
Spectral guarantees for adversarial streaming PCA

Eric Price
UT Austin

September 2, 2023

Abstract

In streaming PCA, we see a stream of vectors x1, . . . , xn ∈ Rd and want to estimate the top
eigenvector of their covariance matrix. We ask: how does the space complexity vary with the
spectral ratio R = λ1/λ2? Existing algorithms require Ω(d2/R) space. We show that:

• For R ≥ O(log n log d), Oja’s algorithm solves PCA with O(d) words of space to within
O(log d

R) error, and

• Ω(1
R2) error is necessary for any algorithm that uses o(d2/R3) bits of space.

This shows, for R = O(1), that Ω(d2) space is needed to get an arbitrarily small constant

approximation; but for R > O(log n log d), that Õ(d) space is sufficient. These results stand in
contrast to the stochastic setting, where the xi are drawn iid from a (somewhat nice) distribution:
there, Oja’s algorithm works well down to R = 1 + ε.

1 Introduction

Principal Component Analysis (PCA) is a fundamental primitive for handling high-dimensional
data by finding the highest-variance directions. At its most simple, given a data set X ∈ Rn×d

of n data points in d dimensions, we want to find the top eigenvector v∗ of the covariance matrix
Σ = 1

nX
TX.

One common way to approximate v∗ is the power method: start with a random vector u0, then
repeatedly multiply by Σ and renormalize. This converges to v∗ at a rate that depends on the
ratio of the top two eigenvalues, R := λ1/λ2. In particular, after O(logR

d
ε) iterations we have

∥Puk∥2 = 1 − ⟨uk, v∗⟩2 = sin2(uk, v
∗) ≤ ε with high probability, where P = I − v∗(v∗)T projects

away from v∗.
But what if the data points x1, x2, . . . , xn ∈ Rd arrive in a streaming fashion? Directly applying

the power method requires either nd space to store X, or d2 space to store Σ. What can be done in
smaller space? The question of streaming PCA has been extensively studied, in two main settings:
adversarial and stochastic streams.

In the adversarial streaming setting, we want to solve PCA for an arbitrary set of data points
in arbitrary order. Many of these algorithms store linear sketches of the data, such as AX and
XB for Gaussian matrices A,B [CW09, BWZ16, Woo14b, Upa18, TYUC17]. These results give a
Frobenius guarantee for rank-k approximation of X. Specialized to k = 1, the result direction û
satisfies

∥X(I − ûûT)∥2F ≤ (1 + ε)∥XP∥2F
which is equivalent to

ûTΣû ≥ λ1 − ε
∑
i>1

λi.

The best result here is FrequentDirections [Lib13, GLPW16], which is a deterministic insertion-
only algorithm rather than a linear sketch. It uses O(d/ε) space to get the guarantee, which is
optimal [CW09]. Unfortunately, this Frobenius guarantee can be quite weak: if the eigenvalues do
not decay and we only have a bound on R = λ1/λ2, to get ∥Pû∥2 ≤ 0.1 we need ε < R

d , which
means Θ(d2/R) space. The well-known spiked covariance model, where the xi are iid Gaussian
with covariance that has eigenvalues λ2 = λ3 = · · · = λd, is one example where this quadratic space
bound appears.

In the stochastic streaming setting, the xi are drawn iid from a somewhat nice distribution.
The goal is to converge to the principal component of the true distribution using little space and
few samples. Algorithms for the stochastic setting are typically iterative, using O(d) space and
converging to the true solution with a sample complexity depending on how “nice” the distribution
is. Examples include Oja’s algorithm [Oja82, BDF13, JJK+16, AL17, HNWTW21, HNWW21,
LSW21] and the block power method [ACLS12, MCJ13, HP14, BDWY16]. Oja’s algorithm starts
with a random v0, then repeatedly sets

vi = vi−1 + ηixix
T
i vi−1

for some small learning rate ηi. These analyses depend heavily on the data points being iid1. In
return, they can get a stronger spectral guarantee than the sketching algorithms. The bounds are
not directly comparable to the sketching algorithms (not only does the sample complexity depend
on the data distribution, but the convergence is to the principal component of the true distribution
rather than the empirical Σ), but in the spiked covariance setting they just need n ≥ Õ((1+ 1

R−1)
2d)

rather than O(d2/R). That is, they use near-linear samples down to R = 1 + ε.

1Or nearly so; for example, [JJK+16] requires that the xi are independent with identical covariance matrices.

1

So the situation is: algorithms that handle arbitrary data need O(d2/R) space for a spectral
guarantee. Iterative methods have a good spectral guarantee—linear space and often near-linear
samples for constant R—but only handle iid data. Is this separation necessary, or can we get a
good spectral guarantee in the arbitrary-data setting? In this paper we ask:

Is Ω(d2) space necessary for constant R?
How large does R need to be for Õ(d) space to be possible?

Our main result is that linear space is possible for polylogarithmic spectral gaps. In fact, Oja’s
method essentially achieves this:

Theorem 1.1 (Performance of Oja’s method in adversarial streams). For any sufficiently large
universal constant C, suppose η is such that ηnλ1 > C log d and ηnλ2 < 1

C logn . If η∥xi∥2 ≤ 1 for

every i, then Oja’s algorithm with learning rate η returns v̂ satisfying ∥P v̂∥ ≤
√
ηnλ2 + d−9 with

1− d−Ω(C) probability.
Moreover, Oja’s method can be modified (Algorithm 1) so that in addition, regardless of λ1 and

λ2, if η∥xi∥2 ≤ 1 for all i then either ∥P v̂∥ ≤
√
ηnλ2 + d−9 or v̂ =⊥.

If R > O(log n log d), there exists an η that satisfies the eigenvalue condition. However, The-
orem 1.1 requires knowing η and that no single ∥xi∥ is too large. It’s fairly easy to extend the
algorithm to remove both restrictions, as well as describe the performance with respect to finite
precision. Algorithm 2 simply runs Oja’s method for different learning rates and picks the smallest
one that works; unless any single xi has too large ∥xi∥2 violating Theorem 1.1, in which case it
outputs that xi.

Algorithm 1 Oja’s Algorithm, checking the growth of ∥vn∥ to identify too-small learning rates.

procedure OjaCheckingGrowth(X, η)
Choose v̂0 ∈ Sd−1 uniformly. ▷ All numbers stored to O(log(nd)) bits of precision
Set s0 = 0.
for i = 1, . . . , n do

v′i ← (1 + ηxix
T
i)v̂i−1.

v̂i ←
v′i

∥v′i∥
si ← si−1 + log∥v′i∥

end for
if sn ≤ 10 log d, return ⊥ ▷ Returns ⊥ rather than a wrong answer if η is too small.
else return v̂n

end procedure

Theorem 1.2 (Full algorithm). Let X ∈ Rn×d have b-bit entries, so each Xi,j = 0 or 2−b ≤
|Xi,j |≤ 2b, for b > log(dn). Whenever R > O(log n log d), Algorithm 2 uses O(b2d) bits of space

and returns v̂ satisfying ∥P v̂∥2 ≲ log d
R + d−9 with high probability.

Lower bounds. Say an algorithm solves ε-approximate PCA if it returns u with ∥Pu∥2 ≤ ε.
So Theorem 1.2 shows that it is possible to solve O(log dR)-approximate PCA in near-linear space.
A natural question is whether much higher accuracy is possible. Unfortunately, we show that
quadratic space is needed to beat accuracy polynomial in R:

2

Algorithm 2 Algorithm handling unknown learning rate and large-norm entries

procedure AdversarialPCA(X, b) ▷ X ∈ Rn×d has Xi,j = 0 or 2−b ≤ |Xi,j |≤ 2b

Define ηi = 2i for integer i, |i|≤ 4b+ log(nd2) +O(1).
In parallel run OjaCheckingGrowth(X, ηi) for all i, getting v(i).
In parallel record x, the single xi of maximum ∥xi∥.
Let i∗ be the smallest i with v(i) ̸=⊥.
if ηi∗∥x∥2 ≥ 1, return x

∥x∥ .

else return v(i
∗).

end procedure

Theorem 1.3 (Lower bound). There exists a universal constant C > 1 such that: for any R >

1, 1
CR2 -approximate PCA on streams with spectral gap R requires at least d2

CR3 bits of space for
sufficiently large d > poly(R).

