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Abstract
Uniformity testing is one of the most well-studied problems in property testing, with many known
test statistics, including ones based on counting collisions, singletons, and the empirical TV dis-
tance. It is known that the optimal sample complexity to distinguish the uniform distribution on

m elements from any ε-far distribution with 1 − δ probability is n = Θ(

√
m log(1/δ)

ε2 + log(1/δ)
ε2 ),

which is achieved by the empirical TV tester. Yet in simulation, these theoretical analyses are mis-
leading: in many cases, they do not correctly rank order the performance of existing testers, even
in an asymptotic regime of all parameters tending to 0 or ∞.

We explain this discrepancy by studying the constant factors required by the algorithms. We
show that the collisions tester achieves a sharp maximal constant in the number of standard devia-
tions of separation between uniform and non-uniform inputs. We then introduce a new tester based
on the Huber loss, and show that it not only matches this separation, but also has tails corresponding

to a Gaussian with this separation. This leads to a sample complexity of (1 + o(1))

√
m log(1/δ)

ε2 in
the regime where this term is dominant, unlike all other existing testers.
Keywords: Property testing, Sublinear algorithms

1. Introduction

Property testing of distributions is an area of study initiated in (Goldreich and Ron, 2011) and (Batu
et al., 2000). The foundation of these works is a test for uniformity: given n samples from a
distribution q on [m], can we distinguish the case that q is uniform from the case that q is ε-far from
uniform, with probability 1 − δ? The remarkable result is that this is often possible for n ≪ m,
when we cannot learn the actual distribution. Over the years, several different tests and bounds
have been established for uniformity. In this paper we better understand and explain the relative
performance of these testers, then introduce a new uniformity tester that outperforms all of them.

The first uniformity tester introduced was the collisions tester (Goldreich and Ron, 2011; Batu
et al., 2000), which counts the number of collisions among the samples. It is equivalent to Pearson’s
χ2 test, or any other statistic quadratic in the histogram. It succeeds with constant probability for
n = O(

√
m/ε2) (Diakonikolas et al., 2019), which is optimal (Paninski, 2008).

What happens for high-probability bounds? Naive repetition gives a multiplicative O(log 1
δ )

loss, but this can be improved: Huang and Meyn (Huang and Meyn, 2013) showed that the sin-

gletons tester (Paninski, 2008) achieves
√
m log 1

δ/ε
2, but only in the setting of n = o(m) and

ε = Ω(1). The collisions tester, however, really does involve a log 1
δ loss (Peebles, 2015).
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(a) Simulation of statistic for m = n = 10000
and ε = 0.125. The collisions tester has
1.7% error rate and the TV tester has 3.3%.
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(b) When m = n = 105 and ε = 0.1, the
collisions tester has 10−5 error rate and the
TV tester has 10−4 error rate. So collisions
can outperform TV even for tiny δ.

Figure 1: Observed performance of TV vs collisions distinguishing uniform from 1±2ε
m

Achieving optimal dependence of the whole range is the empirical TV tester (Diakonikolas et al.,
2018), which measures the TV distance between the empirical distribution and uniform. It needs

n = O


√
m log 1

δ

ε2
+

log 1
δ

ε2

 (1)

which is optimal in all settings of parameters.
To summarize 20 years of theory, the TV tester is asymptotically optimal while the collisions

tester has poor δ dependence and the singletons tester is good for n ≪ m but fails when n ≫ m.
This suggests that, given an actual example of a uniformity testing problem, the TV tester is as good
as possible.

In Figure 4 we compare the TV tester to the collisions tester in simulation. We test the uniform
distribution against the distribution that puts 1+2ε

m mass on half the bins, and 1−2ε
m mass on the

remaining bins. This is the worst case ε-far distribution for both these testers (Diakonikolas et al.,
2018). We find that, contrary to the theoretical prediction, the collisions tester outperforms the TV
tester on the parameters we consider. In our first experiment, with m = n = 104 and ε = 1/8, the
TV tester has twice the error rate as the collisions tester (3.3% vs 1.7%). In our second experiment,
with m = n = 105 and ε = 1/10, the gap widens to a factor 10 (10−4 vs 10−5) despite the error
rate δ—the parameter the collisions tester is suboptimal in—becoming much smaller. This means
that our theory is giving the wrong advice: a practitioner should prefer the collisions tester to the
TV tester here.

To better explain this, and to develop a new tester that outperforms all existing ones, we need to
start considering constant factors.

Designing a new tester. How should we design an efficient tester for uniformity? We consider
“separable” testers that take as input the histogram Yj (so Yj is the number of samples equal to j),
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Tester Optimal variance? Subgaussian tails?
Collisions/χ2 Yes (Theorem 1) No (Theorem 52)

TV No (Theorem 5) Yes
Huber (new) Yes Yes (Theorem 2)

Figure 2: Our main contributions are (1) that the collisions statistic achieves optimal variance, and
(2) that the Huber statistic can get high-probability bounds matching this variance.

compute a statistic

S =
m∑
j=1

f(Yj),

and output YES or NO based on whether S lies below some threshold τ . Existing testers are all
either of this form, or use this as the main subroutine (e.g., after Poissonization or taking the median
of multiple attempts). Differences lie in the choice of f . Quadratic functions f(k) = (k − n/m)2

or f(k) =
(
k
2

)
give the χ2 or collisions tester (Goldreich and Ron, 2011; Batu et al., 2000), which

are equivalent because
∑

j Yj = n is fixed, so the two statistics S are linearly related. The TV
tester (Diakonikolas et al., 2018) uses f(k) = |k − n/m|, while the singletons tester (Paninski,
2008) uses f(k) = 1k=1. But how would one design f from first principles to work well?

In this paper we introduce a natural approach to designing a test statistic with good asymptotic
constants. First, we find the test statistic f that maximizes the number of standard deviations of
separation between YES and NO instances; then, we modify the tails of f so that S has Gaussian
tails. This approach is summarized in Figure 2.

Step 1: Optimize variance. Intuitively, S is a sum of m terms f(Yj) that are nearly independent,
so we expect central limit-type behavior

S
≈∼ N(E[S],Var[S]).

That is, we expect our separable statistic to behave like a Gaussian, with expectation and variance
that depend on the particular statistic. Because the hard alternative distributions q are very close to
p, typically Varq[S] = (1 + o(1))Varp[S]. Then our ability to distinguish p and q depends on how
this variance compares to the separation in means: we want to minimize this normalized variance

ṽarp,q(S) :=
Varp[S]

(Eq[S]− Ep[S])2
.

