
Fast Regression with an `∞ Guarantee∗

Eric Price
zhaos@utexas.edu

UT-Austin

Zhao Song
zhaos@utexas.edu

UT-Austin

David P. Woodruff
dpwoodru@us.ibm.com

IBM Almaden

May 31, 2017

Abstract

Sketching has emerged as a powerful technique for speeding up problems in numerical linear
algebra, such as regression. In the overconstrained regression problem, one is given an n × d
matrix A, with n � d, as well as an n × 1 vector b, and one wants to find a vector x̂ so as to
minimize the residual error ‖Ax− b‖2. Using the sketch and solve paradigm, one first computes
S · A and S · b for a randomly chosen matrix S, then outputs x′ = (SA)†Sb so as to minimize
‖SAx′ − Sb‖2.

The sketch-and-solve paradigm gives a bound on ‖x′ − x∗‖2 when A is well-conditioned.
Our main result is that, when S is the subsampled randomized Fourier/Hadamard transform,
the error x′ − x∗ behaves as if it lies in a “random” direction within this bound: for any fixed
direction a ∈ Rd, we have with 1− d−c probability that

〈a, x′ − x∗〉 . ‖a‖2‖x
′ − x∗‖2

d
1
2−γ

, (1)

where c, γ > 0 are arbitrary constants. This implies ‖x′ − x∗‖∞ is a factor d
1
2−γ smaller than

‖x′ − x∗‖2. It also gives a better bound on the generalization of x′ to new examples: if rows
of A correspond to examples and columns to features, then our result gives a better bound for
the error introduced by sketch-and-solve when classifying fresh examples. We show that not all
oblivious subspace embeddings S satisfy these properties. In particular, we give counterexamples
showing that matrices based on Count-Sketch or leverage score sampling do not satisfy these
properties.

We also provide lower bounds, both on how small ‖x′ − x∗‖2 can be, and for our new
guarantee (1), showing that the subsampled randomized Fourier/Hadamard transform is nearly
optimal. Our lower bound on ‖x′ − x∗‖2 shows that there is an O(1/ε) separation in the
dimension of the optimal oblivious subspace embedding required for outputting an x′ for which
‖x′− x∗‖2 ≤ ε‖Ax∗− b‖2 · ‖A†‖2, compared to the dimension of the optimal oblivious subspace
embedding required for outputting an x′ for which ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, that is,
the former problem requires dimension Ω(d/ε2) while the latter problem can be solved with
dimension O(d/ε). This explains the reason known upper bounds on the dimensions of these
two variants of regression have differed in prior work.

∗A preliminary version of this paper appears in Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017).

ar
X

iv
:1

70
5.

10
72

3v
1

 [
cs

.D
S]

 3
0

M
ay

 2
01

7

1 Introduction

Oblivious subspace embeddings (OSEs) were introduced by Sarlos [Sar06] to solve linear algebra
problems more quickly than traditional methods. An OSE is a distribution of matrices S ∈ Rm×n
with m � n such that, for any d-dimensional subspace U ⊂ Rn, with “high” probability S pre-
serves the norm of every vector in the subspace. OSEs are a generalization of the classic Johnson-
Lindenstrauss lemma from vectors to subspaces. Formally, we require that with probability 1− δ,

‖Sx‖2 = (1± ε)‖x‖2

simultaneously for all x ∈ U , that is, (1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2.
A major application of OSEs is to regression. The regression problem is, given b ∈ Rn and

A ∈ Rn×d for n ≥ d, to solve for

x∗ = arg min
x∈Rd

‖Ax− b‖2 (2)

Because A is a “tall” matrix with more rows than columns, the system is overdetermined and there
is likely no solution to Ax = b, but regression will find the closest point to b in the space spanned
by A. The classic answer to regression is to use the Moore-Penrose pseudoinverse: x∗ = A†b where

A† = (A>A)−1A>

is the “pseudoinverse” of A (assuming A has full column rank, which we will typically do for simplic-
ity). This classic solution takes O(ndω−1 + dω) time, where ω < 2.373 is the matrix multiplication
constant [CW90, Wil12, Gal14]: ndω−1 time to compute A>A and dω time to compute the inverse.

OSEs speed up the process by replacing (2) with

x′ = arg min
x∈Rd

‖SAx− Sb‖2

for an OSE S on d + 1-dimensional spaces. This replaces the n × d regression problem with an
m × d problem, which can be solved more quickly since m � n. Because Ax − b lies in the d + 1-
dimensional space spanned by b and the columns of A, with high probability S preserves the norm
of SAx− Sb to 1± ε for all x. Thus,

‖Ax′ − b‖2 ≤
1 + ε

1− ε‖Ax
∗ − b‖2.

That is, S produces a solution x′ which preserves the cost of the regression problem. The running
time for this method depends on (1) the reduced dimension m and (2) the time it takes to multiply
S by A. We can compute these for “standard” OSE types:

• If S has i.i.d. Gaussian entries, then m = O(d/ε2) is sufficient (and in fact, m ≥ d/ε2

is required [NN14]). However, computing SA takes O(mnd) = O(nd2/ε2) time, which is
worse than solving the original regression problem (one can speed this up using fast matrix
multiplication, though it is still worse than solving the original problem).

• If S is a subsampled randomized Hadamard transform (SRHT) matrix with random sign
flips (see Theorem 2.4 in [Woo14] for a survey, and also see [CNW16] which gives a recent
improvement) then m increases to Õ(d/ε2 · log n), where Õ(f) = fpoly(log(f)). But now,
we can compute SA using the fast Hadamard transform in O(nd log n) time. This makes the
overall regression problem take O(nd log n+ dω/ε2) time.

1

• If S is a random sparse matrix with random signs (the “Count-Sketch” matrix), then m =
d1+γ/ε2 suffices for γ > 0 a decreasing function of the sparsity [CW13, MM13, NN13, BDN15,
Coh16]. (The definition of a Count-Sketch matrix is, for any s ≥ 1, Si,j ∈ {0,−1/

√
s, 1/
√
s},

∀i ∈ [m], j ∈ [n] and the column sparsity of matrix S is s. Independently in each column
s positions are chosen uniformly at random without replacement, and each chosen position
is set to −1/

√
s with probability 1/2, and +1/

√
s with probability 1/2.) Sparse OSEs can

benefit from the sparsity of A, allowing for a running time of Õ(nnz(A)) + Õ(dω/ε2), where
nnz(A) denotes the number of non-zeros in A.

When n is large, the latter two algorithms are substantially faster than the naïve ndω−1 method.

1.1 Our Contributions

Despite the success of using subspace embeddings to speed up regression, often what practitioners
are interested is not in preserving the cost of the regression problem, but rather in the generalization
or prediction error provided by the vector x′. Ideally, we would like for any future (unseen) example
a ∈ Rd, that 〈a, x′〉 ≈ 〈a, x∗〉 with high probability.

Ultimately one may want to use x′ to do classification, such as regularized least squares classi-
fication (RLSC) [RYP03], which has been found in cases to do as well as support vector machines
but is much simpler [ZP04]. In this application, given a training set of examples with multiple
(non-binary) labels identified with the rows of an n × d matrix A, one creates an n × r matrix B,
each column indicating the presence or absence of one of the r possible labels in each example. One
then solves the multiple response regression problem minX ‖AX −B‖F , and uses X to classify fu-
ture examples. A commonly used method is for a future example a, to compute 〈a, x1〉, . . . , 〈a, xr〉,
where x1, . . . , xr are the columns of X. One then chooses the label i for which 〈a, xi〉 is maximum.

For this to work, we would like the inner products 〈a, x′1〉, . . . , 〈a, x′r〉 to be close to 〈a, x∗1〉, . . .,
〈a, x∗r〉, where X ′ is the solution to minX ‖SAX − SB‖F and X∗ is the solution to minX ‖AX −
B‖F . For any O(1)-accurate OSE on d+ r dimensional spaces [Sar06], which also satisfies so-called
approximate matrix multiplication with error ε′ = ε/

√
(d+ r), we get that

‖x′ − x∗‖2 ≤ O(ε) · ‖Ax∗ − b‖2 · ‖A†‖2 (3)

where ‖A†‖ is the spectral norm of A†, which equals the reciprocal of the smallest singular value of
A. To obtain a generalization error bound for an unseen example a, one has

|〈a, x∗〉 − 〈a, x′〉| = |〈a, x∗ − x′〉| ≤ ‖x∗ − x′‖2‖a‖2 = O(ε)‖a‖2‖Ax∗ − b‖2‖A†‖2, (4)

which could be tight if given only the guarantee in (3). However, if the difference vector x′ − x∗
were distributed in a uniformly random direction subject to (3), then one would expect an Õ(

√
d)

factor improvement in the bound. This is what our main theorem shows:

Theorem 1 (Main Theorem, informal). Suppose n ≤ poly(d) and matrix A ∈ Rn×d and vector
b ∈ Rn are given. Let S ∈ Rm×n be a subsampled randomized Hadamard transform matrix with
m = d1+γ/ε2 rows for an arbitrarily small constant γ > 0. For x′ = arg minx∈Rd ‖SAx− Sb‖2 and
x∗ = arg minx∈Rd ‖Ax− b‖2, and any fixed a ∈ Rd,

|〈a, x∗〉 − 〈a, x′〉| ≤ ε√
d
‖a‖2‖Ax∗ − b‖2‖A†‖2. (5)

with probability 1− 1/dC for an arbitrarily large constant C > 0. This implies that

‖x∗ − x′‖∞ ≤
ε√
d
‖Ax∗ − b‖2‖A†‖2. (6)

2

with 1− 1/dC−1 probability.
If n > poly(d), then by first composing S with a Count-Sketch OSE with poly(d) rows, one can

achieve the same guarantee.