In particular this means, for any constant R, there exists a constant ε > 0 such that ε-solving
PCA requires Ω(d2) bits of space, i.e., storing the entire covariance matrix is nearly optimal. By
contrast, Theorem 1.2 shows that for R = Θ(log n log d), ε-solving PCA for any constant ε > 0
is possible in Õ(d) bits of space. This is a much lower threshold than the R = Θ̃(d) needed for
near-linear space by existing analyses.

1.1 Related Work

Oja’s algorithm has been extensively studied in the stochastic setting; see, e.g., [BDF13, JJK+16,
AL17, HNWTW21, HNWW21, LSW21]. Since the goal in this setting is to approximate the
underlying distribution’s principal components, there is a minimum sample complexity for even an
offline algorithm to estimate the principal component. This line of work [JJK+16] can show that
Oja’s algorithm has a similar sample complexity to the optimal offline algorithm, even for spectral
ratios R close to 1.

Our analysis of Oja’s algorithm is of necessity quite different from these stochastic-setting
analyses. Oja’s algorithm returns vn = Bnv0 for a transformation matrix Bn = (I + ηnxnx

T
n)(I +

ηn−1xn−1x
T
n−1) · · · (I + η1x1x

T
1). In the stochastic setting, Bn is a random variable, with E[Bi |

Bi−1] = (I + ηΣ)Bi; the analyses focus on matrix concentration of Bn, essentially to bound the
deviation of Bn around the “expected” (I+ηΣ)n. In our arbitrary-data setting, Bn isn’t a random
variable at all. The only randomness is the initialization v0. This makes our analysis quite different,
instead tracking how much v̂i can move under the covariance constraints.

Our lower bound construction is closely related to one in [Woo14a], which shows an Ω(dk/ε)
lower bound for a (1+ε)-approximate rank-k approximation of Σ in Frobenius norm. The [Woo14a]
construction for k = 1 and ε = Θ(1n) is very similar to ours, and would give an Ω(d2) lower bound
for a small constant approximation when R < 2.

Much of the prior work on streaming PCA, for both the adversarial and stochastic settings, is
focused on solving k-PCA not just the single top direction. We leave the extension of our upper
bound to general k as an open question.

3

v̂n−1 + ηxnx
T
n v̂n−1

v̂n−1 = v∗

xn

√
σ2

Figure 1: Suppose η = 1. Then even after convergence to v∗ exactly, a single final sample can skew
the result by Θ(

√
σ2). For smaller η, the same can happen with 1

η final samples.

2 Proof Overview

2.1 Upper bound

Unlike most work in the stochastic setting, we use a fixed learning rate η throughout the stream.
The xi correlated with v∗ could all arrive at the beginning or the end of the stream, and we want
to weight them equally so that at least we can solve the commutative case where Oja’s algorithm
is relatively simple.

As a basic intuition, Oja’s algorithm returns v̂n = vn
∥vn∥ , where

vn = (I + ηxnx
T
n)(I + ηxn−1x

T
n−1) · · · (I + ηx1x

T
1)v0

≈ eηxnxT
n eηxn−1xT

n−1 · · · eηxn−1xT
n−1v0

where the approximation is good when η∥xi∥2 ≪ 1. Imagine that these matrix exponentials
commute (e.g., each xi is ej for some j). Then we would have

vn ≈ eηX
TXv0. (1)

This suggests that the important property of the learning rate η is the spectrum of ηXTX. Let
ηXTX have top eigenvalue σ1 = nηλ1, with corresponding eigenvector v∗, and all other eigenvalues
at most σ2 = nηλ2. For Theorem 1.1, we would like to show that Oja’s algorithm works if σ1 >
O(log d) and σ2 <

1
O(logn) .

For (1) to converge to v∗, as in the power method, we want the v∗ coefficient of v0 to grow by
a poly(d) factor more than any other eigenvalue, i.e., eσ1 ≥ poly(d)eσ2 or σ1 ≥ σ2 + O(log d). So
we certainly need to set η such that σ1 ≥ O(log d). But how large a spectral gap do we need, i.e.,
how small does σ2 need to be?

One big concern for adversarial-order Oja’s algorithm is: even if most of the stream clearly
emphasizes v∗ so vi converges to it, a small number of inputs at the end could cause vn to veer
away from v∗ to a completely wrong direction. This can’t happen in the commutative setting, but it
can happen in general: vn can rotate by Θ(

√
σ2), by ending the stream with 1

η copies of v∗+
√
σ2v

′

(see Figure 1). But this is the worst that can happen. We show:

Lemma 3.2 (Growth implies correctness). For any v0 and all i, ∥P v̂i∥ ≤
√
σ2 +

∥Pv0∥
∥vi∥ .

This lemma has two useful implications: first, if we ever get close to v∗, the final solution will
be at most

√
σ2 further from v∗. Second, no matter where we start, the final output is good if ∥vn∥

4

is very large. This is how Algorithm 1 can return either a correct answer or ⊥: it just observes
whether ∥vn∥ has grown by poly(d).

So it suffices to show that ∥vn∥ is large for a random v0; and since v0 starts with a random
1

poly(d) component in the v∗ direction, it in fact suffices to show that ∥vn∥ would grow by poly(d)

if Oja’s algorithm started at v0 = v∗. Now, one can show that

∥vn∥2 ≥ e
∑n

i=1 η⟨xi,v̂i−1⟩2 . (2)

So if vi were always exactly v∗, we would have ∥vn∥2 ≥ eη(v
∗)TXTXv∗ = eσ1 ≥ poly(d) as needed.

And if we start at v∗, then Lemma 3.2 implies ∥P v̂i∥ ≤
√
σ2 for all i, so we don’t ever deviate much

from v∗. But vi can deviate a little bit, which could decrease ⟨xi, v̂i−1⟩2. By how much? Well, it’s
easy to show

η⟨xi, v̂i−1⟩2 ≥ η
1− σ2

2
⟨xi, v∗⟩2 − η⟨xi, P v̂i−1⟩2 (3)

so we just need to show that

η
∑
i

⟨xi, P v̂i−1⟩2 ≪ σ1. (4)

We know that ∥P v̂i−1∥2 ≤ σ2, and η
∑

i⟨xi, w⟩2 ≤ σ2 for any fixed unit vector w ⊥ v∗, but the
worry is that P v̂i−1 could rotate through many different orthogonal directions; each direction w
can only contribute σ2

2 to η
∑

i⟨xi, P v̂i−1⟩2, but the total could conceivably be up to σ2
2d.

Our main technical challenge is to rule this out, so η
∑

i⟨xi, P v̂i−1⟩2 is small. For intuition, in
this overview we just rule out P v̂i−1 moving through many elementary basis vectors by showing

d∑
j=1

max
i
⟨ej , P v̂i−1⟩2 ≲ σ2 log

2 n log∥vn∥. (5)

That is, P v̂i−1 cannot rotate through
√
σ2 correlation with each of the d different basis vectors

(which would give a value of σ2d) unless ∥vn∥ is large (which is what we wanted to show in the
first place).

First, we show that ∥vn∥ grows proportional to the squared movement of P v̂i:

Lemma 3.3. Suppose Pv0 = 0. For any two time steps 0 ≤ a < b ≤ n,

∥P v̂b − P v̂a∥2 ≤ 4σ2 log
∥vb∥
∥va∥

As a result, for any subsequence i0, . . . , ik of iterations, the sum of squared movement has

k∑
j=1

∥P v̂ij − P v̂ij−1∥2 ≲ σ2 log∥vn∥.