We can set our threshold to lie halfway between Ep[S] and Eq[S], so that, under the Gaussian
approximation, the error probability will be given by

δ ≈ exp

(
−((Eq[S]− Ep[S]) /2)2

2Varp[S]

)
= exp

(
− 1

8 ṽarp,q(S)

)
(2)

For any q, minf ṽarp,q(Sf ) is a quadratic program in f , so we can compute the variance-minimizing
f for any setting of parameters. We can also approximate it analytically in the asymptotic limit. We
find that the quadratic statistics (like collisions or χ2) are near-optimal:
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Theorem 1 Let ε2 ≪ n
m ≲ 1 and n,m, 1/ε → ∞ with m ≳ 1/ε4. Any separable statistic S has

normalized variance

ṽarp,q(S) ≥ (1 + o(1))
1

8

m

n2ε4

between the uniform distribution p and the balanced nonuniform distribution q with qk = 1±2ε
m .

Quadratic statistics (like collisions or χ2) match this, getting

ṽarp,q(S) ≤ (1 + o(1))
1

8

m

n2ε4
(3)

for any ε-far distribution q.

Theorem 1 shows that, if the Gaussian approximations hold, the collisions tester has optimal
constants. Per (2), for failure probability δ we need ṽarp,q(S) =

1
8 log 1

δ

, or

n = (1 + o(1))
1

ε2

√
m log

1

δ
(4)

samples. This matches the optimal complexity (1) in the large-m regime, but with a sharp constant
of 1. (Sharp in the sense that no other separable statistic behaves better under its Gaussian approxi-
mation.) One could also trade off the false positive and false negative errors by choosing a different
threshold between the means, getting

n = (1 + o(1))
1

ε2
√
m ·

√
log 1

δ+
+
√
log 1

δ−

2
. (5)

for false positive/negative probabilities δ+/δ−.
By contrast, the TV tester has a constant factor worse normalized variance than the quadratic

tester (we shall state this constant precisely later). Therefore the Gaussian approximation loses a
constant factor relative to (4), and it would be very surprising if the actual statistic avoided this
inefficiency.1 So the Gaussian approximations predict the actual Figure 4 behavior.

Unfortunately, the Gaussian approximation does not hold in general for the collisions statistic,
so it does not get (4) or (5). See Appendix E.1 for a detailed example, due to (Peebles, 2015),
showing that for exponentially small δ the collisions tester does not achieve (1) for any constant
much less 1 + o(1).

Step 2: Massage the tails. The Gaussian tail bound implying (4) and (5) is given by its moment
generating function, so it would suffice to bound the MGF of S. The problem is that Yj has roughly
exponential tails for every j, so the MGF of Y 2

j does not have a good bound. To get a good MGF
for f(Yj), we need to look at an f with at most linear growth.

So this is our situation: the quadratic f(Yj) = Y 2
j has near-optimal variance but a very large

MGF, while the TV statistic f(Yj) = |Yj − n/m| has suboptimal variance but a pretty good MGF.
Introducing the linear tail with f(Yj) = |Yj −n/m| is how (Diakonikolas et al., 2018) achieved the√
log 1

δ dependence, but the worse variance means it inherently performs worse than the quadratic
for large δ where the Gaussian approximation holds.

1. Unsurprisingly, as we show in Theorem 5, the inefficiency is real.
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O(log n) Θ(n) o(n2)

O(1)

1
n1/2

n
=
Θ (

m
ε 2 )

n 2
ε 4m
=
ω(1), a.k.a. δ =

o(1)

ε = o(1)

Superlinear
regime (Thm 3)

Sublinear
regime (Thm 2)
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regime

m

ε
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TV/Huber has C2 = 2
Singletons has C1 = 1

(a) The Huber statistic achieves the best con-
stant over almost the entire region of ε ≪
1. The singletons statistic was previously
known to achieve this for ε = Ω(1) and
m≫ n (Huang and Meyn, 2013).

O(1) Ω(n) nO(n) o(n2)

O(1)

log1/4 n
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1
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Ω̃
(

1
n1/4

)

1
n1/2

// //
n
=
Θ (

mε 2 )

n 2
ε 4m
=
ω(1), a.k.a. δ

=
o(1)ε = o(1)

A

B

(Thm 52)

(Thm 5)

(Thm 4)

Superlinear
regime

Impossible
regime

m

ε

Comparing collisions and TV testers

TV has C1 = 1
Collisions has C1 = 1

TV has C1 > 1
Collisions has C1 ≫ 1

(b) The constant C1 in different (n, ε, δ) param-
eter regimes. In region A, the collisions
tester performs better than the TV tester. In
region B, both the collisions and TV tester
have C1 > 1.

Figure 3: Our results in different regimes.

To achieve both good variance and MGF, we should start with the good-variance quadratic
statistic, then attenuate the tail behavior to get good concentration. We do this with the Huber loss

f(Yj) = hβ(Yj − n/m)

for
hβ(x) := min(x2, 2β|x|−β2).

If we choose a tradeoff point β ≫ 1 +
√
n/m, most Yj will lie in the quadratic region and we

still get the variance bound (3). But now the MGF is bounded. We show that, for a large range of
parameters, this leads to the tester that matches a Gaussian with the optimal variance:

Theorem 2 (Huber) The Huber statistic for appropriate β achieves (4) for n/m≪ 1/ε2, ε, δ ≪
1, and m ≥ C log n for sufficiently large constant C. It achieves (5) under the same conditions and
δ−, δ+ ≪ 1.

Combined with Theorem 1, Theorem 2 shows that the Huber statistic gets the optimal variance
over separable statistics and matches the Gaussian concentration with this variance.

The parameter regime is illustrated in Figure 3(a). The first three asymptotic conditions for
Theorem 2 delineate the boundaries of the “sublinear” regime, where testing is possible, nontrivial,

and the asymptotic sample complexity (1) is dominated by the 1
ε2

√
m log 1

δ term. The last condition,
that m ≥ C log n, is likely an artifact of our analysis but is pretty mild.