(Here γ is a constant going to zero as n increases; see Theorem 10 for a formal statement of
Theorem 1.)

Notice that Theorem 1 is considerably stronger than that of (4) provided by existing guarantees.
Indeed, in order to achieve the guarantee (6) in Theorem 1, one would need to set ε′ = ε/

√
d in

existing OSEs, resulting in Ω(d2/ε2) rows. In contrast, we achieve only d1+γ/ε2 rows. We can
improve the bound in Theorem 1 to m = d/ε2 if S is a matrix of i.i.d. Gaussians; however, as
noted, computing S ·A is slower in this case.

Note that Theorem 1 also makes no distributional assumptions on the data, and thus the data
could be heavy-tailed or even adversarially corrupted. This implies that our bound is still useful
when the rows of A are not sampled independently from a distribution with bounded variance.

The `∞ bound (6) of Theorem 1 is achieved by applying (5) to the standard basis vectors
a = ei for each i ∈ [d] and applying a union bound. This `∞ guarantee often has a more natural
interpretation than the `2 guarantee—if we think of the regression as attributing the observable as
a sum of various factors, (6) says that the contribution of each factor is estimated well. One may
also see our contribution as giving a way for estimating the pseudoinverse A† entrywise. Namely,

we get that (SA)†S ≈ A† in the sense that each entry is within additive O(ε
√

log d
d ‖A†‖2). There is

a lot of work on computing entries of inverses of a matrix, see, e.g., [ADL+12, LAKD08].
Another benefit of the `∞ guarantee is when the regression vector x∗ is expected to be k-

sparse (e.g. [Lee12]). In such cases, thresholding to the top k entries will yield an `2 guarantee a

factor
√

k
d better than (3).

One could ask if Theorem 1 also holds for sparse OSEs, such as the Count-Sketch. Surprisingly,
we show that one cannot achieve the generalization error guarantee in Theorem 1 with high proba-
bility, say, 1− 1/d, using such embeddings, despite the fact that such embeddings do approximate
the cost of the regression problem up to a 1 + ε factor with high probability. This shows that the
generalization error guarantee is achieved by some subspace embeddings but not all.

Theorem 2 (Not all subspace embeddings give the `∞ guarantee; informal version of Theorem
20). The Count-Sketch matrix with d1.5 rows and sparsity d.25—which is an OSE with exponentially
small failure probability—with constant probability will have a result x′ that does not satisfy the `∞
guarantee (6).

We can show that Theorem 1 holds for S based on the Count-Sketch OSE T with dO(C)/ε2 rows
with 1 − 1/dC probability. We can thus compose the Count-Sketch OSE with the SRHT matrix
and obtain an O(nnz(A)) + poly(d/ε) time algorithm to compute S ·TA achieving (6). We can also
compute R · S · T ·A, where R is a matrix of Gaussians, which is more efficient now that STA only
has d1+γ/ε2 rows; this will reduce the number of rows to d/ε2.

Another common method of dimensionality reduction for linear regression is leverage score sam-
pling [DMIMW12, LMP13, PKB14, CMM15], which subsamples the rows of A by choosing each
row with probability proportional to its “leverage scores”. With O(d log(d/δ)/ε2) rows taken, the
result x′ will satisfy the `2 bound (3) with probability 1− δ. However, it does not give a good `∞
bound:

Theorem 3 (Leverage score sampling does not give the `∞ guarantee; informal version of The-
orem 23). Leverage score sampling with d1.5 rows—which satisfies the `2 bound with exponentially

3

small failure probability—with constant probability will have a result x′ that does not satisfy the `∞
guarantee (6).

Finally, we show that the d1+γ/ε2 rows that SRHT matrices use is roughly optimal:

Theorem 4 (Lower bounds for `2 and `∞ guarantees; informal versions of of Theorem 14 and
Corollary 18). Any sketching matrix distribution over m × n matrices that satisfies either the `2
guarantee (3) or the `∞ guarantee (6) must have m & min(n, d/ε2).

Notice that our result shows the necessity of the 1/ε separation between the results originally
defined in Equation (3) and (4) of Theorem 12 of [Sar06]. If we want to output some vector x′ such
that ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, then it is known that m = Θ(d/ε) is necessary and sufficient.
However, if we want to output a vector x′ such that ‖x′−x∗‖2 ≤ ε‖Ax∗− b‖2 · ‖A†‖2, then we show
that m = Θ(d/ε2) is necessary and sufficient.

1.1.1 Comparison to Gradient Descent

While this work is primarily about sketching methods, one could instead apply iterative methods
such as gradient descent, after appropriately preconditioning the matrix, see, e.g., [AMT10, ZF13,
CW13]. That is, one can use an OSE with constant ε to construct a preconditioner for A and then
run conjugate gradient using the preconditioner. This gives an overall dependence of log(1/ε).

The main drawback of this approach is that one loses the ability to save on storage space or
number of passes when A appears in a stream, or to save on communication or rounds when A
is distributed. Given increasingly large data sets, such scenarios are now quite common, see, e.g.,
[CW09] for regression algorithms in the data stream model. In situations where the entries of A
appear sequentially, for example, a row at a time, one does not need to store the full n× d matrix
A but only the m× d matrix SA.

Also, iterative methods can be less efficient when solving multiple response regression, where
one wants to minimize ‖AX − B‖ for a d × t matrix X and an n × t matrix B. This is the case
when ε is constant and t is large, which can occur in some applications (though there are also other
applications for which ε is very small). For example, conjugate gradient with a preconditioner will
take Õ(ndt) time while using an OSE directly will take only Õ(nd+ d2t) time (since one effectively
replaces n with O (d) after computing S · A), separating t from d. Multiple response regression,
arises, for example, in the RLSC application above.

1.1.2 Proof Techniques

Theorem 1. As noted in Theorem 2, there are some OSEs for which our generalization error bound
does not hold. This hints that our analysis is non-standard and cannot use generic properties of
OSEs as a black box. Indeed, in our analysis, we have to consider matrix products of the form
S>S(UU>S>S)k for our random sketching matrix S and a fixed matrix U , where k is a positive
integer. We stress that it is the same matrix S appearing multiple times in this expression, which
considerably complicates the analysis, and does not allow us to appeal to standard results on ap-
proximate matrix product (see, e.g., [Woo14] for a survey). The key idea is to recursively reduce
S>S(UU>S>S)k using a property of S. We use properties that only hold for specifics OSEs S:
first, that each column of S is unit vector; and second, that for all pairs (i, j) and i 6= j, the inner
product between Si and Sj is at most

√
logn√
m

with probability 1− 1/poly(n).

Theorems 20 and 23. To show that Count-Sketch does not give the `∞ guarantee, we con-
struct a matrix A and vector b as in Figure 1, which has optimal solution x∗ with all coordinates

4

1/
√
d. We then show, for our setting of parameters, that there likely exists an index j ∈ [d] satisfy-

ing the following property: the jth column of S has disjoint support from the kth column of S for
all k ∈ [d+ α] \ {j} except for a single k > d, for which Sj and Sk share exactly one common entry
in their support. In such cases we can compute x′j explicitly, getting |x′j − x∗j | = 1

s
√
α
. By choosing

suitable parameters in our construction, this gives that ‖x′ − x∗‖∞ � 1√
d
. The lower bound for

leverage score sampling follows a similar construction.

Theorem 14 and Corollary 18. The lower bound proof for the `2 guarantee uses Yao’s min-
imax principle. We are allowed to fix an m × n sketching matrix S and design a distribution
over [A b]. We first write the sketching matrix S = UΣV > in its singular value decomposition
(SVD). We choose the d+ 1 columns of the adjoined matrix [A, b] to be random orthonormal vec-
tors. Consider an n × n orthonormal matrix R which contains the columns of V as its first m
columns, and is completed on its remaining n−m columns to an arbitrary orthonormal basis. Then
S · [A, b] = V >RR> · [A, b] = [UΣIm, 0] · [R>A,R>b]. Notice that [R>A,R>b] is equal in distribution
to [A, b], since R is fixed and [A, b] is a random matrix with d+ 1 orthonormal columns. Therefore,
S · [A, b] is equal in distribution to [UΣG,UΣh] where [G, h] corresponds to the first m rows of an
n× (d+ 1) uniformly random matrix with orthonormal columns.