We use a combinatorial lemma to turn this bound on squared distances over subsequences into (5).
For any set of vectors A the following holds (see Figure 2):

Lemma 2.1 (Simplified version of Lemma 3.4). Let A0 = 0, and A1, . . . , An ∈ Rd satisfy that
every subsequence S of {0, . . . , n} has∑

i

∥ASi −ASi−1∥22 ≤ B.

5

A1 A2 A3 A4 A5 An. . .

Figure 2: Lemma 2.1 states that, if the sum of squared distances across any subsequence of vectors
Ai is at most B, then the vector selecting the maximum value in each coordinate has norm B log2 n.

for some B > 0. Then
d∑

j=1

max
i∈[n]

(Ai)
2
j ≤ B(1 + log2 n)

2.

Applying Lemma 2.1 to Ai := P v̂i immediately gives (5).

Remark 2.2. The log2 n factor in Lemma 2.1 is why we need R > O(log d log n), rather than
just R > O(log d). At least as far as Lemma 2.1 is concerned, the factor is tight for n = Θ(d):
Ai,j := log n

1+|i−j| has B = Θ(n) while
∑d

j=1maxi∈[n](Ai)
2
j is Θ(n log2 n).

A similar approach, applied to Ai,j = xTi P v̂j , lets us bound our actual target (4):

Lemma 3.5. If v0 = v∗, then

η
n∑

i=1

⟨xi, P v̂i−1⟩2 ≲ σ2
2 log

2 n log∥vn∥

Combined with (2) and (3), this implies that ∥vn∥ ≥ eΩ(σ1) if σ2 ≪ 1
logn . And by Lemma 3.2

this means the final answer v̂n is
√
σ2 + d−C close to v∗, so the algorithm succeeds.

2.2 Lower bound

To give an Ω(d2) lower bound for constant R, we construct a two-player one-way communication
game, where Alice feeds a uniformly random stream into the algorithm and passes the state to Bob.
Bob then repeatedly takes this state, adds a few more vectors, and extracts the PCA estimate. We
will show that Bob is able to learn Ω(d2) bits about Alice’s input, and therefore the stream state
must have Ω(d2) bits. Our approach is illustrated in Figure 3.

Suppose that Alice feeds in a random binary stream x1, x2, . . . , xn ∈ {−1, 1}d. What can Bob
insert so the PCA solution reveals information about (say) x1?

First, suppose Bob inserted k−1 more copies of x1 for some constant k. Then (if n < d/100) the
PCA solution would be very close to x1: v = x1

∥x1∥ has ∥Xv∥2 ≥ kd from just the copies of x1, while

6

1 -1 -1 1 -1 -1 1 1
1 1 1 -1 1 1 -1 -1
-1 1 1 -1 -1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1

1 1 1 -1 1 -1 1 1
1 1 1 -1 1 1 1 1
1 1 1 -1 1 -1 1 -1

Figure 3: Lower bound approach: Alice inserts a sequence of random bits (all but the last row).
Bob knows the left side and wants to approximate the right side. To estimate the blue bits on the
right, he adds O(1) vectors using the corresponding red bits on the left and random bits on the
right. With high probability, the principal component has constant correlation with the blue bits.

every orthogonal direction has variance at most (
√
n+
√
d)2 ≈ 1.1d by standard bounds on singular

values of subgaussian matrices [RV10]. Thus the spectral ratio R = λ1
λ2

> k
1.1 , so the streaming

algorithm should return a vector highly correlated with x1. The problem with this approach is that
Bob can’t insert x1 without knowing x1, so the streaming PCA solution doesn’t reveal any new
information to him.

But what if Bob inserts z2, . . . , zk that match x1 on the first 90% of bits, and are random on
the remaining 10%? The top principal component u∗ will still be highly correlated with x1: the
vector v that matches x1, z2, . . . , zk on the first 90% of bits and is zero on the rest has variance that
is a 0.9k

1.1 factor larger than any orthogonal direction. A more careful analysis shows that the top
principal component v∗ is not only correlated with the 90% fraction of bits of x1 shared with the zi,
but (on the remaining bits) is very highly correlated with the average 1

k (x1+ z2+ · · ·+ zk). In fact,
it is so highly correlated with the average that v∗ must be at least somewhat—Θ(1/k2)—correlated
with the last 10% of bits in x1. This analysis is robust to a PCA approximation, so the streaming
PCA algorithm lets Bob construct v̂ with constant correlation with the last 10% of bits in x1.

Thus Bob can learn Ω(d) bits about the first row by inserting y2, . . . , yk that match on the first
90% of bits and looking at the PCA solution on the last 10% of bits. If he does this for every row,
he learns Ω(nd) = Ω(d2) bits about Alice’s input. Therefore the algorithm state Alice sent needs
Ω(d2) space.

This construction is very similar to the one in [Woo14a] for lower-bounding low-rank Frobenius
approximation. The differences in [Woo14a] are (1) Bob only inserts one row, so necessarily R < 2;
and (2) Bob sets his unknown bits to 0 rather than ±1 randomly. Presumably the second change
would work just fine in our setting, so our main contribution here is the more careful analysis in
terms of R.

3 Proof of Upper Bound

For most of this section we focus on Oja’s method (Theorem 1.1), then in Section 3.4 we show
Theorem 1.2. For simplicity, the proof is given assuming exact arithmetic. In Section 3.5 we
discuss why O(log(nd)) bits of precision suffice.

Setup. v̂i is the normalized state at time i, vi is the unnormalized state, xi is the sample, η is
the learning rate, v∗ is the direction of maximum variance, P = I − v∗(v∗)T to be the projection

7

matrix that removes the v∗ component. Let σ1 = η∥XTX∥ and σ2 = η∥PXTXP∥, so:
n∑

i=1

⟨v∗, xi⟩2 = σ1 (6)

η

n∑
i=1

⟨w, xi⟩2 ≤ σ2 (∀w ⊥ v∗) (7)

For much of the proof we will also need σ1 ≥ C log d and σ2 ≤ 1
C logn , but this will be stated as

needed.
Oja’s algorithm works by starting with a (typically random) vector v0, then repeatedly applying

Hebb’s update rule that “neurons that fire together, wire together”:

vi = vi−1 + η⟨xi, vi−1⟩xi = (I + ηxix
T
i)vi−1. (8)

The algorithm only keeps track of the normalized vectors v̂i = vi/∥vi∥, but for analysis purposes
we will often consider the unnormalized vectors vi.

The norm ∥vi∥ grows in each step, according to

∥vi∥2 = ∥vi−1∥2(1 + (2η + η2∥x∥2)⟨xi, v̂i−1⟩2), (9)

and in particular (since Theorem 1.1 assumes η∥xi∥2 ≤ 1)

log
∥vi∥2

∥vi−1∥2
≥ η⟨xi, v̂i−1⟩2. (10)

Our goal is to show that v̂n ≈ v∗, or equivalently, that ∥P v̂n∥ is small.

3.1 Initial Lemmas

Claim 3.1. Let 0 ≤ a1, a2, . . . , an and define bi = e
∑

j≤i ai for i ∈ {0, 1, . . . , n}. Then:

n∑
i=1

aibi−1 ≤ bn − 1.

Proof. This follows from induction on n. n = 0 is trivial, and then

n∑
i=1

aibi−1 ≤ bn−1 − 1 + anbn−1 = (1 + an)bn−1 − 1 ≤ eanbn−1 − 1 = bn − 1.

