DCT) and Lasso (Wavelet) respectively. The bottom row is the reconstruction by our algorithm.

24

	1 Introduction
	2 Our Algorithm
	3 Related Work
	4 Theoretical Results
	5 Models
	5.1 MNIST with VAE
	5.2 CelebA with DCGAN

	6 Experiments and Results
	6.1 Reconstruction from Gaussian measurements
	6.1.1 MNIST
	6.1.2 celebA

	6.2 Super-resolution
	6.2.1 MNIST
	6.2.2 celebA

	6.3 Understanding sources of error
	6.3.1 Sensing images from the range of the generator
	6.3.2 Quantifying representation error

	7 Conclusion
	8 Appendix A
	8.1 Proof of Lemma ??
	8.2 Proof of Lemma ??
	8.3 Proof of Lemma ??
	8.4 Lipschitzness of Neural Networks

	9 Appendix B
	9.1 Noise tolerance
	9.2 Other models
	9.2.1 End to end training on MNIST

	9.3 More results