A key idea is that if n = Ω(max(m, d)2), then by a result of Jiang [J+06], any m × (d + 1)
submatrix of a random n×n orthonormal matrix has o(1) total variation distance to a d×d matrix
of i.i.d. N(0, 1/n) random variables, and so any events that would have occurred had G and h been
independent i.i.d. Gaussians, occur with the same probability for our distribution up to an 1− o(1)
factor, so we can assume G and h are independent i.i.d. Gaussians in the analysis.

The optimal solution x′ in the sketch space equals (SA)†Sb, and by using that SA has the form
UΣG, one can manipulate ‖(SA)†Sb‖ to be of the form ‖Σ̃†(ΣR)†Σh‖2, where the SVD of G is RΣ̃T .
We can upper bound ‖Σ̃‖2 by

√
r/n, since it is just the maximum singular value of a Gaussian ma-

trix, where r is the rank of S, which allows us to lower bound ‖Σ̃†(ΣR)†Σh‖2 by
√
n/r‖(ΣR)†Σh‖2.

Then, since h is i.i.d. Gaussian, this quantity concentrates to 1√
r
‖(ΣR)†Σh‖, since ‖Ch‖2 ≈ ‖C‖2F /n

for a vector h of i.i.d. N(0, 1/n) random variables. Finally, we can lower bound ‖(ΣR)†Σ‖2F by
‖(ΣR)†ΣRR>‖2F by the Pythagorean theorem, and now we have that (ΣR)†ΣR is the identity, and
so this expression is just equal to the rank of ΣR, which we prove is at least d. Noting that x∗ = 0
for our instance, putting these bounds together gives ‖x′ − x∗‖ ≥

√
d/r. The last ingredient is a

way to ensure that the rank of S is at least d. Here we choose another distribution on inputs A
and b for which it is trivial to show the rank of S is at least d with large probability. We require S
be good on the mixture. Since S is fixed and good on the mixture, it is good for both distributions
individually, which implies we can assume S has rank d in our analysis of the first distribution
above.

1.2 Notation

For a positive integer, let [n] = {1, 2, . . . , n}. For a vector x ∈ Rn, define ‖x‖2 = (
∑n

i=1 x
2
i)

1
2 and

‖x‖∞ = maxi∈[n] |xi|. For a matrix A ∈ Rm×n, define ‖A‖2 = supx ‖Ax‖2/‖x‖2 to be the spectral
norm of A and ‖A‖F = (

∑
i,j A

2
i,j)

1/2 to be the Frobenius norm of A. We use A† to denote the
Moore-Penrose pseudoinverse of m×n matrix A, which if A = UΣV > is its SVD (where U ∈ Rm×n,
Σ ∈ Rn×n and V ∈ Rn× for m ≥ n), is given by A† = V Σ−1U>.

In addition to O(·) notation, for two functions f, g, we use the shorthand f . g (resp. &) to
indicate that f ≤ Cg (resp. ≥) for an absolute constant C. We use f h g to mean cf ≤ g ≤ Cf
for constants c, C.

5

A ∈ Rn×d b ∈ Rn×1

1
. . .

. . .
. . .

. . .
1

0

0

0

d

d

n

1/
√
d

...

...

...

...
1/
√
d

d

1/
√
α

...

...

...
1/

√
α

α

0
...
...
...
...
0

Figure 1: Our construction of A and b for the proof that Count-Sketch does not obey the `∞
guarantee. α < d.

Definition 5 (Subspace Embedding). A (1± ε) `2-subspace embedding for the column space of an
n× d matrix A is a matrix S for which for all x ∈ Rd, ‖SAx‖22 = (1± ε)‖Ax‖22.
Definition 6 (Approximate Matrix Product). Let 0 < ε < 1 be a given approximation parameter.
Given matrices A and B, where A and B each have n rows, the goal is to output a matrix C so that
‖A>B − C‖F ≤ ε‖A‖F ‖B‖F . Typically C has the form A>S>SB, for a random matrix S with a
small number of rows. In particular, this guarantee holds for the subsampled randomized Hadamard
transform S with O(ε−2) rows [DMMS11].

2 Warmup: Gaussians OSEs

We first show that if S is a Gaussian random matrix, then it satisfies the generalization guarantee.
This follows from the rotational invariance of the Gaussian distribution.

Theorem 7. Suppose A ∈ Rn×d has full column rank. If the entries of S ∈ Rm×n are i.i.d.
N(0, 1/m), m = O(d/ε2), then for any vectors a, b and x∗ = A†b, we have, with probability 1 −
1/poly(d),

|a>(SA)†Sb− a>x∗| . ε
√

log d√
d
‖a‖2‖b−Ax∗‖2‖A†‖2.

Because SA has full column rank with probability 1, (SA)†SA = I. Therefore

|a>(SA)†Sb− a>x∗| = |a>(SA)†S(b−Ax∗)| = |a>(SA)†S(b−AA†b)|.

6

Thus it suffices to only consider vectors b where A†b = 0, or equivalently U>b = 0. In such cases,
SU will be independent of Sb, which will give the result. The proof is in Appendix A.

3 SRHT Matrices

We first provide the definition of the subsampled randomized Hadamard transform(SRHT): let
S = 1√

rn
PHnD. Here, D is an n×n diagonal matrix with i.i.d. diagonal entries Di,i, for which Di,i

in uniform on {−1,+1}. The matrix Hn is the Hadamard matrix of size n× n, and we assume n is
a power of 2. Here, Hn = [Hn/2, Hn/2;Hn/2, −Hn/2] and H1 = [1]. The r× n matrix P samples r
coordinates of an n dimensional vector uniformly at random.

For other subspace embeddings, we no longer have that SU and Sb are independent. To analyze
them, we start with a claim that allows us to relate the inverse of a matrix to a power series.

Claim 8. Let S ∈ Rm×n, A ∈ Rn×d have SVD A = UΣV >, and define T ∈ Rd×d by

T = Id − U>S>SU.

Suppose SA has linearly independent columns and ‖T‖2 ≤ 1/2. Then

(SA)†S = V Σ−1

(∞∑
k=0

T k

)
U>S>S. (7)

Proof.

(SA)†S = (A>S>SA)−1A>S>S

= (V ΣU>S>SUΣV >)−1V ΣU>S>S

= V Σ−1(U>S>SU)−1U>S>S

= V Σ−1(Id − T)−1U>S>S

= V Σ−1

(∞∑
k=0

T k

)
U>S>S,

where in the last equality, since ‖T‖2 < 1, the von Neumann series
∑∞

k=0 T
k converges to

(Id − T)−1.

We then bound the kth term of this sum:

Lemma 9. Let S ∈ Rr×n be the subsampled randomized Hadamard transform, and let a be a unit
vector. Then with probability 1− 1/poly(n), we have

|a>S>S(UU>S>S)kb| =O(logk n) · (O(d(log n)/r) + 1)
k−1
2 · (

√
d‖b‖2(log n)/r + ‖b‖2(log

1
2 n)/r

1
2)

Hence, for r at least d log2k+2 n log2(n/ε)/ε2, this is at most O(‖b‖2ε/
√
d) with probability at least

1− 1/poly(n).

We defer the proof of this lemma to the next section, and now show how the lemma lets us prove
that SRHT matrices satisfy the generalization bound with high probability:

7

Theorem 10. Suppose A ∈ Rn×d has full column rank with log n = do(1). Let S ∈ Rm×n be a
subsampled randomized Hadamard transform with m = O(d1+α/ε2) for α = Θ(

√
log logn

log d). For any

vectors a, b and x∗ = A†b, we have

|a>(SA)†Sb− a>x∗| . ε√
d
‖a‖2‖b−Ax∗‖2‖Σ−1‖2

with probability 1− 1/poly(d).

Proof. Define ∆ = Θ
(

1√
m

)
(logc d)‖a‖2‖b−Ax∗‖2‖Σ−1‖2. For a constant c > 0, we have that S is

a (1± γ)-subspace embedding (Definition 5) for γ =
√

d logc n
m with probability 1− 1/poly(d) (see,

e.g., Theorem 2.4 of [Woo14] and references therein), so ‖SUx‖2 = (1 ± γ)‖Ux‖2 for all x, which
we condition on. Hence for T = Id − U>S>SU , we have ‖T‖2 ≤ (1 + γ)2 − 1 . γ. In particular,
‖T‖2 < 1/2 and we can apply Claim 8.

As in Section 2, SA has full column rank if S is a subspace embedding, so (SA)†SA = I and
we may assume x∗ = 0 without loss of generality.

By the approximate matrix product (Definition 6), we have for some c that

|a>V Σ−1U>S>Sb| ≤ logc d√
m
‖a‖2‖b‖2‖Σ−1‖2 ≤ ∆ (8)

with 1− 1/poly(d) probability. Suppose this event occurs, bounding the k = 0 term of (7). Hence
it suffices to show that the k ≥ 1 terms of (7) are bounded by ∆.