The rest of our results look at other regimes and other testers, and we summarize our results in
Figure 3. If we express the sample complexity (1) as

n = (C1 + o(1))

√
m log 1

δ

ε2
+ (C2 + o(1))

log 1
δ

ε2
(6)
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then we can express the constantsC1, C2 in different regimes of (n,m, ε). In the “sublinear regime”
of n/m ≪ 1

ε2
, where we cannot reliably estimate the distribution, what matters is C1. For n = m,

when log n≪ log 1
δ ≪ n1/13 so that Ω̃(n−1/4) ≪ ε≪ n−3/13, that is, in regime A of small ε/large

δ, collisions gets C1 = 1 and TV has C1 > 1; in regime B of large ε/small δ, collisions gets C1 ≫ 1
and TV has 1 < C1 = O(1). The Huber statistic, by contrast, gets C1 = 1 for almost the whole
regime. In the superlinear regime, where the empirical distribution is ε/2-accurate, a simple union
bound shows that the TV statistic (and hence Huber statistic for β = 0) gets the optimal C2 = 2:

Theorem 3 (Superlinear regime) For n/m≫ 1/ε2 and ε≪ 1, the TV statistic achieves

n = (2 + o(1))
log 1

δ

ε2

and no other tester can do better.

Analysis of collisions. While the χ2/collisions tester does not match the Gaussian tails to achieve (4)
everywhere, it still is a sum of mostly-independent variables and so looks like a Gaussian outside the
extreme tails. Hence the Gaussian approximation (4) ought to hold when δ isn’t too small. Indeed,
we show this is true for n = Θ(m) and intermediate δ:

Theorem 4 (Collisions for large δ) The quadratic statistic achieves (4) for n/m = Θ(1), log n≪
log 1

δ ≪ n1/13 and ε≪ 1.

Analysis of TV. The TV tester, for n ≤ m, is equivalent to the tester that counts empty bins. We
show that this has

max
q:∥p−q∥TV ≥ε

ṽarp,q(f) = (1 + o(1))
(en/m − 1− n/m)

4(n/m)2
m

ε4n2
.

rather than (3). For n ≪ m these are equivalent, but for n = m it is 44% larger, leading to about
20% more samples.

Theorem 5 (TV) The TV statistic uses

n = (1 + o(1))

√
2(en/m − 1− n/m)

(n/m)2

√
m log 1

δ

ε2

for n ≤ m, n≫ 1, and ε, δ ≪ 1.

Like Theorem 2, both Theorem 4 and Theorem 5 work by showing the Gaussian approximation
is accurate. Thus one could also trade off false positive/negative probabilities, with a 1

2(
√
log 1

δ−
+√

log 1
δ+

) dependence.

Experimental performance. In Figure 4, we compare the empirical performance of the new Hu-
ber tester to the existing collisions and TV testers in a synthetic experiment. The experiment has
m = n, ε = .7/n1/8.1 with alternative distribution q = 1±2ε

n , and varies n from 200 to 600. This is
in region B of Figure 3(b), and as predicted we find that the Huber tester has lower failure probability
than the TV or collisions testers.
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Figure 4: Empirical failure probability of different testers when n = m = (.7/ε)8.1, which is in
region B of Figure 3(b). The x axis is n2ε4/m, which should be linear in log 1

δ per (6). The shaded
region shows two standard deviations of uncertainty.

1.1. Related work

The past twenty years have seen a large body of work in distribution testing; see (Goldreich, 2017;
Canonne, 2020) for surveys of the area. Uniformity testing has been either the basis for, or a
necessary subproblem in, many such results. Such extensions include testing identity (Batu et al.,
2001; Chan et al., 2014; Goldreich, 2017; Diakonikolas and Kane, 2016; Valiant and Valiant, 2017;
Diakonikolas et al., 2020), testing independence (Canonne et al., 2018), and testing uniformity over
unknown domains (Batu and Canonne, 2017; Diakonikolas et al., 2017). One particularly clean
relation is that you can black-box reduce testing identity to a fixed distribution p to uniformity
testing with only a constant factor loss in parameters (Goldreich, 2017).

Most of the above results do not focus on the dependence on δ; exceptions include (Diakoniko-
las et al., 2018; Kim et al., 2020; Diakonikolas et al., 2020; Huang and Meyn, 2013) which give
algorithms within constant factors of optimal for testing uniformity, identity, and independence.

Lower bounds for uniformity testing started with an Ω(
√
m) bound in (Goldreich and Ron,

2011), followed by Ω(
√
m/ε2) in (Paninski, 2008) and Ω( 1

ε2

√
m log 1/δ+ log 1/δ

ε2
) in (Diakonikolas

et al., 2018).

When it comes to constant factors in distribution testing, the classical regime of ε,m constant
and n → ∞ was analyzed in (Hoeffding, 1965) and the likelihood ratio test was shown to be
optimal. Alternatively, for m, δ constant and n, 1/ε → ∞, Pearson’s χ2 tester—the quadratic
tester—is known to be asymptotically near optimal for identity testing (see (Lehmann et al., 2005),
Chapter 14).

The most closely related work to our paper is Huang and Meyn (Huang and Meyn, 2013), which
(unlike the classical results) studies constant factors in a regime where all of n,m, 1/δ → ∞. They
consider the singletons tester, and show that C1 = 1 for constant ε and n ≪ m. They also show
that no algorithm can do better in this regime. However, for n = Θ(m) the singletons tester loses
constant factors and for n ≥ O(m logm) it fails with high probability.
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1.2. Future work

As discussed above, uniformity testing has been the building block for many other distribution
testing problems, such as identity and independence testing. Where there are direct reductions (as
in testing identity to a fixed distribution (Goldreich, 2017)), these reductions lose constant factors.
However, these tests still involve statistics that are the sum of mostly independent random variables.
We believe that our approach to constructing a test statistic—find a statistic to optimize performance
of the Gaussian approximation, then adjust it to match the Gaussian tails—could lead to higher
performance testers in these problems as well.

Second, there are some settings of parameters that we have not analyzed. Most interesting would
be to analyze the intermediate regime of n

m = Θ( 1
ε2
), where both sample complexity terms in (1)

are significant.
Third, we could consider constant factors for high probability bounds in other settings. For

example, it is known by the Cramér-Rao bound (Cramer, 1946) that the maximum likelihood esti-
mator (MLE) in parametric statistics converges to a Gaussian with variance equal to the inverse of
the Fisher information under a broad set of assumptions; but the tails of this estimator are less well
understood, and could likely be improved by modifying the estimator to be less sensitive to outliers.
Other examples lie in streaming algorithms. There has been a line of work on understanding the
constants in the space complexity of cardinality estimation in streams (Flajolet et al., 2007; Ertl,
2017; Lang, 2017; Pettie and Wang, 2021), but these have focused on the constant δ regime. We
believe our techniques could lead to optimal high probability bounds on the space complexity for
this problem. Alternatively, for problems like heavy hitters (Charikar et al., 2002; Minton and Price,
2014; Braverman et al., 2016), the analysis has focused on the high δ regime and ignored constant
factors; but the underlying algorithms involve sums of random variables that ought to converge to
Gaussians.