Define Bi =
∥vi∥2
∥v0∥2 , and Ai = log Bi

Bi−1
which satisfies Ai ≥ η⟨xi, v̂i−1⟩2 by (10). Therefore

η

n∑
i=1

⟨xi, vi−1⟩2 ≤ ∥v0∥2
n∑

i=1

AiBi−1 ≤ ∥v0∥2(Bn − 1) = ∥vn∥2 − ∥v0∥2 (11)

by Claim 3.1. Then for any unit vector w with Pw = w,

⟨vn − v0, w⟩2 =

(
η

n∑
i=1

⟨xi, vi−1⟩⟨xi, w⟩

)2

by (8)

≤ η
n∑

i=1

⟨xi, vi−1⟩2 · η
n∑

i=1

⟨xi, w⟩2 by Cauchy-Schwarz

≤ (∥vn∥2 − ∥v0∥2)σ2. by (11) and (7)

8

There’s nothing special about the start and final indices, giving the following bound for general
indices a ≤ b:

⟨vb − va, w⟩2 ≤ (∥vb∥2 − ∥va∥2)σ2. (12)

Lemma 3.2 (Growth implies correctness). For any v0 and all i, ∥P v̂i∥ ≤
√
σ2 +

∥Pv0∥
∥vi∥ .

Proof. By (12), for any w with w = Pw,

⟨vi − v0, w⟩ ≤
√
σ2∥vi∥.

Hence

⟨v̂i, w⟩ =
⟨vi − v0, w⟩+ ⟨v0, w⟩

∥vi∥
≤
√
σ2 +

⟨v0, w⟩
∥vi∥

.

Setting w = P v̂i/∥P v̂i∥, we have ⟨v̂i, w⟩ = ∥P v̂i∥ and ⟨v0, w⟩ ≤ ∥Pv0∥, giving the result.

Lemma 3.2 implies that, if we start at v∗, we never move by more than
√
σ2 from it. We now

show that you can’t even move
√
σ2 without increasing the norm of v.

Lemma 3.3. Suppose Pv0 = 0. For any two time steps 0 ≤ a < b ≤ n,

∥P v̂b − P v̂a∥2 ≤ 4σ2 log
∥vb∥
∥va∥

Proof. Define w to be the unit vector in direction P (v̂b − v̂a). By (12) we have

⟨vb − va, w⟩2 ≤ σ2(∥vb∥2 − ∥va∥2).

Therefore

∥P v̂b − P v̂a∥2 = ⟨P (v̂b − v̂a), w⟩2 = ⟨v̂b − v̂a, w⟩2

≤ 2⟨v̂b −
∥va∥
∥vb∥

v̂a, w⟩2 + 2⟨∥va∥
∥vb∥

v̂a − v̂a, w⟩2

≤ 2
1

∥vb∥2
⟨vb − va, w⟩2 + 2(

∥va∥
∥vb∥

− 1)2∥P v̂a∥2

≤ 2σ2(1−
∥va∥2

∥vb∥2
) + 2(1− ∥va∥

∥vb∥
)2σ2

= 4σ2(1−
∥va∥
∥vb∥

).

Finally, (1− 1/x) ≤ log x for all x > 0.

3.2 Results on Sequences

The following combinatorial result is written in a self-contained fashion, independent of the stream-
ing PCA application.

Lemma 3.4. Let A ∈ Rd×n have first column all zero. Define b
(k)
i to be column 1+2ki of A. Then:

∑
i

max
j

A2
ij ≤ (1 + log2 n)

log2 n∑
k=0

∑
j>0

∥b(k)j − b
(k)
j−1∥

2

9

Proof. We will show this separately for each row i; the result is just the sum over these rows. For
fixed i, let j∗ = argmaxj A

2
ij .

Let j(k) = 1 + 2k⌊ j
∗−1
2k
⌋ set the last k bits of j∗ − 1 to zero. We have that j(0) = j∗ and

jlog2 n = 0. Therefore

Aij∗ =

log2 n∑
k=0

(Ai,j(k) −Ai,j(k+1))

Now, j(k) is either j(k+1) or j(k+1) +2k. Each value in the right sum is either zero (if j(k) is j(k+1))

or the ith coordinate of b
(k)
j′ − b

(k)
j′−1 for some j′ (if j(k) = j(k+1) + 2k, using j′ = j(k)/2k). Thus, by

Cauchy-Schwarz,

A2
ij∗ ≤ (1 + log2 n) ·

log2 n∑
k=0

(Ai,j(k) −Ai,j(k+1))2

≤ (1 + log2 n) ·
log2 n∑
k=0

∑
j>0

((b
(k)
j)i − (b

(k)
j−1)i)

2.

Summing over i, ∑
i

max
j

A2
ij ≤ (1 + log2 n)

log2 n∑
k=0

∑
j>0

∥b(k)j − b
(k)
j−1∥

2.

3.3 Proof of Growth

We return to the streaming PCA setting. The goal of this section is to show that, if v0 = v∗, then
∥vn∥ is large.

Lemma 3.5. If v0 = v∗, then

η
n∑

i=1

⟨xi, P v̂i−1⟩2 ≲ σ2
2 log

2 n log∥vn∥

Proof. Define ui = P v̂i. We apply Lemma 3.4 to the matrix Aij = ⟨xi, uj−1⟩ for i, j ∈ [n], getting:

n∑
i=1

max
j≤n−1

⟨xi, uj⟩2 ≤ (1 + log2 n)

log2 n∑
k=0

∑
j>0

n∑
i=1

(⟨xi, u2kj⟩ − ⟨xi, u2k(j−1)⟩)2.

Now,

n∑
i=1

(⟨xi, u2kj⟩ − ⟨xi, u2k(j−1)⟩)2 = (u2kj − u2k(j−1))X
TX(u2kj − u2k(j−1))

≤ σ2
η
∥u2kj − u2k(j−1)∥2.

by the assumption (7) on X and that every uj ⊥ v∗. Then, for each k, Lemma 3.3 shows that∑
j>0

∥u2kj − u2k(j−1)∥2 ≤ 4σ2 log
∥vn∥
∥v0∥

= 4σ2 log∥vn∥

10

and thus

η
∑
i

⟨xi, P v̂i−1⟩2 ≤ η
∑
i

max
j
⟨xi, uj⟩2 ≤ (1 + log2 n)

log2 n∑
k=0

4σ2
2 log∥vn∥ ≲ σ2

2 log
2 n log∥vn∥

as desired.

Lemma 3.6 (The right direction grows.). Suppose σ2 <
1
2 . Then if v0 = v∗ we have

log∥vn∥ ≳
σ1

1 + σ2
2 log

2 n
.

Proof. We will show that η
∑n

i=1⟨xi, v̂i−1⟩2 ≳ σ1, giving the result by (10).
Recall that (x+ y)2 ≥ 1

2x
2 − y2 for all x, y. Thus, if v̂i = aiv

∗ + ui for ui ⊥ v∗, we have

⟨xi, v̂i−1⟩2 ≥
a2i−1

2
⟨xi, v∗⟩2 − ⟨xi, ui−1⟩2.

Lemma 3.2 shows that a2i ≥ 1− σ2 ≥ 1
2 , so summing up over i,

η
n∑

i=1

⟨xi, v̂i−1⟩2 ≥
1

4
σ1 − η

n∑
i=1

⟨xi, ui−1⟩2.

Then (10) and Lemma 3.5 give

log∥vn∥ ≥
1

2
η

n∑
i=1

⟨xi, v̂i−1⟩2 ≥
1

8
σ1 −O(σ2

2 log
2 n log∥vn∥),

or
log∥vn∥ ≳

σ1

1 + σ2
2 log

2 n
.

Claim 3.7. Let a ∼ N(0, 1). For any two vectors u and v, with probability 1− δ,

∥au+ v∥ ≥ δ
√

π/2∥u∥.

Proof. First, without loss of generality v is collinear with u; any orthogonal component only helps.
So we can only consider real-valued u and v, and in fact rescale so u = 1. The claim is then: with
probability 1− δ, a sample from N(v, 1) has absolute value at least δ

√
π/2. This follows from the

standard Gaussian density being at most 1/
√
2π.