By approximate matrix product (Definition 6), we also have with 1− 1/d2 probability that

‖U>S>Sb‖F ≤
logc d√
m
‖U>‖F ‖b‖2 ≤

logc d
√
d√

m
‖b‖2.

Combining with ‖T‖2 . γ we have for any k that

|a>V Σ−1T kU>S>Sb| . γk(logc d)

√
d√
m
‖a‖2‖Σ−1‖2‖b‖2.

Since this decays exponentially in k at a rate of γ < 1/2, the sum of all terms greater than k is
bounded by the kth term. As long as

m &
1

ε2
d1+ 1

k logc n, (9)

we have γ =
√

d logc n
m < εd−1/(2k)/ logc n, so that∑

k′≥k
|a>V Σ−1T k

′
U>S>Sb| . ε√

d
‖a‖2‖Σ−1‖2‖b‖2.

On the other hand, by Lemma 9, increasing m by a Ck factor, we have for all k that

|a>V >Σ−1U>S>S(UU>S>S)kb| . 1

2k
ε√
d
‖a‖2‖b‖2‖Σ−1‖2

8

with probability at least 1− 1/poly(d), as long as m & d log2k+2 n log2(d/ε)/ε2. Since the T k term
can be expanded as a sum of 2k terms of this form, we get that

k∑
k′=1

|a>V Σ−1T kU>S>Sb| . ε√
d
‖a‖2‖b‖2‖Σ−1‖2

with probability at least 1− 1/poly(d), as long as m & d(C log n)2k+2 log2(d/ε)/ε2 for a sufficiently
large constant C. Combining with (9), the result holds as long as

m &
d logc n

ε2
max((C log n)2k+2, d

1
k)

for any k. Setting k = Θ(
√

log d
log logn) gives the result.

Combining Different Matrices. In some cases it can make sense to combine different matrices
that satisfy the generalization bound.

Theorem 11. Let A ∈ Rn×d, and let R ∈ Rm×r and S ∈ Rr×n be drawn from distributions of
matrices that are ε-approximate OSEs and satisfy the generalization bound (6). Then RS satisfies
the generalization bound with a constant factor loss in failure probability and approximation factor.

We defer the details to Appendix B.

4 Proof of Lemma 9

Proof. Each column Si of the subsampled randomized Hadamard transform has the same distribu-

tion as σiSi, where σi is a random sign. It also has 〈Si, Si〉 = 1 for all i and | 〈Si, Sj〉 | .
√

log(1/δ)√
r

with probability 1− δ, for any δ and i 6= j. See, e.g., [LDFU13].
By expanding the following product into a sum, and rearranging terms, we obtain

a>S>S(UU>S>S)kb

=
∑

i0,j0,i1,j1,··· ,ik,jk

ai0bjkσi0σi1 · · ·σikσj0σj1 · · ·σjk

·〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk〉
=
∑
i0,jk

ai0bjkσi0σjk
∑

j0,i1,j1,··· ,ik

σi1 · · ·σikσj0σj1 · · ·σjk−1

· 〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk〉
=
∑
i0,jk

σi0σjkZi0,jk

where Zi0,jk is defined to be

Zi0,jk = ai0bjk
∑
i1,···ik
j0,···jk−1

k∏
c=1

σic

k−1∏
c=0

σjc ·
k∏
c=0

〈Sic , Sjc〉
k∏
c=1

(UU>)ic−1,jc

Note that Zi0,jk is independent of σi0 and σjk . We observe that in the above expression if i0 = j0,
i1 = j1, · · · , ik = jk, then the sum over these indices equals a>(UU>) · · · (UU>)b = 0, since

9

〈Sic , Sjc〉 = 1 in this case for all c. Moreover, the sum over all indices conditioned on ik = jk is
equal to 0. Indeed, in this case, the expression can be factored into the form ζ · U>b, for some
random variable ζ, but U>b = 0.

Let W be a matrix with Wi,j = σiσjZi,j . We need Khintchine’s inequality:

Fact 12 (Khintchine’s Inequality). Let σ1, . . . , σn be i.i.d. sign random variables, and let z1, . . . , zn
be real numbers. Then there are constants C,C ′ > 0 so that

Pr

[∣∣∣∣∣
n∑
i=1

ziσi

∣∣∣∣∣ ≥ Ct‖z‖2
]
≤ e−C′t2 .

We note that Khintchine’s inequality sometimes refers to bounds on the moment of |∑i ziσi|,
though the above inequality follows readily by applying a Markov bound to the high moments.

We apply Fact 12 to each column ofW , so that ifWi is the i-th column, we have by a union bound
that with probability 1− 1/poly(n), ‖Wi‖2 = O(‖Zi‖2

√
log n) simultaneously for all columns i. It

follows that with the same probability, ‖W‖2F = O(‖Z‖2F log n), that is, ‖W‖F = O(‖Z‖F
√

log n).
We condition on this event in the remainder.

Thus, it remains to bound ‖Z‖F . By squaring Zi0,j0 and using that E[σiσj] = 1 if i = j and 0
otherwise, we have,

E
σ

[Z2
i0,jk

] = a2
i0b

2
jk

∑
i1,···ik
j0,···jk−1

k∏
c=0

〈Sic , Sjc〉2
k∏
c=1

(UU>)2
ic−1,jc (10)

We defer to Appendix E the proof that

E
S

[‖Z‖2F] ≤ (O(d(log n)/r) + 1)k−1 · (d‖b‖22(log2 n)/r2 + ‖b‖22(log n)/r)

Note that we also have the bound:

(O(d(log n)/r) + 1)k−1 ≤ (eO(d(logn)/r))k−1 ≤ eO(kd(logn)/r) ≤ O(1)

for any r = Ω(kd log n).
Having computed the expectation of ‖Z‖2F , we now would like to show concentration. Consider

a specific

Zi0,jk = ai0bjk
∑
ik

σik〈Sik , Sjk〉 · · ·
∑
j1

σj1(UU>)j1,i2
∑
i1

σi1〈Si1 , Sj1〉
∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 .

By Fact 12, for each fixing of i1, with probability 1− 1/poly(n), we have

∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 = O(
√

log n)

∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1

 1
2

. (11)

Now, we can apply Khintchine’s inequality for each fixing of j1, and combine this with (11). With

10

probability 1− 1/poly(n), again we have∑
i1

σi1〈Si1 , Sj1〉
∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1

=
∑
i1

σi1〈Si1 , Sj1〉O(
√

log n)

∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1

 1
2

= O(log n)

∑
i1

〈Si1 , Sj1〉2
∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1

 1
2

Thus, we can apply Khintchine’s inequality recursively over all the 2k indexes j0, i1, j1, · · · , jk−1, ik,
from which it follows that with probability 1 − 1/poly(n), for each such i0, jk, we have Z2

i0,jk
=

O(logk n)E
S

[Z2
i0,jk

], using (17). We thus have with this probability, that ‖Z‖2F = O(logk n)E
S

[‖Z‖2F],

completing the proof.

5 Lower bound for `2 and `∞ guarantee

We prove a lower bound for the `2 guarantee, which immediately implies a lower bound for the `∞
guarantee.

Definition 13. Given a matrix A ∈ Rn×d, vector b ∈ Rn and matrix S ∈ Rr×n, denote x∗ = A†b.
We say that an algorithm A(A, b, S) that outputs a vector x′ = (SA)†Sb “succeeds” if the following
property holds: ‖x′ − x∗‖2 . ε‖b‖2 · ‖A†‖2 · ‖Ax∗ − b‖2.

Theorem 14. Suppose Π is a distribution over Rm×n with the property that for any A ∈ Rn×d and
b ∈ Rn, Pr

S∼Π
[A(A, b, S) succeeds] ≥ 19/20. Then m & min(n, d/ε2).

Proof. The proof uses Yao’s minimax principle. Let D be an arbitrary distribution over Rn×(d+1),
then E

(A,b)∼D
E

S∼Π
[A(A, b, S) succeeds] ≥ 1 − δ. Switching the order of probabilistic quantifiers, an

averaging argument implies the existence of a fixed matrix S0 ∈ Rm×n such that

E
(A,b)∼D

[A(A, b, S0) succeeds] ≥ 1− δ.

Thus, we must construct a distribution Dhard such that

E
(A,b)∼Dhard

[A(A, b, S0) succeeds] ≥ 1− δ,

cannot hold for any Π0 ∈ Rm×n which does not satisfy m = Ω(d/ε2). The proof can be split
into three parts. First, we prove a useful property. Second, we prove a lower bound for the case
rank(S) ≥ d. Third, we show why rank(S) ≥ d is necessary.