2. Proof Overview

2.1. Variance Optimality

To show Theorem 1, we write the optimization problem

m2 ṽarp,q(S) = minVarp[Sf ]

s.t.E
q
[Sf ]− E

p
[Sf ] = m

as a quadratic program in the vector f = (f0, . . . , fn). For pk = Pp[Y1 = k] and qk = Ei∈[m] Pq[Yi =
k], the constraint is that (q − p) · f = 1, and the objective is fTQf for some matrix Q. The KKT
condition (Karush, 1939; Kuhn and Tucker, 1951; Boyd and Vandenberghe, 2004) shows that the
optimum is achieved when Qf = a(q − p) for some scalar a.

Solving this exactly requires the pseudoinverse Q+, which would be tricky. Instead, we show
that the quadratic statistic fk = k2 satisfies a slightly different condition

Qf = a(q′ − p),

for a different distribution q′ ∈ Rn+1 we can write explicitly. Therefore the quadratic statistic
minimizes the variance subject to an expectation gap in q′ relative to p. Moreover, this q′ turns out
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to be precisely the Taylor approximation in ε to q, with order ε4 error. All that remains is to show
that this O(ε4) distinction between q and q′ gives 1 + o(1) loss in the program. That is,

|E
q′
fk − E

p
fk|= (1 + o(1))|E

q
fk − E

p
fk|,

or equivalently

|E
q′
fk − E

q
fk|≪

1

m
|E
q
[Sf ]− E

p
[Sf ]|, (7)

for any statistic that we care about. We can bound this LHS in terms of the variance of f :

|E
q′
fk − E

q
fk|≲ ε4

√
E
p
[f2k ].

Then we can relate the variance of f to the variance of S:

E
p
[f2k ] ≲

1

m
Varp[Sf ]

using the fact that our statistic is indifferent to constant and linear terms, so we can assume WLOG
E[fk] = E[kfk] = 0.

Combining these results, we get that (7) holds whenever

ṽarp,q(S) =
Varp[Sf ]

(Eq[Sf ]− Ep[Sf ])2
≪ 1

ε8m
.

Since the quadratic has ṽarp,q(S) = Θ( m
ε4n2 ), this holds for both the quadratic and the statistic of

maximal separation ṽarp,q(S). Therefore this maximum is within 1 + o(1) of the quadratic.

2.2. Concentration of Tails

Setting. In this proof overview we will focus on the Huber statistic in the regime where 1 ≲ n
m ≪

1
ε2

, as well as ε, δ ≪ 1 (so n2

m ε
4 ≫ 1).

Let X1, . . . , Xn be the n samples drawn from distribution ν supported on [m], and let Y n
j =∑n

i=1 1{Xi=j} be the number of balls that end up in bin j.

The Huber statistic. We consider the Huber statistic

S =

m∑
j=1

hβ

(
Y n
j − n

m

)
(8)

where

hβ(x) :=

{
x2 for |x|< β

2β|x|−β2 otherwise
(9)

is the Huber loss function, which continuously interpolates between a quadratic center and linear
tails. Note that this is twice the standard definition, but the statistic’s performance is invariant under
affine transformations.
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We will set β large enough that most bins usually lie in the quadratic regime in the uniform case.
If we were to set β = ∞ (so S is an affine transformation of the collisions statistic), we would have
Ep[S] = n− n/m ≈ n for the uniform distribution p and Eq[S] ≥ n− n/m+ 4n(n− 1)ε2/m ≈
n+ 4n2ε2/m for any ε-far distribution q. This motivates us to consider the rescaled statistic:

S̃ =
m

n2ε2
[S − n] (10)

which (for β = ∞) has E[S̃] being o(1) or ≥ 4 − o(1) in the uniform and far-from-uniform cases,
respectively.

Because Y n
j ∼ B(n, 1/m) in the uniform case, Bernstein’s inequality shows that setting

β = ω

(
log

(
1

∆

)
+

√
n

m
log

(
1

∆

))
(11)

gives that each bin lies in the quadratic regime with probability 1 − ∆2, for a parameter ∆ ≪ 1
that we will constrain later. Choosing this β leads to smaller E[S] than β = ∞, but the difference
is only about β2∆2m because each of the m bins has a ∆2 chance of lying in the linear region, and
most of the differences happen at the boundary where the Huber statistic is Θ(β2). This error is
O(n∆2 log2 1

∆) < O(n∆1.5), so

E
p
[S̃] = o(1) +O(

m

n2ε2
∆1.5n) = o(1)

as long as we have

∆ = O

(
nε2

m

)
(12)

which is o(1). Similarly, this implies

E
q
[S̃] ≥ 4− o(1)

for any ε-far distribution q.
Finally, we will need some constraint that β is not too large/∆ too small. A third moment

condition suffices, as we shall see in a few pages:

(β2ε2)3 = o
(
∆2
)

(13)

One can check that β and ∆ can be chosen such that the constraints (11), (12), and (13) hold in the
regime we consider here.

Analyzing the Huber statistic. Our tester will pick a threshold τ , and “accept” the distribution
as uniform if S̃ ≤ τ . We therefore need to understand the false negative probability

δ− := P
p
[S̃ ≥ τ ]

and similarly, for any ε-far distribution q, we need to bound the false positive probability

δ+ := P
q
[S̃ ≤ τ ].

To bound the maximum error δ = max(δ−, δ+), it suffices to pick τ = 2, halfway between the
expectation bounds in the uniform and ε-far cases.

10
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Completeness. We start by describing how to analyze δ−. The bulk of our analysis here is devoted
to analyzing the moment generating function MS̃,ν(t) := Eν [exp(tS̃)].

A careful analysis (see, e.g., (Diakonikolas et al., 2019) Lemma 3) shows that when ν is the
uniform distribution, the number of collisions has variance (1 + o(1)) n

2

2m . For large enough β
per (11), this implies

Var[S̃] = (1 + o(1))
2m

n2ε4
.