Theorem 1.1 (Performance of Oja’s method in adversarial streams). For any sufficiently large
universal constant C, suppose η is such that ηnλ1 > C log d and ηnλ2 < 1

C logn . If η∥xi∥2 ≤ 1 for

every i, then Oja’s algorithm with learning rate η returns v̂ satisfying ∥P v̂∥ ≤
√
ηnλ2 + d−9 with

1− d−Ω(C) probability.
Moreover, Oja’s method can be modified (Algorithm 1) so that in addition, regardless of λ1 and

λ2, if η∥xi∥2 ≤ 1 for all i then either ∥P v̂∥ ≤
√
ηnλ2 + d−9 or v̂ =⊥.

11

Proof. We assume that η∥xi∥2 ≤ 1 for all i, since the theorem is otherwise vacuous.

We begin with the last statement. Algorithm 1 only returns v̂ ̸=⊥ if sn = log ∥vn∥
∥v0∥ > 10 log d.

But then by Lemma 3.2,

∥P v̂n∥ ≤
√
σ2 +

∥v0∥
∥vn∥

≤
√
σ2 + d−10.

All that remains is to show that, if σ1 > C log d and σ2 <
1

C logn , v̂ ̸=⊥ with at least 1− d−Ω(C)

probability. And of course, v̂ ̸=⊥ if ∥vn∥
∥v0∥ ≥ d10.

Oja’s algorithm starts with v̂0 uniformly on the sphere, and is indifferent to the initial scale
∥v0∥, so v0 could be constructed as v0

∥v0∥ for v0 ∼ N(0, Id).

Let v0 = av∗ + u for u ⊥ v∗. Let B =
∏n

i=1(I + ηxix
T
i), so vn = Bv0.

By Lemma 3.6 and the bound on σ2, we know ∥Bv∗∥ ≥ ec
′σ1 for some constant c′. Then by

Claim 3.7, with probability 1− δ,

∥vn∥ = ∥aBv∗ +Bu∥ ≥ δ
√

π/2∥Bv∗∥ ≥ δec
′σ1 .

The (very naive) Markov bound from E[∥v0∥2] = d gives that

∥vn∥
∥v0∥

≥ δ3/2ec
′σ1

√
d

with probability 1− 2δ. For sufficiently large C in σ1 ≥ C log d, this gives

∥vn∥
∥v0∥

≥ d10

with probability 1− d−Ω(C).

3.4 Proof of Theorem 1.2

Theorem 1.2 (Full algorithm). Let X ∈ Rn×d have b-bit entries, so each Xi,j = 0 or 2−b ≤
|Xi,j |≤ 2b, for b > log(dn). Whenever R > O(log n log d), Algorithm 2 uses O(b2d) bits of space

and returns v̂ satisfying ∥P v̂∥2 ≲ log d
R + d−9 with high probability.

Proof. Let C be the constant in Theorem 1.1. For R to be well defined, λ1 ̸= 0 so some xi ̸= 0.
Therefore 2−2b ≤ λ1 ≤ nd222b. Thus one of the ηi considered in Algorithm 2 is such that ηnλ1 ∈
[C log d, 2C log d]. Let î be this i. For sufficiently large constant in the choice of R, we have

ηinλ2 ≤
1

C log n

for all i ≤ î.
Let x be the xi of maximum norm, as computed by the algorithm. We now show that x̂ := x

∥x∥
is a sufficiently good answer if η̂i∥x∥

2 ≥ 1. Decompose x = av∗ + bw for w ⊥ v∗ a unit vector.
By (7), b is fairly small:

b2 ≤ η̂i

∑
i

⟨xi, w⟩2 ≤ ∥PXTXP∥ = nλ2 ≤
2C log d

Rη̂i
.

The unit vector x̂ in direction x has error

∥Px̂∥2 = b2

∥x∥2
≤ 2C log d

Rη̂i∥x∥2
≲

log d

Rη̂i∥x∥2
. (13)

12

Therefore if η̂i∥x∥
2 ≥ 1, x̂ is a sufficiently accurate answer.

The last statement in Theorem 1.1 shows that, if ηi∗∥x∥2 ≤ 1 and i∗ ≤ î, then

∥Pv(i
∗)∥2 ≤ (

√
ηi∗nλ2 + d−9)2 ≲ ηi∗nλ2 + d−18 ≤ 2C log d

R
+ d−18 (14)

which is sufficiently accurate. We now split into case analysis.

In one case, suppose η̂i∥x∥
2 < 1. Therefore the main body of Theorem 1.1 states that v(̂i) ̸=⊥

with high probability. In particular, this means i∗ ≤ î, so ηi∗∥x∥2 < 1, and the algorithm’s answer
is v(i

∗) which is sufficiently accurate by (14).
Otherwise, η̂i∥x∥

2 ≥ 1. Then outputting x is sufficiently accurate by (13). If i∗ ≥ î, the

algorithm will definitely output x; if i∗ < î, the algorithm might output v(i
∗), but only if ηi∗∥x∥2 < 1,

in which case this is sufficiently accurate by (14).

3.5 Precision

Finally, we discuss why O(log(nd)) bits of precision suffice for the algorithm. Algorithm 1 tracks
two values: a unit vector v̂i and the log-norm si of the unnormalized vi. The main concern is that
the error in v̂i could compound.

Consider v̂i and si to be the values computed by the algorithm, which has some ε = 1
poly(nd)

error (in ℓ2) added in each iteration. We can enforce si ≥ si−1 despite the error. Redefine vi to
2si v̂i.

We now redo the proof of (12) with ε error in each step. Define Bi = ∥vi∥2
∥v0∥2 = 2si , and

Ai = log Bi
Bi−1

= (si − si−1) which satisfies Ai ≥ η⟨xi, v̂i−1⟩2 −O(ε) by (10). Therefore

η

n∑
i=1

⟨xi, vi−1⟩2 ≤ ∥v0∥2
n∑

i=1

(Ai +O(ε))Bi−1 ≤ ∥v0∥2((Bn − 1) +O(εnBn)) = ∥vn∥2 − ∥v0∥2 +O(εn∥vn∥2)

(15)

by Claim 3.1. Then for any unit vector w with Pw = w,

⟨vn − v0, w⟩2 = (

n∑
i=1

⟨vi − vi−1, w⟩)2

= (

n∑
i=1

η⟨xi, vi−1⟩⟨xi, w⟩+O(ε)∥vi−1∥)2

=

(
O(nε∥vn∥) + η

n∑
i=1

⟨xi, vi−1⟩⟨xi, w⟩

)2

by (8)

≤ η
n∑

i=1

⟨xi, vi−1⟩2 · η
n∑

i=1

⟨xi, w⟩2 +O(n2ε∥vn∥2) by Cauchy-Schwarz

≤ (∥vn∥2 − ∥v0∥2)σ2 +O(εn2∥vn∥2). by (15) and (7)

There’s nothing special about the start and final indices, giving the following bound for general
indices a ≤ b:

⟨vb − va, w⟩2 ≤ (∥vb∥2 − ∥va∥2)σ2 +O(εn2∥vb∥2). (16)

13

Given (16), the error tolerance flows through the rest of the proof easily. Lemmas 3.2 and 3.3
follow immediately with O(εn2) additive error. Lemma 3.5 gets additive error O(σ2εn

3 log2 n),
so both the numerator and denominator of Lemma 3.6 change by ε poly(n). Both the conditions
and result of Theorem 1.1 only change by an additive εpoly(n) error, which for sufficiently small
polynomial ε are absorbed by the constant factors and 1

d9
additive error. And Algorithm 2 does

nothing that could compound the error by more than a constant factor, so Theorem 1.2 holds as
well.

4 Lower Bound

Our lower bound is based on the PartialDuplicate instance we define here:

Definition 4.1. The PartialDuplicate instance is defined as follows: X ∈ {±1}n+k×d uni-
formly at random, except that the first k rows match on the first (1− γ)d coordinates.