(I) We show that [SA, Sb] are independent Gaussian, if both [A, b] and S are orthonormal
matrices. We can rewrite SA in the following sense,

S︸︷︷︸
m×n

· A︸︷︷︸
n×d

= S︸︷︷︸
m×n

R︸︷︷︸
n×n

R>︸︷︷︸
n×n

A︸︷︷︸
n×d

= S
[
S> S

>
] [S
S

]
A =

[
Im 0

] [S
S

]
A =

[
Im 0

]
Ã︸︷︷︸
n×d

= Ãm︸︷︷︸
m×d

11

where S is the complement of the orthonormal basis S, Im is a m×m identity matrix, and Ãm is
the left m × d submatrix of Ã. Thus, using [J+06] as long as m = o(

√
n) (because of n = Ω(d3))

the total variation distance between [SA, Sb] and a random Gaussian matrix is small, i.e.,

DTV ([SA, Sb], H) ≤ 0.01 (12)

where each entry of H is i.i.d. Gaussian N (0, 1/n).
(II) Here we prove the theorem in the case when S has rank r ≥ d (we will prove this is necessary

in part III. Writing S = UΣV > in its SVD, we have

S︸︷︷︸
m×n

A = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

V >︸︷︷︸
r×n

RR>A = UΣG (13)

where R =
[
V V

]
. By a similar argument in Equation (12), as long as r = o(

√
n) we have that G

also can be approximated by a Gaussian matrix, where each entry is sampled from i.i.d. N (0, 1/n).
Similarly, Sb = UΣh, where h also can be approximated by a Gaussian matrix, where each entry is
sampled from i.i.d. N (0, 1/n).

Since U has linearly independent columns, (UΣG)†UΣh = (ΣG)†U>UΣh = (ΣG)†Σh.
The r × d matrix G has SVD G = R︸︷︷︸

r×d

Σ̃︸︷︷︸
d×d

T︸︷︷︸
d×d

, and applying the pseudo-inverse property

again, we have

‖(SA)†Sb‖2 = ‖(ΣG)†Σh‖2 = ‖(ΣRΣ̃T)†Σh‖2 = ‖T †(ΣRΣ̃)†Σh‖2 = ‖(ΣRΣ̃)†Σh‖2
= ‖Σ̃†(ΣR)†Σh‖2,

where the the first equality follows by Equation (13), the second equality follows by the SVD of G,
the third and fifth equality follow by properties of the pseudo-inverse1 when T has orthonormal rows
and Σ̃ is a diagonal matrix, and the fourth equality follows since ‖T †‖2 = 1 and T is an orthonormal
basis.

Because each entry of G = RΣ̃T ∈ Rr×d is sampled from an i.i.d. Gaussian N (0, 1), using the
result of [Ver10] we can give an upper bound for the maximum singular value of G: ‖Σ̃‖ .

√
r
n

with probability at least .99. Thus,

‖Σ̃†(ΣR)†Σh‖2 ≥ σmin(Σ̃†) · ‖(ΣR)†Σh‖2 =
1

σmax(Σ̃)
‖(ΣR)†Σh‖2 &

√
n/r‖(ΣR)†Σh‖2.

Because h is a random Gaussian vector which is independent of (ΣR)†Σ, by Claim 15, Eh[‖(ΣR)†Σh‖22] =
1
n · ‖(ΣR)†Σ‖2F , where each entry of h is sampled from i.i.d. Gaussian N (0, 1/n). Then, using the
Pythagorean Theorem,

‖(ΣR)†Σ‖2F = ‖(ΣR)†ΣRR>‖2F + ‖(ΣR)†Σ(I −RR>)‖2F
≥ ‖(ΣR)†ΣRR>‖2F
= ‖(ΣR)†ΣR‖2F
= rank(ΣR)

= rank(SA)

= d.

1https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse

12

https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse

Thus, ‖x′ − x∗‖2 &
√
d/r ≥

√
d/m = ε.

(III) Now we show that we can assume that rank(S) ≥ d.
We sample A, b based on the following distribution Dhard: with probability 1/2, A, b are sampled

from D1; with probability 1/2, A, b are sampled from D2. In distribution D1, A is a random
orthonormal basis and d is always orthogonal to A. In distribution D2, A is a d× d identity matrix
in the top-d rows and 0s elsewhere, while b is a random unit vector. Then, for any (A, b) sampled
from D1, S needs to work with probability at least 9/10. Also for any (A, b) sampled from D2,
S needs to work with probability at least 9/10. The latter two statements follow since overall S
succeeds on Dhard with probability at least 19/20.

Consider the case where A, b are sampled from distribution D2. Then x∗ = b and OPT = 0.
Then consider x′ which is the optimal solution to minx ‖SAx− Sb‖22, so x′ = (SA)†Sb = (SL)†SLb,
where S can be decomposed into two matrices SL ∈ Rr×d and SR ∈ Rr×(n−d), S =

[
SL SR

]
.

Plugging x′ into the original regression problem, ‖Ax′ − b‖22 = ‖A(SL)†SLb− b‖22, which is at most
(1 + ε) OPT = 0. Thus rank(SL) is d. Since SL is a submatrix of S, the rank of S is also d.

It remains to define several tools which are used in the main proof of the lower bound.

Claim 15. For any matrix A ∈ Rn×d, if each entry of a vector g ∈ Rd is chosen from an i.i.d
Gaussian N (0, σ2), then E

g
[‖Ag‖22] = σ2‖A‖2F .

Proof.

E
g

[‖Ag‖22] = E
g

 n∑
i=1

(

d∑
j=1

Aijgj)
2


= E

g

 n∑
i=1

(

d∑
j=1

A2
ijg

2
j +

∑
j 6=j′

AijAij′gjgj′)


=

n∑
i=1

d∑
j=1

A2
ijσ

2

= σ2‖A‖2F .

Let g1, g2, · · · , gt be i.i.d. N (0, 1) random variables. The random variables
∑t

i=1 g
2
i are X 2 with

t degree of freedom. Furthermore, the following tail bounds are known.

Fact 16 (Lemma 1 of [LM00]). Let g1, g2, · · · , gt be i.i.d. N (0, 1) random variables. Then for any
x ≥ 0,

Pr

[
t∑
i=1

g2
i ≥ t+ 2

√
tx+ 2x

]
≤ exp(−x),

and

Pr

[
t∑
i=1

g2
i ≤ t− 2

√
tx

]
≤ exp(−x).

13

Definition 17. Given a matrix A ∈ Rn×d, vector b ∈ Rn and matrix S ∈ Rr×n, denote x∗ = A†b.
We say that an algorithm B(A, b, S) that outputs a vector x′ = (SA)†Sb “succeeds” if the following
property holds:

‖x′ − x∗‖∞ .
ε√
d
‖b‖2 · ‖A†‖2 · ‖Ax∗ − b‖2.

Applying ‖x′−x‖∞ ≥ 1√
d
‖x′−x‖2 to Theorem 14 ,we obtain the `∞ lower bound as a corollary,

Corollary 18. Suppose Π is a distribution over Rm×n with the property that for any A ∈ Rn×d and
b ∈ Rn,

Pr
S∼Π

[B(A, b, S) succeeds] ≥ 9/10.

Then m & min(n, d/ε2).

14

References

[ADL+12] Patrick Amestoy, Iain S. Duff, Jean-Yves L’Excellent, Yves Robert, François-Henry
Rouet, and Bora Uçar. On computing inverse entries of a sparse matrix in an out-of-
core environment. SIAM J. Scientific Computing, 34(4), 2012.

[AMT10] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging
lapack’s least-squares solver. SIAM J. Scientific Computing, 32(3):1217–1236, 2010.

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in euclidean space. In STOC, 2015.

[CMM15] Michael B Cohen, Cameron Musco, and Christopher Musco. Ridge leverage scores for
low-rank approximation. arXiv preprint arXiv:1511.07263, 2015.

[CNW16] Michael B Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In Proceedings of the 43rd International Colloquium
on Automata, Languages and Programming (ICALP 2016), Rome, Italy, July 12-15,
arXiv preprint arXiv:1507.02268, 2016.

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 278–287,
2016.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. J. Symb. Comput., 9(3):251–280, 1990.

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pages 205–214. ACM, 2009.

[CW13] Kenneth L Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 81–90. ACM, 2013.

[DMIMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff.
Fast approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research, 13:3475–3506, 2012.

[DMMS11] Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster
least squares approximation. Numerische Mathematik, 117(2):219–249, 2011.

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July
23-25, 2014, pages 296–303, 2014.

[J+06] Tiefeng Jiang et al. How many entries of a typical orthogonal matrix can be ap-
proximated by independent normals? The Annals of Probability, 34(4):1497–1529,
2006.

15

[LAKD08] Song Li, Shaikh S. Ahmed, Gerhard Klimeck, and Eric Darve. Computing entries
of the inverse of a sparse matrix using the FIND algorithm. J. Comput. Physics,
227(22):9408–9427, 2008.

[LDFU13] Yichao Lu, Paramveer Dhillon, Dean Foster, and Lyle Ungar. Faster ridge regression
via the subsampled randomized hadamard transform. In Proceedings of the Neural
Information Processing Systems (NIPS) Conference, 2013.