Therefore we hope that S̃ has MGF close to a Gaussian with this variance. In Lemma 34 we show
that this is in fact the case: for the uniform distribution p,

MS̃,p

(
n2ε4

m
θ

)
= (1 +O(1/n)) exp

{
n2

m
ε4
(
θ2 + o (1)

)}
(14)

Here, we pulled out n
2ε4

m from the MGF parameter, so that we will set θ to be constant at the
end. Once we have this, then standard Chernoff-type arguments imply

δ− < inf
θ≥0

MS̃,p

(
n2ε4

m θ
)

e
n2ε4

m
θ(Ep[S̃]+τ)

< inf
θ≥0

(1 +O(1/n)) exp

{
n2

m
ε4
[
θ2 − τθ + o (1)

]}
and hence

δ− ≤ (1 +O(1/n)) exp(−J−(1 + o(1))
n2ε4

m
)

for “error exponent”

J− := sup
θ≥0

{
− m

n2ε4
logMS̃,p

(
n2ε4

m
θ

)
+ θτ

}
≥ sup

θ≥0
{θτ − θ2} =

τ2

4
(15)

The above is an upper bound on δ−, but we can also get a lower bound. Because the MGF
bound (14) is tightly that of a Gaussian, with both upper and lower bounds, we can apply the
Gärtner-Ellis theorem (see Appendix B.1) to show that the tail bound is tightly that of a Gaussian
as well: δ− ≳ exp(−(1 + o(1))Jn2ε4/m).

Soundness. Because the Huber statistic S is convex, we can apply existing tools from (Diakoniko-
las et al., 2018) to analyze the statistic for uniformity testing. In particular, it is sufficient to consider
alternate distributions of the form q such that

qj =

{
1/m+ ε

l , j ≤ l

1/m− ε
m−l , j > l

(16)

for some l ∈ [m]. Our discussion of this appears in Appendix B.2. For simplicity of this exposition,
supposem is even and l = m/2. Using a similar procedure as in the case of the uniform distribution,
we show in Lemma 34 that for this alternate distribution q,

MS̃,q

(
n2ε4

m
θ

)
= (1 +O(1/n)) exp

{
n2ε4

m

[
θ2 + 4θ + o(1)

]}
. (17)

11
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That is to say, except for a mean shift of 4 + o(1), S̃ under q concentrates as a Gaussian with the
same variance as it did under p. This gives us that

δ+ ≤ (1 +O(1/n)) exp

(
−J+(1 + o(1))

n2ε4

m

)

for “error exponent”

J+ := sup
θ≥0

{
− m

n2ε4
logMS̃,q

(
−n

2ε4

m
θ

)
− θτ

}
≥ sup

θ≥0
{−τθ − θ2 + 4θ} =

(τ − 4)2

4

Setting τ = 2 so that J− = J+ = 1 gives us that the error exponent achieved by the Huber
tester is 1 for the uniformity testing problem in this regime.

Alternatively, we could pick a different τ ∈ (0, 4) to trade off δ− and δ+, always getting within
(1 + o(1)) of the tradeoff given by the Gaussian approximation to S.

Analyzing the MGF. The key question, therefore, is how to analyze the MGF. For this, we follow
the structure of Huang and Meyn (2013), though with different approximations because of our
different regime.

We would like to analyze the MGF MSn of our test statistic

Sn = hβ(|Y n
j − n/m|).

If the Y n
j were independent over j, this would be easy: we would simply bound the MGF of each

individual term, and take the product. For the same reason, it is easy to bound the MGF Aλ(θ) of
the poissonized test statistic SPoi(λ), where Poi(λ) balls are drawn rather than n. We can get a Taylor
approximation to Aλ that is quite accurate in our regime.

Unfortunately, we cannot just use the Poissonized MGF An in place of the true MGF MSn .
The problem is that Poissonization inherently increases the variance: the variance of the collisions
statistic is (1 + o(1)) n

2

2m before Poissonization but (1 + o(1))( n
2

2m + n3

m2 ) after Poissonization. For
n = Θ(m) this is a constant factor we cannot afford to lose, and for n≫ m it’s even worse. So we
need to “depoissonize” Aλ into MSn .

To depoissonize, we observe that the Poissonized MGF Aλ is a mixture of the non-Poissonized
MGFs MSk for k ≥ 0, and in fact MSn is just (up to scaling) the λn coefficient in the Taylor
expansion of Aλ. We then use Cauchy’s theorem to evaluate this coefficient.

Comparison to Huang-Meyn Our proof structure is similar to (Huang and Meyn, 2013). Differ-
ences arise from two causes: first, (Huang and Meyn, 2013) consider the simpler singletons tester
f(k) = 1k=1, so the MGF of f(Yi) can be written in closed form. For the Huber statistic, we need
to bound the terms corresponding to the higher moments of the statistic, which is done in Lemma
23. Second, they use the asymptotic regime n/m ≪ 1 rather than ε ≪ 1 for their Taylor series
expansions to drop o(1) terms, leading to a number of differences.

Finally, our proof for the alternate distributions is much simpler than the proof in (Huang and
Meyn, 2013) since we make use of results from (Diakonikolas et al., 2018).

12
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2.3. Organization of the Appendix

Appendix A shows Theorem 1, that quadratic statistics have asymptotically optimal variance. The
next sections show Theorem 2, that the Huber statistic combines this variance with good concentra-
tion, in the main new regime of 1 ≲ n/m ≪ 1/ε2: some background is given in Appendix B, the
main argument in Appendix C, and some technical computations are deferred to Appendix D.

The rest of the appendix includes our analyses of other testers and other regimes. Proof of
the asymptotically poor performance of the collisions and singletons testers in some regimes is in
Appendix E. The “superlinear” regime of n/m ≫ 1/ε2 is covered in Appendix F. Analysis of the
collisions/quadratic statistic is in Appendix G, while the TV/empty bins statistic for n < m is in
Appendix H.
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Appendix A. Variance Optimality (Theorem 1)

Setting. Consider throwing n balls into m bins, for λ = n/m = O(1). Suppose m ≳ 1/ε4 (as is
needed for constant success probability when n ≲ m). Let k, k′ be the number of balls landing in
bins 1 and 2, respectively. For any f , let σ2 = Ek[f2k ].