4.1 Spectral properties of PartialDuplicate

We can express a PartialDuplicate instance as follows:

• For i ∈ [k], xi = x + yi where x, yi ∈ {0,−1, 1}d have supp(x) = {1, 2, . . . , (1 − γ)d} and
supp(yi) = {(1− γ)d+ 1, . . . , d}.

• X ′ ∈ {−1, 1}n×d consists of the last n rows of X.

That is, the entries look like:

X =

x y1
...

...
x yk
X ′

except that x, yi are zero-padded to d dimensions. The nonzero entries of x, the yi, and X ′ are
all independent. Let Y = (y1, . . . , yk)

T ∈ {−1, 0, 1}k×d, and let Ỹ ∈ Rk×γd contain the nonzero
columns of Y .

We can decompose any unit vector w into three components: the x direction, the
∑k

i=1 yi
direction, and the component orthogonal to both of these. This is:

w = a
x√

(1− γ)d
+ b

∑
yi

∥
∑

yi∥
+ cw′

where a2 + b2 + c2 = 1 and w′ is a unit vector orthogonal to x and
∑

yi.
We have that

∥Xw∥2 = ∥X ′w∥2 +
k∑

i=1

⟨w, x+ yi⟩2

= ∥X ′w∥2 +
k∑

i=1

(a
√
(1− γ)d+ ⟨w, yi⟩)2

= ∥X ′w∥2 + ka2(1− γ)d+ 2ab
√
(1− γ)d⟨w,

k∑
i=1

yi⟩+ ∥Y w∥2

14

Define

∆w :=
1√
d
⟨w,

k∑
i=1

yi⟩,

so we have

1

d
∥Xw∥2 = ka2(1− γ) + 2ab

√
1− γ∆w +

1

d
∥X ′w∥2 + 1

d
∥Y w∥2. (17)

We now give upper and lower bounds on how large 1
d∥Xw∥2 can be. For any (γ, k) define

Cγ,k :=
1

2

(
k(1− γ) +

√
(k(1− γ))2 + 4(1− γ)γk

)
.

This satisfies (1− γ)k ≤ Cγ,k ≤ (1− γ)k + γ.
Our lemmas will be “with high probability in d”, meaning at least 1 − d−C probability for

an arbitrary constant C, and will involve an od(1) term that is polynomial in k, γ, C and inverse
polynomial in d.

Lemma 4.2. For d ≥ k3, with high probability in d, there exists a unit vector w∗ with

1

d
∥Xw∗∥2 ≥ Cγ,k − od(1).

Proof. Consider w∗ = a x√
(1−γ)d

+ b
∑

yi
∥
∑

yi∥ for a, b with a2 + b2 = 1 to be chosen later. By (17),

1

d
∥Xw∥2 ≥ a2k(1− γ) + 2ab

√
1− γ∆w∗

So with a little algebra (Claim A.4) there exists a choice of a, b such that:

1

d
∥Xw∗∥2 ≥ 1

2

(
k(1− γ) +

√
(k(1− γ))2 + 4(1− γ)∆2

w∗

)
.

For 0 ≤ b ≤ a, we have
√
a− b ≥

√
a−
√
b. Thus

1

d
∥Xw∗∥2 ≥ Cγ,k −

√
(1− γ)max(0, γk −∆2

w∗) ≥ Cγ,k −
√
|γk −∆2

w∗ |

Now, ∆2
w∗ = 1

d∥
∑k

i=1 yi∥2. This has E[∆2
w∗] = γk, and it concentrates quite well: the first

(1 − γ)d coordinates of
∑

yi are zero, and the rest are
√
kỸ Tu for u = 1√

k
(1, . . . , 1) ∈ Rk. Hence

by the JL Lemma (Claim A.2) applied to Ỹ , u, and(n, d) = (γd, k) with high probability we have

|1
k
∥

k∑
i=1

yi∥2 − γd|≲
√

γd log d+ log d

or

|∆2
w∗ − γk|≲ k

√
γ log d

d
+

k

d
log d = od(1)

Thus
1

d
∥Xw∗∥2 ≥ Cγ,k − od(1).

15

We now show that every w ⊥ y1 has smaller ∥Xw∥2.

Lemma 4.3. Suppose that k(1− γ) ≥ 1 + γ.
With high probability in d, every unit vector w has

1

d
∥Xw∥2 ≤ Cγ,k +O(

√
λ)− γ

2k
+ 2
|⟨w, y1⟩|√

kd

Proof. We would like to bound the terms in (17).

We first consider ∥X ′w∥. The maximum singular value of X is approximately
√
λd +

√
d. In

particular, by [FS10] (see Lemma A.1), the maximum singular value is at most 2
√
λd +

√
d with

high probability. Suppose that happens.
For any fixed unit vector u independent of X ′, as a distribution over X ′, Claim A.2 says that

∥X ′u∥2 has expectation n = λd and with high probability,

|∥X ′u∥2 − λd|≲
√
λd log d+ log d≪ d.

Thus
1

d
∥X ′u∥2 ≤ λ+ od(1)

with high probability. Suppose this happens to both the unit vector in direction x and the one in
direction

∑
i yi. Then

1√
d
∥X ′w∥ ≤ 1√

d

(
|a|∥X ′ x

∥x∥
∥+ |b|∥X ′

∑
yi

∥
∑

yi∥
∥+ |c|∥X ′w′∥

)
≤ |a|

√
λ+ |b|

√
λ+ od(1) + |c|(2

√
λ+ 1)

≤ O(
√
λ) + |c|

and hence

1

d
∥X ′w∥2 ≤ c2 +O(

√
λ) (18)

We next consider ∥Y w∥. Ỹ is a k× (γd) matrix with independent ±1 entries, so by [FS10] (see
Lemma A.1), with high probability its top singular value is

√
k +
√
γd+ o(

√
d) ≤ (

√
γ + o(1))

√
d,

so the same is true for Y . Since Y x = 0, we have

1

d
∥Y w∥2 ≤ 1

d
∥Y ∥2(1− a2) ≤ (1− a2)(γ + od(1)). (19)

For large enough d we have that this od(1) ≤
√
λ.

Plugging into (17) we have

1

d
∥Xw∥2 ≤ ka2(1− γ) + 2ab

√
1− γ∆w + c2 +O(

√
λ) + (1− a2)γ

= γ +O(
√
λ) + c2 + (k(1− γ)− γ)a2 + ab · 2

√
1− γ∆w

16

Since a2 + b2 = 1− c2, by Claim A.4 this satisfies

1

d
∥Xw∥2 ≤ O(

√
λ) + c2 + γ + (1− c2)

1

2

(
k(1− γ)− γ +

√
(k(1− γ)− γ)2 + 4(1− γ)∆2

w

)
︸ ︷︷ ︸

C

Now, C ≥ k(1− γ)− γ ≥ 1, so this expression is maximized when c = 0, giving:

1

d
∥Xw∥2 ≤ O(

√
λ) +

1

2

(
k(1− γ) + γ +

√
(k(1− γ)− γ)2 + 4(1− γ)∆2

w

)
︸ ︷︷ ︸

C′

(20)

We now relate the term C ′ to Cγ,k. First,

(k(1− γ)− γ)2 + 4(1− γ)∆2
w =

[
(k(1− γ))2 + 4(1− γ)γk

]
− 6γ(1− γ)k + γ2 + 4(1− γ)∆2

w.