[Lee12] Jeff Leek. Prediction: the lasso vs. just using the top
10 predictors. http://simplystatistics.org/2012/02/23/
prediction-the-lasso-vs-just-using-the-top-10/, 2012.

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional
by model selection. Annals of Statistics, pages 1302–1338, 2000.

[LMP13] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In Foundations of
Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 127–136.
IEEE, 2013.

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 91–100. ACM,
2013.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, pages 117–126. IEEE, 2013.

[NN14] Jelani Nelson and Huy L. Nguyên. Lower bounds for oblivious subspace embeddings.
In Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 883–894,
2014.

[PKB14] Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Provable de-
terministic leverage score sampling. In Proceedings of the 20th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 997–1006. ACM,
2014.

[RYP03] Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classification.
Nato Science Series Sub Series III Computer and Systems Sciences, 190:131–154,
2003.

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 143–152. IEEE, 2006.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 887–898, 2012.

16

http://simplystatistics.org/2012/02/23/prediction-the-lasso-vs-just-using-the-top-10/
http://simplystatistics.org/2012/02/23/prediction-the-lasso-vs-just-using-the-top-10/

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[ZF13] Anastasios Zouzias and Nikolaos M. Freris. Randomized extended kaczmarz for solving
least squares. SIAM J. Matrix Analysis Applications, 34(2):773–793, 2013.

[ZP04] Peng Zhang and Jing Peng. Svm vs regularized least squares classification. In ICPR
(1), pages 176–179, 2004.

17

Appendix

A Proof for Gaussian case

Lemma 19. If the entries of S ∈ Rm×n are i.i.d. N(0, 1/m), m = O(d/ε2), and U>b = 0, then

|a>(SA)†Sb| . ε
√

log d√
d
‖a‖2‖b‖2‖Σ−1‖2

for any vectors a, b with probability 1− 1/poly(d).

Proof. With probability 1, the matrix SA has linearly independent columns, and so (SA)† is

= (A>S>SA)−1A>S>

= (V ΣU>S>SUΣV >)−1V ΣU>S>

= V Σ−1(U>S>SU)−1Σ−1V >V ΣU>S>

= V Σ−1(U>S>SU)−1U>S>.

Hence, we would like to bound

X = a>V Σ−1(U>S>SU)−1U>S>Sb.

It is well-known (stated, for example, explicitly in Theorem 2.3 of [Woo14]) that with probability
1− exp(−d), the singular values of SU are (1± ε) for m = O(d/ε2). We condition on this event. It
follows that

‖V Σ−1(U>S>SU)−1U>S‖2
= ‖Σ−1(U>S>SU)−1U>S‖2
≤ ‖Σ−1‖2‖(U>S>SU)−1‖2‖U>S‖2
≤ ‖Σ−1‖2 ·

1

1− ε · (1 + ε)

= O(‖Σ−1‖2),

where the first equality uses that V is a rotation, the first inequality follows by sub-multiplicativity,
and the second inequality uses that the singular values of SU are in the range [1− ε, 1 + ε]. Hence,
with probability 1− exp(−d),

‖a>V Σ−1(U>S>SU)−1U>S>‖2 = O(‖Σ−1‖2‖a‖2). (14)

The main observation is that since U>b = 0, SU is statistically independent from Sb. Hence, Sb
is distributed as N(0, ‖b‖22Im), conditioned on the vector a>V Σ−1(U>S>SU)−1U>S>. It follows
that conditioned on the value of a>V Σ−1(U>S>SU)−1U>S>, X is distributed as

N(0, ‖b‖22‖a>V Σ−1(U>S>SU)−1U>S>‖22/m),

and so using (14) , with probability 1− 1/poly(d), we have |X| = O(ε
√

log d‖a‖2‖b‖2‖Σ−1‖2/
√
d).

18

B Combining Different Matrices

In some cases it can make sense to combine different matrices that satisfy the generalization bound.

Theorem 11. Let A ∈ Rn×d, and let R ∈ Rm×r and S ∈ Rr×n be drawn from distributions of
matrices that are ε-approximate OSEs and satisfy the generalization bound (6). Then RS satisfies
the generalization bound with a constant factor loss in failure probability and approximation factor.

Proof. For any vectors a, b, and x∗ = A†b we want to show

|a>(RSA)†RSb− a>x∗| . ε√
d
‖a‖2‖b−Ax∗‖2‖A†‖2

As before, it suffices to consider the x∗ = 0 case. We have with probability 1− δ that

|a>(SA)†Sb| . ε√
d
‖a‖2‖b‖2‖A†‖2;

suppose this happens. We also have by the properties of R, applied to SA and Sb, that

|a>(RSA)†RSb− a>(SA)†Sb| . ε√
d
‖a‖2‖Sb‖2‖(SA)†‖2.

Because S is an OSE, we have ‖Sb‖2 ≤ (1 + ε) and ‖(SA)†‖2 & (1− ε)‖A†‖2. Therefore

|a>(RSA)†RSb| . ε√
d
‖a‖2‖b‖2‖A†‖2

We describe a few of the applications of combining sketches.

B.1 Removing dependence on n via Count-Sketch

One of the limitations of the previous section is that the choice of k depends on n. To prove that
theorem, we have to assume that log d > log log n. Here, we show an approach to remove that
assumption.

The main idea is instead of applying matrix S ∈ Rm×n to matrix A ∈ Rn×d directly, we pick two
matrices S ∈ Rm×poly(d) and C ∈ Rpoly(d)×n, e.g. S is FastJL matrix and C is Count-Sketch matrix
with s = 1. We first compute C · A, then compute S · (CA). The benefit of these operations is S
only needs to multiply with a matrix (CA) that has poly(d) rows, thus the assumption we need is
log d > log log(poly(d)) which is always true. The reason for choosing C as a Count-Sketch matrix
with s = 1 is: (1) nnz(CA) ≤ nnz(A) (2) The running time is O(poly(d) · d+ nnz(A)).

B.2 Combining Gaussians and SRHT

By combining Gaussians with SRHT matrices, we can embed into the optimal dimension O(d/ε2)
with fast Õ(nd log n+ dω/ε4) embedding time.

B.3 Combining all three

By taking Gaussians times SRHT times Count-Sketch, we can embed into the optimal dimension
O(d/ε2) with fast O(nnz(A) + d4poly(1

ε , log d)) embedding time.

19

C Count-Sketch does not obey the `∞ guarantee

Here we demonstrate an A and a b such that Count-Sketch will not satisfy the `∞ guarantee with
constant probability, so such matrices cannot satisfy the generalization guarantee (6) with high
probability.

Theorem 20. Let S ∈ Rm×n be drawn as a Count-Sketch matrix with s nonzeros per column.
There exists a matrix A ∈ Rn×d and b ∈ Rn such that, if s2d . m .

√
d3s, then the “true” solution

x∗ = A†b and the approximation x′ = (SA)†Sb have large `∞ distance with constant probability:

‖x′ − x∗‖∞ &

√
d

ms
‖b‖2.

Plugging in m = d1.5 and s = d0.25 we find that

‖x′ − x∗‖∞ & 1/d3/8‖b‖2 � 1/
√
d‖b‖2,

even though such a matrix is an OSE with probability exponential in s. Therefore there exists
a constant c for which this matrix does not satisfy the generalization guarantee (6) with 1 − c

d
probability.

Proof. We choose the matrix A to be the identity on its top d rows: A =

[
Id
0

]
. Choose some α ≥ 1,

set the value of the first d coordinates of vector b to be 1√
d
and set the value to be 1/

√
α for the next

α coordinates, with the remaining entries all zero. Note that ‖b‖2 =
√

2, x∗ = (1/
√
d, . . . , 1/

√
d),

and ‖Ax∗ − b‖2 = 1.
Let Sk denote the kth column vector of matrix S ∈ Rm×n. We define two events, Event I, ∀k′ ∈

[d] and k′ 6= k, we have supp(Sk′)∩ supp(Sk) = ∅; Event II, ∃ a unique k′ ∈ {d+ 1, d+ 2, · · · , d+α}
such that | supp(Sk′)∩ supp(Sk)| = 1, and all other k′ have supp(Sk′)∩ supp(Sk) = ∅. Using Claim
21, with probability at least .99 there exists a k for which both events hold.

Given the constructions of A and b described early, it is obvious that

Ax− b =
[
x1 − 1√

d
, · · · , xd − 1√

d
,− 1√

α
, · · · ,− 1√

α
, 0, · · · , 0

]>
.

Conditioned on event I and II are holding, then denote supp(Sj) = {i1, i2, · · · , is}. Consider the
terms involving xj in the quadratic form

min
x
‖SAx− Sb‖22.

it can be written as (s − 1)(xj − 1/
√
d)2 + (xj − 1/

√
d ± 1/

√
α)2. Hence the optimal x′ will have

x′j = 1√
d
± 1

s
√
α
, which is different from the desired 1/

√
d by 1

s
√
α
. Plugging in our requirement of

α h m2/(s3d2), we have

‖x′ − x∗‖∞ ≥
1

s
√
α

& c

√
sd2

m2
&

1√
d

where the last inequality follows by m .
√
sd3. Thus, we get the result.