A.1. Optimality under a different distribution q′

We define
pk := Bin(n, 1/m, k)

to be the probability any given bin has k balls in it under the uniform distribution.

Lemma 6 For any alternative distribution q, any statistic f minimizing the normalized variance

Varp[SF ]
(Ek∼q[fk]− Ek∼p[fk])2

satisfies
(Qf)k = α(pk − qk)

for some α and all k.

Proof This is the KKT condition for minimizing the quadratic Varp[Sf ] = 1
mf

TQf subject to∑
k(pk − qk)fk = 1.

Let qk := 1
2Bin(n, (1 + 2ε)/m, k) + 1

2Bin(n, (1 − 2ε)/m, k). We would like to show that a
quadratic is 1− o(1)-close to maximizing the normalized separation between p and q.

We have that

pk =

(
n

k

)
1

mk
(1− 1/m)n−k

qk =

(
n

k

)
1

mk

1

2
((1 + 2ε)k(1− (1 + 2ε)/m)n−k + (1− 2ε)k(1− (1− 2ε)/m)n−k)

= pk
(1 + 2ε)k(1− (1 + 2ε)/m)n−k + (1− 2ε)k(1− (1− 2ε)/m)n−k

2(1− 1/m)n−k

= pk
1

2
((1 + 2ε)k(1− 2ε

m− 1
)n−k + (1− 2ε)k(1 +

2ε

m− 1
)n−k)

Now, for |a|≤ 2ε,

(1 + a) = ea−
1
2
a2+ 1

3
a3+O(ε4),

and
(1 +

a

m− 1
)n−k = eaλ+O(|k−λ|a/m+a2λ/m) = eaλ+O(ε4)
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for k ≲ 1/ε and our setting of λ = O(1),m ≳ 1/ε4. Thus

qk = pk
1

2
(e2εk−2ε2k+ 8

3
ε3k+O(ε4k)e−2ελ+O(ε4) + e−2εk−2ε2k− 8

3
ε3k+O(ε4k)e2ελ+O(ε4))

= pke
−2ε2k+O(ε4(k+1)) cosh(2ε(k − λ) +

8

3
ε3k)

= pk(1 + 2ε2((k − λ)2 − k) +O(ε4(k2 + 1 + (k − λ)4))

as long as the final error term is o(1) We now define

αk := (k − λ)2 − k + λ/m (18)

so that

qk = pk(1 + 2ε2αk +O(ε4(k4 + 1))) (19)

under k ≲ 1
ε and our assumptions. We make the following simple observations:

Lemma 7

E
k∼p

[k] = λ (20)

E
k∼p

[(k − λ)2] = λ(1− 1/m) (21)

E
k∼p

[αk] = 0. (22)

Proof The first two equations are just the mean and variance of a binomial random variable, and the
third follows trivially.

Define
q′k := pk(1 + 2ε2αk)

which is also a probability distribution, since Ep[αk] = 0 and αk ≥ −O(λ) so it is positive. For q′,
the quadratic statistics are exactly optimal:

Lemma 8 Quadratic statistics fk = ak2 + bk + c minimize

Varp[S]
(Ek∼q′ [mfk]− Ek∼p[mfk])2

over all f , attaining value

(1 + o(1))
1

8ε4λ2m
. (23)

Proof Value. We first measure the value obtained by the quadratic statistic. The quadratic statistic
f(k) = (k − λ)2 has four times the variance of the collisions statistic

(
k
2

)
, so Lemma 3 of (Di-

akonikolas et al., 2019) shows that

Varp[S] = 4

(
n

2

)
(
1

m
− 1

m2
) = (1 + o(1))2λ2m.
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We also have, using the moments of a binomial, that

E
k∼q′

[fk]− E
k∼p

[fk] =
∑
k

2ε2αkpkfk

= 2ε2 E
p
[(k − λ)4 − (k − λ)3 − (1− 1/m)λ(k − λ)2]

= 2ε2(1− 1/m)(λ(1 +
3n− 6

m
(1− 1/m))− λ(1− 2/m)− λ2(1− 1/m))

= 2ε2(1 + o(1))(λ+ 3λ2 − λ− λ2)

= 4ε2λ2(1 + o(1))

Hence
Varp[S]

(Ek∼q′ [fk]− Ek∼p[fk])2
= (1 + o(1))

m

8ε4λ2
.

Scaling by m2 gives the result.

Optimality. We now show that it is optimal. For any statistic f , we have that

Var[Sf ] = mfTQF

for a matrix Q defined by
Qk,k = pk + (m− 1)pkpk′|k −mp2k

and
Qk,k′ = (m− 1)pkpk′|k −mpkpk′ ,

where pk′|k = P[Y2 = k′ | Y1 = k].
For any statistic S =

∑
f(Yi), we have that

(Qf)k = pk(E[S | Y1 = k]− E[S]).

We also have that
E
k∼q′

[fk]− E
k∼p

[fk] =
∑
k

2ε2αkfk.

Therefore we can express the optimization as

min
f

fTQf

s.t. 2ε2
∑
k

αkfk = 1/m.
(24)

The KKT condition for optimality is then that Qf = aα for some constant a.
Now, the quadratic function fk = k2 satisfies

E[S] =
n2

m
+ n(1− 1

m
).

Therefore

E[S | Y1 = k] = k2 +
(n− k)2

m− 1
+ (n− k)(1− 1

m− 1
).
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so

E[S | Y1 = k]− E[S] =
m

m− 1
k2 − k(

2n

m− 1
+ (1− 1

m− 1
)) + (h1(n,m))

=
m

m− 1
αk + h2(n,m)

for some functions h1, h2 of n andm but not k. But since the LHS is zero in expectation over k ∼ p,
and so is αk by Lemma 7, we have h2 = 0. Thus:

Qf =
m

m− 1
α.

Hence the quadratic satisfies the KKT condition, so it optimizes (24) when scaled appropriately.

We also note that the error in approximating q by q′ has low moments:

Lemma 9 In our setting,

E
p
[(
q′k − qk
pk

)2] ≲ ε8.

Proof
For k ≤ 1/ε, we have by (19) that

|q
′
k − qk
pk

|= |αk −
qk
pk

|≲ ε4(k4 + 1)

such that

E
p
[(
q′k − qk
pk

)21k≤1/ε] ≲ E
p
[ε8(k8 + 1)] ≲ ε8.