Since
√
a+ b ≤

√
a+ b

2
√
a
for a > 0 and any b, this means

C ′ ≤ γ

2
+ Cγ,k +

4(1− γ)∆2
w − 6γ(1− γ)k + γ2

4k(1− γ)

= Cγ,k − γ +
∆2

w

k
+

γ2

4k(1− γ)

Thus plugging back into (20),

1

d
∥Xw∥2 ≤ O(

√
λ) + Cγ,k − γ +

∆2
w

k
+

γ2

4k(1− γ)
(21)

We now relate ∆2
w to ⟨w, y1⟩. We know that

|⟨w,
∑

yi⟩|= |⟨w,
∑
i>1

yi⟩+ ⟨w, y1⟩|≤ ∥
∑
i>1

yi∥+ |⟨w, y1⟩|

and (as in the JL lemma, Claim A.2), with high probability ∥
∑

i>1 yi∥ =
√

(k − 1)γd + o(
√
d).

Thus

|∆w|=
1√
d
|⟨w,

∑
yi⟩|≤

√
(k − 1)γ + o(1) +

|⟨w, y1⟩|√
d

and so

∆2
w ≤ (k − 1)γ + 2

√
(k − 1)γ

|⟨w, y1⟩|√
d

+
⟨w, y1⟩2

d
+ o(1)

Since |⟨w,y1⟩|√
d
≤ √γ, this means

∆2
w ≤ (k − 1)γ + (2

√
(k − 1)γ + γ)

|⟨w, y1⟩|√
d

+ o(1) ≤ (k − 1)γ + 2
√
k
|⟨w, y1⟩|√

d
+ o(1).

Plugging back into (21), we have

1

d
∥Xw∥2 ≤ O(

√
λ) + Cγ,k −

γ

k

(
1− γ

4(1− γ)

)
+ 2
|⟨w, y1⟩|√

kd

or
1

d
∥Xw∥2 ≤ Cγ,k +O(

√
λ)− γ

2k
+ 2
|⟨w, y1⟩|√

kd

as desired.

17

Lemma 4.4. Suppose that k(1− γ) ≥ 1 + γ, γ < 1
2 , and λ ≤ c(γk)

2 and ε ≤ c γ
k2

for a sufficiently
small constant c. For sufficiently large d > poly(k/γ), any ε-approximate PCA solution w must

have |⟨w,y1⟩|√
γd
≥

√
γ

8
√
k
with high probability.

Proof. Let the top singular vector of X be v∗. Then any ε-approximate PCA solution w has
w =

√
1− av∗ + aw′ for a unit vector w′ ⊥ v∗ and 0 ≤ a ≤ ε. Hence

∥Xw∥ ≥
√
1− a∥Xv∗∥ − a∥Xw′∥ ≥ (

√
1− a− a)∥X∥ ≥ (1− 3

2
a)∥X∥ ≥ (1− 3

2
ε)∥X∥.

By Lemma 4.2, this means
1

d
∥Xw∥2 ≥ (1− 3

2
ε)2Cγ,k − o(1).

Now, Cγ,k ≤ k, so
1

d
∥Xw∥2 ≥ Cγ,k − 3εk − o(1)

By Lemma 4.3, this means

O(
√
λ)− γ

2k
+ 2
|⟨w, y1⟩|√

kd
≥ −3εk − o(1)

or

2
|⟨w, y1⟩|√

kd
≥ γ

2k
− 3εk − o(1)−O(

√
λ)

For ε < γ
24k2

and
√
λ < cγk for sufficiently small constant c this gives

2
|⟨w, y1⟩|√

kd
≥ γ

4k

and hence
|⟨w, y1⟩|√

γd
≥
√
γ

8
√
k

Lemma 4.5. For γ ≤ 1
4 , λ ≤

1
10 , and sufficiently large d > O(k), the spectral gap R is at least k

4
with high probability.

Proof. By Lemma 4.2, with high probability 1
d∥X∥

2 ≥ Cγ,k − od(1) ≥ (1− γ)k − od(1) ≥ k/2.
The second eigenvalue λ2 of Σ = XTX satisfies

λ2 = min
v

max
v′⊥v
∥v∥=1

∥Xv′∥2

≤ max
v′⊥x
∥v∥=1

∥Xv′∥2

= max
v′⊥x
∥v∥=1

(
∥X ′v′∥2 + ∥Y v′∥2

)
≤ ∥X ′∥2 + ∥Y ∥2

By [FS10] (see Lemma A.1), with high probability, ∥X ′∥ ≤
√
n +
√
d + o(

√
d) and ∥Y ∥ ≤

√
k +√

γd+ o(
√
d), so

1

d
λ2 ≤ (1 +

√
λ+ o(1))2 + (

√
γ + o(1))2 ≤ 1 + 2

√
λ+ λ+ γ + o(1) ≤ 2.

18

Hence with high probability, the spectral ratio

R =
∥Σ∥
λ2

=
∥X∥2

λ2
≥ k

4
.

4.2 Streaming lower bound

Theorem 1.3 (Lower bound). There exists a universal constant C > 1 such that: for any R >

1, 1
CR2 -approximate PCA on streams with spectral gap R requires at least d2

CR3 bits of space for
sufficiently large d > poly(R).

The polynomial dependence on R in our proof has not been optimized.

Proof. Suppose that we have such an ε-approximate streaming PCA algorithm. We set up a two
player one-way communication protocol. Let A1 ∈ {−1, 1}n×(1−γ)d and A2 ∈ {−1, 1}n×γd be chosen
uniformly at random. Let A = [A1, A2] ∈ {−1, 1}n×d be their concatenation.

In this protocol, Alice receives A = [A1, A2] and Bob receives A1. Alice feeds A to the streaming
algorithm, reaching some stream state S, which she sends to Bob. Bob uses A1 and S to construct
an approximation Â to A2 in the following fashion. For each row i ∈ [n], Bob chooses k− 1 vectors
u1, . . . , uk−1 that match the ith row of A1 on the first (1− γ)d coordinates, and are independently
uniformly drawn from {−1, 1}n on the remaining γd coordinates. Bob sets the streaming algorithm’s
state to S, inserts u1, . . . , uk−1, and computes the algorithm’s approximate PCA solution v̂i. He
does this for each i ∈ [n], constructing a matrix V̂ ∈ Rn×d. Let V̂2 ∈ Rn×γd be the last γd columns
of V̂ . We will show that I(A2; V̂) ≳ d2 for appropriate choice of parameters.

Note that when Bob produces v̂i, the streaming algorithm has effectively seen the stream A
followed by k− 1 vectors that match the ith row of A. Up to reordering of rows, this is distributed
identically to PartialDuplicate for n′ = n− 1. Reordering the rows, of course, does not change
the covariance matrix.

We choose γ = 1
4 , k = 4R, n = λd for λ = c(γ/k)2 and ε = c γ

k2
for the constant c in Lemma 4.4,

and require d > poly(k/γ) for a sufficiently large polynomial such that Lemma 4.4 applies.
By Lemma 4.5, with high probability the stream has spectral gap at least k/4 ≥ R. Therefore

the streaming algorithm’s PCA solution should be ε-approximate with at least 2/3 probability. But
then by Lemma 4.4, where we pick y1 to have the ith row ai of A2, we have

|⟨v̂i, ai⟩|√
γd

≥
√
γ

8
√
k

with at least 2/3− 1
poly(d) > 1/2 probability. Then Lemma A.3 says that

I(V̂ ;A2) ≥ Ω((

√
γ

8
√
k
)2 · n · γd)− n = Ω(

γ2nd

k
)− n = d2 · Ω(λ

k
) = d2 · Ω(1/R3).

Now, V̂ is independent of A2 conditioned on (S,A1) so by the data processing inequality,

I(V̂ ;A2) ≤ I(A1, S;A2) ≤ I(A1;A2) + I(S;A2 | A1) ≤ 0 +H(S).

Thus, if the state S contains |S| bits, we have

Ω(d2/R3) ≤ H(S) = H(|S|) +H(S | |S|) ≤ E[|S|] +H(|S|)

19

Now, for any random variable X over positive integers,

H(X) =
∞∑
i=1

p(i) log
1

p(i)

=

 ∑
i:p(i)≤2−i

p(i) log
1

p(i)

+

 ∑
i:p(i)>2−i

p(i) log
1

p(i)

≤

 ∑
i:p(i)≤2−i

2−i · i

+

 ∑
i:p(i)>2−i

ip(i)

= 2 + E[X]

so Ω(d2/R3) ≤ 2E[|S|] + 2, or
E[|S|] ≥ Ω(d2/R3).