Claim 21. If m = Ω(s2d), m = o(d2), α < d, and α = O(m2

s3d2
), with probability at least .99 there

exists a k ∈ [d] for which both event I and II hold.

20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1

−1

−1

+1

0

0

0

0

0

0

0

−1

0

+1

+1

−1

0

0

k k′

d α

n

m

Figure 2: Count Sketch matrix S ∈ Rm×n. Event I, for any k′ ∈ [d] and k′ 6= k, supp(Sk) ∩
supp(Sk′) = ∅. Event II, there exists a unique k′ ∈ {d + 1, d + 2, · · · , d + α} such that Sk and Sk′
intersect at exactly one location(row index).

Proof. If m = Ω(s2d), then for any i in {1, 2, ..., d}, let Xi be an indicator that the entries of column
i are disjoint from all i′ in [d]\{i}. Then E[Xi] ≥ .9999, so by Markov’s inequality, with probability
.99, we have .99d columns having this property (indeed, the expected value of d − X is at most
.0001d, so Pr[d − X ≥ .01d] ≤ E[d−X]

.01d ≤ .0001d
.01d = .01). Define Event E to be that .99d columns

of first d columns have the property that the entries of that column are disjoint from all the other
d− 1 columns. Let S be the set of these .99d columns. Let N be the union of supports of columns
in S.

Each column i in {d+ 1, ..., d+ α} chooses s non-zero entries. Define event F (which is similar
as event E) to be that .99α columns of the next α columns have the property that the entries of
that column are disjoint from all the other α − 1 columns. By the same argument, since α < d,
with probability .99, we have .99α columns in {d + 1, ..., d + α} being disjoint from other columns
in {d+ 1, ..., d+ α}. Condition on event F holding. Let L be the multiset union of supports of all
columns in {d+ 1, ..., d+ α}. Then L has size α · s. Let M be the union of supports of all columns
in {d+ 1, ..., d+ α}, that is, the set union rather than the multiset union. Note that |M | ≥ .99α · s
because of .99α columns are disjoint from each other.

The intersection size x of N and M is hyper-geometrically distributed with expectation

E[x] =
s|S| · |M |

m
.

21

By a lower tail bound for the hypergeometric distribution 2 ,

Pr[x ≤ (p− t)n] ≤ exp(−2t2n),

where p = s · |S|/m and n = |M |, so

Pr[x ≤ E[x]− t · |M |] ≤ exp(−2t2 · |M |) ≤ 0.01,

where the last inequality follows by setting t = Θ(1/
√
|M |). Thus, we get with probability .99, the

intersection size is at least s|S|·|M |
m −Θ(

√
|M |) .

Now let W be the distinct elements in L\M , so necessarily |W | ≤ .01α · s. By an upper tail
bound for the hypergeometric distribution, the intersection size y of W and N satisfies

Pr[y ≥ (p+ t)n] ≤ exp(−2t2n),

where p = s · |S|/m and n = |W |, we again get

Pr[y ≥ E[y] + t · |W |] ≤ exp(−2t2 · |W |).

If |W | = 0, then y = 0. Otherwise, we can set t = Θ(1/
√
|W |) so that this probability is less than

.01, and we get with probability .99, the intersection size y is at most s · |S| · |W |/m + Θ(
√
|W |).

Note that we have that Θ(
√
|M |) and Θ(

√
|W |) are bounded by Θ(

√
s · α). Setting α = O(m2

s3d2
)

suffices to ensure y is at most (1.01)s · |S| · |W |/m, and earlier that x is at least .99 · s · |S| · |M |/m.
The probability one of the |S| blocks in N has two or more intersections with M is less than(

x
2

)
times the probability two random distinct items in the intersection land in the block. This

probability is (
x
2

)
·
(
s
2

)(
s·|S|

2

) = Θ(x2/|S|2) = Θ(x2/d2) = Θ(m2/(d4s2)).

So the expected number of such blocks is Θ(m2sd/(d4s2)) = Θ(m2/(d3s)) which is less than (.99 ·
s · |S| · |M |)/(2m) ≤ X/2 if m = o(d2), which we have. So, there are at least x/2 blocks which have
intersection size exactly 1 with N . Note that the number of intersections of the |S| blocks with W
is at most y, which is at most (1.01)s · |S| · |W |/m ≤ (1.01)s · |S| · 1

99 · |M |/m < x/2, and therefore
there exists a block, that is, a column among the first d columns, which intersects M in exactly one
position and does not intersect W . This is our desired column. Thus, we complete the proof.

D Leverage score sampling does not obey the `∞ guarantee

Not only does Count-Sketch fail, but so does leverage score sampling, which is a technique that
takes a subsample of rows of A with rescaling. In this section we show an A and a b such that
leverage score sampling will not satisfy the `∞ guarantee. We start with a formal definition of
leverage scores.

Definition 22 (Leverage Scores). Given an arbitrary n× d matrix A, with n > d, let U denote the
n× d matrix consisting of the d left singular vectors of A, let U(i) denote the i−th row of the matrix
U , so U(i) is a row vector. Then the leverage scores of the rows of A are given by li = ‖U(i)‖22, for
i ∈ [n].

2https://en.wikipedia.org/wiki/Hypergeometric_distribution

22

https://en.wikipedia.org/wiki/Hypergeometric_distribution

The leverage score sampling matrix can be thought of as a square diagonal matrix D ∈ Rn×n
with diagonal entries chosen from some distribution. If Dii = 0, it means we do not choose the i-th
row of matrix A., If Dii > 0, it means we choose that row of the matrix A and also rescale that row.
We show that the leverage score sampling matrix cannot achieve `∞ guarantee, nor can it achieve
our notion of generalization error.

Theorem 23. Let D ∈ Rn×n be a leverage score sampling matrix with m nonzeros on the diagonal.
There exists a matrix A ∈ Rn×d and a vector b ∈ Rn such that, if m . d

√
d, then the “true” solution

x∗ = A†b and the approximation x′ = (DA)†Db have large `∞ distance with constant probability:

‖x′ − x∗‖∞ &
1√
d
‖b‖2.

Therefore there exists a constant c for which this matrix does not satisfy the generalization guaran-
tee (6) with 1− c

d probability.

Proof. We choose the matrix A to be the identity on its top d rows, and L scaled identity matrices
1√
αd
Id for the next dL rows, where L satisfies 1

d + 1
αdL = 1 (to normalize each column of A), which

implies L = α(d− 1). Choose some β ∈ [1, d). Set the value of the first d coordinates of vector b to
be 1√

d
and set the value to be 1√

β
for the next β coordinates, with the remaining entries all zero.

Note that ‖b‖2 =
√

2.
First, we compute ‖Ax− b‖22. Because β is less than d, there are two kinds of xj : one involves

the following term,

(
1√
d
xj −

1√
d

)2 + (L− 1)(
1√
αd
xj)

2, (15)

where the optimal xj should be set to 1/d. The other involves the term:

(
1√
d
xj −

1√
d

)2 + (
1√
αd
xj −

1√
β

)2 + (L− 1)(
1√
αd
xj)

2, (16)

where the optimal xj should be set to 1/d+ 1/
√
αβd. Because we are able to choose α, β such that

αβ & d, then
xj = 1/d+ 1/

√
αβd . 1/d.

Second, we compute ‖DAx−Db‖22. With high probability, there exists a j satisfying Equation
(16), but after applying leverage score sampling, the middle term of Equation (16) is removed. Let
p1 = 1

d denote the leverage score of each of the top d rows of A, and let p2 = 1
αd denote the leverage

score of each of the next Ld rows of A. We need to discuss the cases m > d and m ≤ d separately.
If m > d, then the following term involves xj ,

(
1√
p1

1√
d
xj −

1√
p1

1√
d

)2 +
m− d
d
· (1√

p2

1√
αd
xj)

2

=
1

p1
(

1√
d
xj −

1√
d

)2 +
m− d
d
· 1

p2
(

1√
αd
xj)

2

= d

(
(

1√
d
xj −

1√
d

)2 +
m− d
d

α(
1√
αd
xj)

2

)
.

23

where the optimal xj should be set to

xj =
1/d

1/d+ (m− d)α/(αd2)

=
1

1 + (m− d)/d

&
1

(m− d)/d

� 1√
d
. by m� d

√
d

If m ≤ d, then the term involving xj is (1√
p1

1√
d
xj − 1√

p1
1√
d
)2 where the optimal xj should be set

to be 1� 1/
√
d.

Third, we need to compute ‖Ax∗ − b‖22 and σmin(A). It is easy to see that σmin(A) because A
is an orthonormal matrix. The upper bound for ‖Ax∗ − b‖22 = 2, and the lower bound is also a
constant, which can be proved in the following way:

‖Ax∗ − b‖22 =

β∑
j=1

(15) +
d∑

j=β+1

(16) ≥ d(
1√
d

1

d
− 1√

d
)2 & d · 1

d
= 1.