On the other hand, for k > 1/ε,

E
p
[(
q′k − qk
pk

)21k>1/ε] ≲ E
p
[(
qk
pk

)21k>1/ε].

Now, for k > 1/ε, the λ(1 + ε) part of q is more likely than the λ(1− ε) part. Thus

qk
pk

≤
(
n
k

)
((1 + ε)/m)k(1− (1 + ε)/m)n−k(

n
k

)
(1/m)k(1− 1/m)n−k

≤ (1 + ε)k

while

pk ≤ (
eλ

k
)k = eO(k)−k log k

so

E
p
[(
q′k − qk
pk

)21k>1/ε] ≤
∑
k≥1/ε

e2εkeO(k)−k log k ≲ εΩ(1/ε) < ε8

giving the result.
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A.2. Relating the covariance of one bin to the whole

Recall that σ2 = E[f2k ], for k ∼ p.

Lemma 10 For any B > 2λ, we have

E[fk′fk1k′>B] ≲ σ2
√

P[k′ > B].

Proof For any t > B, we have
P[k | k′ = t] ≲ P[k]

for all k. This is trivially true for small k ≤ O(1) because P[k] = Ω(1), and for large k—since t is
above average—P[k | k′ = t] < P[k].

This implies
E[|fk| | k′ = t] ≲ E

k
[|fk|] ≤ σ.

So
E[fk′fk1k′>B] =

∑
k′>B

pk′fk′ E[fk | k′] ≲ σ
∑
k′>B

pk′ |fk′ |

Of course, by Cauchy-Schwarz,∑
k′>B

pk′ |fk′ |≤
√
(
∑
k′>B

pk′)(
∑
k′>B

pk′f
2
k′) ≤ σ

√
P[k′ > B]

and hence
E[fk′fk1k′>B] ≲ σ2

√
P[k′ > B].

Lemma 11 Let fk satisfy Ep[fk] = Ep[kfk] = 0. For sufficiently large n,m we have

σ2 ≲
1

m
Var[Sf ].

Proof We can expand
Var[Sf ] = mσ2 +m(m− 1) E

k,k′
[fkfk′ ].

The lemma statement would be implied by

| E
k,k′

[fkfk′ ]|≤
1

2(m− 1)
σ2, (25)

where k is the number of balls in bin 1 and k′ is the number in bin 2. The probability that k > B is
at most

2

(
n

B

)
1

mB
≤ 2(

eλ

B
)B <

1

n2m4

for B = O(logm). By Lemma 10,

| E
k,k′

[fkfk′1k>B∪k′>B]|≤ 2| E
k,k′

[fkfk′1k>B]|≲
√

1

m4
σ2.

21



GUPTA PRICE

Therefore it would suffice to show

| E
k,k′

[fkfk′1k<B∩k′<B]|≪
σ2

m
. (26)

Let B be the event that k < B ∩ k′ < B.
Let λ′ := (n − k′)/(m − 1) = λ(1 + ε′) for ε′ = 1

m−1λ(λ − k′), which under B satisfies
|ε′|≲ m−2/3. Then (k | k′) is b(n− k′, 1/(m− 1)), which is well approximated by Poi(λ′). This
Poisson approximation gives

p′k =
(λ′)ke−λ

′

k!
= pk(1 + ε′)ke−λε

′

= pke
(k−λ)ε′+O((ε′)2k)

= pk(1 + (k − λ)ε′ +O((k + (k − λ)2)(ε′)2))

for k ≲ 1/|ε′|, which holds given B. Since Ep[fk] = Ep[kfk] = 0, we have that

|
∑
k

pk(1 + (k − λ)ε′)fk1k≤B| = |
∑
k

pk(1 + (k − λ)ε′)fk1k>B|

≤
√
(
∑
k>B

pk)E
k
(1 + (k − λ)ε′)2f2k

≤
√
P[k > B]σnε′ ≤ 1

m2
σ.

Therefore, for any k′ ≤ B,

| E
k|k′

[fk1k≤B]| ≤
σ

m2
+ |E

k
[O(k + (k − λ)2)(ε′)2fk1k≤B]|

≲
σ

m2
+ (ε′)2

√
E
k
[(k + (k − λ)2)2]E

k
[f2k ]

≂ (
1

m
+ (ε′)2)σ

≲ σ/m4/3.

Therefore

| E
k′,k

[fk′fk1k,k′≤B]|= E
k′
[|fk′1k′≤B E

k|k′
[fk1k≤B]|] ≲ E

k′
[|fk′ |1k′≤B

σ

m4/3
] ≲

σ2

m4/3

which gives (26) as needed.

A.3. Putting it together

Theorem 1 Let ε2 ≪ n
m ≲ 1 and n,m, 1/ε → ∞ with m ≳ 1/ε4. Any separable statistic S has

normalized variance

ṽarp,q(S) ≥ (1 + o(1))
1

8

m

n2ε4
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between the uniform distribution p and the balanced nonuniform distribution q with qk = 1±2ε
m .

Quadratic statistics (like collisions or χ2) match this, getting

ṽarp,q(S) ≤ (1 + o(1))
1

8

m

n2ε4
(3)

for any ε-far distribution q.

Proof Because the normalized separation is invariant to adding any linear function ak+ b to fk, we
can add use this degree of freedom to WLOG satisfy any two linear constraints. We require that

E
p
[fk] = 0

and
E
p
[kfk] = 0.

Let f̂k = k2 + ak + b be the quadratic test statistic with a and b set to satisfy these two
constraints.. By Lemma 8, f̂ is optimal under q′, so we have that

OPT := (1 + o(1))
1

8ε4λ2m
=

Var[S
f̂
]

Eq′ [mf̂k]2
≥ Var[Sf ]

Eq′ [mfk]2
. (27)

We have that

(E
q′
[fk]− E

q
[fk])

2 = (
∑
k

(q′k − qk)fk)
2

= (E
p
[
q′k − qk
pk

fk])
2

≤ E
p
[(
q′k − qk
pk

)2]E
p
[f2k ]

≲ ε8σ2f (Lemma 9)

≲ ε8
1

m
Var[Sf ]. (Lemma 10)

The same holds for f̂ , where we also have by (27) that

E
q′
[f̂k]

2 = (1 + o(1))
1

m
Var[S

f̂
] · 8ε4λ2

so
(E
q′
[f̂k]− E

q
[f̂k])

2 ≲ ε8
1

m
Var[S

f̂
] = ε4 · (1 + o(1))

1

8λ2
E
q′
[f̂k]

2 ≪ E
q′
[f̂k]

2

and hence
E
q
[f̂k]

2 = (1 + o(1))E
q′
[f̂k]

2

so

ṽarp,q(Sf̂ ) =
Varp[Sf̂ ]

Eq[Sf̂ ]2
= (1 + o(1))OPT.