Thus the streaming algorithm must store Ω(d2/R3) bits on average after Alice has finished feeding
in her part of the stream.

Acknowledgments

We appreciate the many helpful comments of anonymous reviewers on a prior version of this paper.

Bibliography

[ACLS12] Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic opti-
mization for PCA and PLS. In 2012 50th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pages 861–868. IEEE, 2012.

[AL17] Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-PCA:
a global, gap-free, and near-optimal rate. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 487–492. IEEE, 2017.

[BDF13] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of
incremental PCA. Advances in neural information processing systems, 26, 2013.

[BDWY16] Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An
improved gap-dependency analysis of the noisy power method. In Conference on
Learning Theory, pages 284–309. PMLR, 2016.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal compo-
nent analysis in distributed and streaming models. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 236–249, 2016.

[CW09] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pages 205–214, 2009.

[FS10] Ohad N Feldheim and Sasha Sodin. A universality result for the smallest eigenvalues
of certain sample covariance matrices. Geometric And Functional Analysis, 20(1):88–
123, 2010.

20

[GLPW16] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent
directions: Simple and deterministic matrix sketching. SIAM Journal on Computing,
45(5):1762–1792, 2016.

[HNWTW21] De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix con-
centration for products. Foundations of Computational Mathematics, pages 1–33,
2021.

[HNWW21] De Huang, Jonathan Niles-Weed, and Rachel Ward. Streaming k-PCA: Efficient
guarantees for Oja’s algorithm, beyond rank-one updates. In Conference on Learning
Theory, pages 2463–2498. PMLR, 2021.

[HP14] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with
applications. Advances in neural information processing systems, 27, 2014.

[JJK+16] Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron Sidford.
Streaming PCA: Matching matrix bernstein and near-optimal finite sample guaran-
tees for Oja’s algorithm. In Conference on learning theory, pages 1147–1164. PMLR,
2016.

[Lib13] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 581–588, 2013.

[LSW21] Robert Lunde, Purnamrita Sarkar, and Rachel Ward. Bootstrapping the error of
oja’s algorithm. Advances in Neural Information Processing Systems, 34:6240–6252,
2021.

[MCJ13] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory limited,
streaming PCA. Advances in neural information processing systems, 26, 2013.

[Oja82] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of
mathematical biology, 15(3):267–273, 1982.

[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices:
extreme singular values. In Proceedings of the International Congress of Mathemati-
cians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies
Vols. II–IV: Invited Lectures, pages 1576–1602. World Scientific, 2010.

[TYUC17] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practical sketch-
ing algorithms for low-rank matrix approximation. SIAM Journal on Matrix Analysis
and Applications, 38(4):1454–1485, 2017.

[Upa18] Jalaj Upadhyay. Fast and space-optimal low-rank factorization in the streaming
model with application in differential privacy. NeurIPS, 2018.

[Woo14a] David Woodruff. Low rank approximation lower bounds in row-update streams.
Advances in neural information processing systems, 27, 2014.

[Woo14b] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations
and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

21

A Utility lemmas for the Lower Bound

We use the following bound on the maximum singular value of an iid subgaussian matrix:

Lemma A.1 (Feldheim and Sodin [FS10], see also (2.4) of [RV10]). Let A be an n × N random
matrix with independent subgaussian entries of zero mean and variance 1, for n ≤ N . There exists
a universal constant c > 0 such that

Pr[∥A∥ ≥
√
n+
√
N + τ

√
N] ≲ e−cnτ3/2

for any τ > 0.

The following is essentially a restatement of the JL lemma for ±1 matrices:

Claim A.2. Let u ∈ Rd be a unit vector, and X ∈ {−1, 1}n×d independently and uniformly. Then

E[∥Xu∥2] = n

and with 1− δ probability

|∥Xu∥2 − n|≲
√

n log
1

δ
+ log

1

δ
.

Proof. Let z = Xu. The coordinates zi are independent, mean zero, variance 1, and subgaussian
with variance parameter 1. The expectation bound is trivial: sum the variance over n independent
coordinates. For concentration, each coordinate z2i is a squared subgaussian, and hence subgamma
with (σ, c) parameters (O(1), O(1)). Then

∑
i z

2
i is subgamma with parameters (O(

√
n), O(1)).

Hence with probability 1− δ we have

|∥Xu∥2 − n|≲
√
n log

1

δ
+ log

1

δ
.

Lemma A.3. Let X ∈ {−1, 1}n×d be uniformly distributed, and let Y ∈ Rn×d have rows of norm
at most 1 such that each row i ∈ [n] has |⟨xi, yi⟩|> a

√
d with at least 50% probability, for a > 0.

Then
I(X;Y) ≥ Ω(a2nd)− n.

Proof. For any row y, when x ∈ {−1, 1}d uniformly at random, ⟨x, y⟩ is subgaussian with variance
parameter ∥y∥2 ≤ 1, so

Pr[|⟨x, y⟩|> a
√
d] ≤ 2e−a2d/2,

so the number of x with |⟨x, y⟩|> a
√
d is at most 2(1−Ω(a2))d. Let b ∈ {0, 1}n denote the indicator

vector with bi = 1 if |⟨xi, yi⟩|> a
√
d and bi = 0 otherwise.

For any Y, b, let SY,b ⊆ {−1, 1}n×d be the set of possible X that satisfy the inner product
condition |⟨xi, yi⟩|> a

√
d for all rows i ∈ [n] with bi = 1. Each row with bi = 1 has at most

2(1−Ω(a2))d values of xi in the support, so

|SY,b|≤ 2nd−Ω(a2∥b∥1d).

We have E[∥b∥1] ≥ n
2 , so

H(X | Y) ≤ H(X | Y, b) +H(b) ≤ (E
Y,b

log|SY,b|) + n ≤ (1− Ω(
1

2
a2))nd+ n

so
I(X;Y) = H(X)−H(X | Y) ≥ Ω(a2nd)− n.

22

Claim A.4. Let A,B > 0. Then

Aa2 +Bab ≤ a2 + b2

2
(A+

√
A2 +B2),

with equality if a2

a2+b2
=

1+

√
A2

A2+B2

2 .

Proof. Just ask a computer. By hand, though: the equations are homogeneous, so WLOG we can
assume a2 + b2 = 1. We then maximize over a ∈ [0, 1]. Taking the derivative, the maximum is
achieved when

2Aa+B(
√

1− a2 − a2√
1− a2

) = 0

or

2Aa
√

1− a2 = B(2a2 − 1)

4A2a2(1− a2) = B2(4a4 − 4a2 + 1)

a4(4B2 + 4A2)− a2(4A2 + 4B2) +B2 = 0

a2 =
1±

√
A2

A2+B2

2

the first squaring preserved equality only when a2 ≥ 1
2 , so the optimum is at

a2 =
1 +

√
A2

A2+B2

2
.

Then

Aa2 +Ba
√

1− a2 = A
1 +

√
A2

A2+B2

2
+B

√√√√1 +
√

A2

A2+B2

2

1−
√

A2

A2+B2

2

= A
1 +

√
A2

A2+B2

2
+B

√
B2

A2+B2

4

=
1

2
(A+

√
A2 +B2).

23

	Introduction
	Related Work

	Proof Overview
	Upper bound
	Lower bound

	Proof of Upper Bound
	Initial Lemmas
	Results on Sequences
	Proof of Growth
	Proof of Theorem 1.2
	Precision

	Lower Bound
	Spectral properties of PartialDuplicate
	Streaming lower bound

	Bibliography
	Utility lemmas for the Lower Bound