E Bounding E[‖Z‖2
F]

Before getting into the proof details, we define the key property of S being used in the rest of the
proofs.

Definition 24 (All Inner Product Small(AIPS) Property). For any matrix S ∈ Rr×n, if for all
i, j ∈ [n] with i 6= j we have

|〈Si, Sj〉| = O(
√

log n/
√
r),

we say that S satisfies the “AIPS” property.

Claim 25. If S ∈ Rr×n is a subsampled Hadamard transform matrix, then the AIPS property holds
with probability at least 1− 1/poly(n).

Proof. From the structure of S, for any i 6= j, we have with probability 1 − 1/poly(n) such that
|〈Si, Sj〉| = O(

√
log n/

√
r). Applying a union bound over O(n2) pairs, we obtain that

Pr[AIPS holds] ≥ 1− 1/poly(n).

The main idea for bounding E[‖Z‖2F] is to rewrite it as E[‖Z‖2F] = E[‖Z‖2F | AIPS holds] +
E[‖Z‖2F | AIPS does not hold]. Because Pr[AIPS does not hold] is at most 1/poly(n), the first
term dominates the second term, which means we only need to pay attention to the first term. We
repeatedly apply this idea until all the S are removed.

We start by boundinbg E[‖Z‖2F] by squaring Zi0,j0 and using that E[σiσj] = 1 if i = j and 0
otherwise. Then, we obtain,

E
σ

[Z2
i0,jk

] = a2
i0b

2
jk

∑
i1,···ik,j0,···jk−1

k∏
c=0

〈Sic , Sjc〉2
k∏
c=1

(UU>)2
ic−1,jc . (17)

24

We thus have,∑
i0,jk,jk 6=ik

a2
i0〈Si0 , Sj0〉2b2jk〈Sik , Sjk〉

2 = a2
j0‖b‖22O((log n)/r) + ‖a‖22‖b‖22O((log2 n)/r2)

def
= Cj0 ,

where the first equality is from our conditioning, and the second equality is the definition of Cj0 .
Hence, E

S
[‖Z‖2F] is

=
∑

i1,···ik,j0,···jk−1

k−1∏
c=1

〈Sic , Sjc〉2
k∏
c=1

(UU>)2
jc−1,ic ·

∑
i0,jk,jk 6=ik

a2
i0〈Si0 , Sj0〉2b2jk〈Sik , Sjk〉

2

=
∑

i1,···ik,j0,···jk−1

k−1∏
c=1

〈Sic , Sjc〉2
k∏
c=1

(UU>)2
jc−1,icCj0

=
∑

i1,···ik,j0,···jk−1

〈Sik−1
, Sjk−1

〉2(UU>)2
jk−1,ik

·
k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0 ,

where the first equality follows from (17), the second equality by definition of Cj0 , and the final
equality by factoring out c = k − 1 from one product and c = k − 2 from the other product.

The way to bound the term 〈Sik−1
, Sjk−1

〉 is by separating the diagonal term where ik−1 = jk−1

and the non-diagonal term where ik−1 6= jk−1. We now use the aforementioned property of S,
namely, that 〈Sik−1

, Sjk−1
〉 = 1, if ik−1 = jk−1, while for ik−1 6= jk−1, we have with probability

1− 1/poly(n) that |〈Sik−1
, Sjk−1

〉| = O(
√

log n/
√
r) conditioned on AIPS holding.

Conditioned on AIPS holding, we can recursively reduce the number of terms in the product:

‖Z‖2F

=
∑

i1,···ik,j0,···jk−1,ik−1 6=jk−1

O((log n)/r) · (UU>)2
jk−1,ik

·
k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

+
∑

i1,···ik,j0,···jk−1,ik−1=jk−1

1 · (UU>)2
jk−1,ik

·
k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

≤
∑

i1,···ik,j0,···jk−1

O((log n)/r) · (UU>)2
jk−1,ik

·
k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

+
∑

i1,···ik,j0,···jk−1,ik−1=jk−1

1 · (UU>)2
jk−1,ik

·
k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0 ,

where the first equality follows from the property just mentioned, and the inequality follows by
including back the tuples of indices for which ik−1 = jk−1, using that each summand is non-negative.

25

Our next step will be to bound the term (UU>)2
jk−1,ik

. We have, ‖Z‖2F is

≤
∑

ik,jk−1

(UU>)2
ik,jk−1

∑
i1,··· ,ik−1
j0,··· ,jk−2

O((log n)/r)

·
k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

+
∑

i1,··· ,ik
j0,··· ,jk−1
ik−1=jk−1

1 · (UU>)2
jk−1,ik

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

= O(d(log n)/r)
∑

i1,··· ,ik−1
j0,··· ,jk−2

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

︸ ︷︷ ︸
A

+
∑

i1,··· ,ik
j0,··· ,jk−1
ik−1=jk−1

1 · (UU>)2
jk−1,ik

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

︸ ︷︷ ︸
B

,

where the equality uses that
∑

ik,jk−1
(UU>)2

ik,jk−1
= ‖UU>‖2F = d. We first upper bound term B:

=
∑

i1,··· ,ik
j0,··· ,jk−1
ik−1=jk−1

1 · (UU>)2
jk−1,ik

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

=
∑

i1,··· ,ik−1
j0,j1,··· ,jk−1
ik−1=jk−1

Cj0

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,ic

∑
ik

(UU>)2
jk−1,ik

=
∑

i1,··· ,ik−1
j0,j1,··· ,jk−1
ik−1=jk−1

Cj0

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,ic |ejk−1

UU>|2

≤
∑

i1,··· ,ik−1
j0,j1,··· ,jk−1
ik−1=jk−1

Cj0

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,ic1

=
∑

i1,··· ,ik−1
j0,j1,··· ,jk−2

Cj0

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,ic ,

where the first equality is the definition of B, the second equality follows by separating out the

26

index ik, the third equality uses that
∑

ik
(UU>)2

jk−1,ik
= ‖ejk−1

UU>‖22, that is, the squared norm
of the jk−1-th row of UU>, the inequality follows since all rows of a projection matrix UU> have
norm at most 1, and the final equality uses that jk−1 no longer appears in the expression.

We now merge our bounds for the terms A and B in the following way:

‖Z‖2F
≤ A+B

≤ O(d(log n)/r)
∑

i1,··· ,ik−1
j0,··· ,jk−2

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

+
∑

i1,··· ,ik−1
j0,j1,··· ,jk−2

Cj0

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,ic

= (O(d(log n)/r) + 1)
∑

i1,··· ,ik−1
j0,··· ,jk−2

k−2∏
c=1

〈Sic , Sjc〉2
k−1∏
c=1

(UU>)2
jc−1,icCj0

≤ · · ·

≤ (O(d(log n)/r) + 1)2
∑

i1,··· ,ik−2
j0,··· ,jk−3

k−3∏
c=1

〈Sic , Sjc〉2
k−2∏
c=1

(UU>)2
jc−1,icCj0

≤ · · ·

≤ (O(d(log n)/r) + 1)k−1
∑
i1,j0

1∏
c=1

(UU>)2
jc−1,icCj0

≤ (O(d(log n)/r) + 1)k−1 (d‖b‖22(log2 n)/r2 + ‖b‖22(log n)/r),

where the first two inequalities and first equality are by definition of A and B above. The first
inequality follows by induction, since at this point we have replaced k with k − 1, and can repeat
the argument, incurring another multiplicative factor of O(d(log n)/r)+1. Repeating the induction
in this way we arrive at the last inequality. Finally, the last inequality follows by plugging in the
definition of Cj0 , using that

∑
i1,j0

(UU>)2
j0,i1

= d, and∑
j0,i1

(UU>)2
j0,i1a

2
j0 =

∑
j0

a2
j0

∑
i1

(UU>)2
j0,i1 =

∑
j0

a2
j0‖ej0UU>‖22 ≤ 1,

where the inequality follows since each row of UU> has norm at most 1, and a is a unit vector.
The final result is that

‖Z‖2F ≤ (O(d(log n)/r) + 1)k−1 (d‖b‖22(log2 n)/r2 + ‖b‖22(log n)/r).

27

	1 Introduction
	1.1 Our Contributions
	1.1.1 Comparison to Gradient Descent
	1.1.2 Proof Techniques

	1.2 Notation

	2 Warmup: Gaussians OSEs
	3 SRHT Matrices
	4 Proof of Lemma ??
	5 Lower bound for 2 and guarantee
	A Proof for Gaussian case
	B Combining Different Matrices
	B.1 Removing dependence on n via Count-Sketch
	B.2 Combining Gaussians and SRHT
	B.3 Combining all three

	C Count-Sketch does not obey the guarantee
	D Leverage score sampling does not obey the guarantee
	E Bounding `39`42`"613A``45`47`"603AE["026B30D Z"026B30D F2]