For any alternative f , we split into two cases:
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Reasonably good f . When
Var[Sf ]

Eq′ [mfk]2
≤ 100OPT,

we again have

ε8
1

m
Var[Sf ] ≪ E

q′
[f̂k]

2

so
E
q
[fk]

2 = (1 + o(1))E
q′
[f̂k]

2

and

ṽarp,q(Sf ) = (1 + o(1))
Var[Sf ]

Eq′ [mfk]2
≥ (1 + o(1))OPT.

Bad f . When
Var[Sf ]

Eq′ [mfk]2
≥ 100OPT,

we use (a+ b)2 ≤ 2a2 + 2b2 to observe that

ṽarp,q(Sf ) =
Var[Sf ]
Eq[mfk]2

≥ 1

2

Var[Sf ]
Eq′ [mfk]2 +m2(Eq′ [fk]− Eq[fk])2

=
1

2

Var[Sf ]
Eq′ [mfk]2 +O(ε8mVar[Sf ])

≥ 1

2

1
1

100OPT + ε8m

> OPT

Thus, the quadratic tester achieves near-optimal separation for this q.
Finally, for arbitrary distributions q ε-far from p in TV, we note that the collisions tester satisfies

E
q
[S] =

(
n

2

)
∥q∥22.

By convexity the ε-far q minimizing this has its values above and below 1/m all equal; if there are
k values above 1/m this gives

1(
n
2

) E
q
[S] = k(

1

m
+
ε

k
)2 + (m− k)(

1

m
− ε

m− k
)2

=
1

m
+ ε2

(
1

k
+

1

m− k

)
which is minimized at k = m− k = m/2, precisely the q considered above.
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Appendix B. Background for Tester Analysis

B.1. Gärtner-Ellis Theorem

The statements in this section are taken from Dembo and Zeitouni (1998).
Consider a sequence of random variables Zn ∼ pn and let the logarithmic moment generating

function of Zn be
Λn(θ) := logE[eθZn ]

Assumption 1 Suppose that for each θ ∈ R, the logarithmic moment generating function, defined
as the limit

Λ(θ) = lim
n→∞

1

n
Λn(nθ)

exists as an extended real number, and that the origin lies in the interior of the set DΛ := {θ ∈
R : Λ(θ) <∞}.

Let
Λ∗(τ) = sup

θ≥0
{θτ − Λ(θ)} (28)

be the Fenchel-Legendre transform of Λ.

Definition 12 τ ∈ R is an exposed point of Λ∗ if for some λ ∈ R, for every x ̸= y,

λτ − Λ∗(τ) > λx− Λ∗(x)

Then, λ is called an exposing hyperplane.

Theorem 13 (Gärtner–Ellis) Let Assumption 1 hold.

(a) For any closed set F ,

lim sup
n→∞

1

n
log pn(F ) ≤ − inf

x∈F
Λ∗(x)

(b) For any open set G,

lim inf
n→∞

1

n
log pn(G) ≥ − inf

x∈G∩F
Λ∗(x)

where F is the set of exposed points of Λ∗ whose exposing hyperplane belongs to Do
Λ, where

Do
Λ is the interior of DΛ.

B.2. Worst Case Distributions for Uniformity Testing

In this section, we study the worst-case ε-far distributions for test statistics that are convex sym-
metric functions of the histogram (i.e., the number of times each domain element is sampled) of an
arbitrary random variable Y . This is an extension of the results in (Diakonikolas et al., 2018), which
we recap below.

25



GUPTA PRICE

Prior work. We start with the following definition:

Definition 14 Let p = (p1, . . . , pn), q = (q1, . . . , qn) be probability distributions and p↓, q↓ denote
the vectors with the same values as p and q respectively, but sorted in non-increasing order. We say
that p majorizes q (denoted by p ≻ q) if

∀k :

k∑
i=1

p↓i ≥
k∑
i=1

q↓i . (29)

A proof of the following simple fact can be found in (Diakonikolas et al., 2018):

Fact 15 Let p be a probability distribution over [n] and S ⊆ [n]. Let q be the distribution which is
identical to p on [n] \ S, and for every i ∈ S we have qi =

p(S)
|S| , where |S| denotes the cardinality

of S. Then, we have that p ≻ q.

We also use the following standard terminology: we say that a real random variable A stochas-
tically dominates a real random variable B if for all x ∈ R it holds P[A > x] ≥ P[B > x].

We say that a test statistic S is “convex symmetric” if it is a convex function of the histogram
(Y1, . . . , Ym) and invariant under permutation of the Yi. A “test” is given by a test statistic S and
threshold τ , and outputs “uniform” if S ≤ τ and “non-uniform” otherwise.

It was shown in (Diakonikolas et al., 2018) that if p majorizes q, then a convex symmetric test
statistic of p stochastically dominates one from q:

Lemma 16 (Lemma 19 of (Diakonikolas et al., 2018)) Let f : Rn → R be a symmetric convex
function and p be a distribution over [n]. Suppose that we drawm samples from p, and letXi denote
the number of times we sample element i. Let g(p) be the random variable f(X1, X2, . . . , Xn).
Then, for any distribution q over [n] such that p ≻ q, we have that g(p) stochastically dominates
g(q).

New claims. We will show that it suffices to consider distributions that are “flat”, meaning that pi
takes only two values:

Definition 17 We say a probability distribution p over [n] is an γ-skewed flat distribution if it takes
the form:

pi =

{
a i ∈ T
b i /∈ T

for some reals a, b and set T ⊆ [n] with |T |∈ [γn, (1− γ)n].

We make the following generalization of Lemma 21 in (Diakonikolas et al., 2018) (which is the
γ = 1/2 case):

Lemma 18 Let p be a probability distribution. For any 0 < γ < 1/2, there exists an γ-skewed flat
distribution p′ such that p ≻ p′ and

(1− γ) · ∥p− Un∥TV≤ ∥p′ − Un∥TV≤ ∥p− Un∥TV .
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Proof Let T = {i : pi > 1/n}, so

∥p− Un∥TV=
∑
i∈T

(pi − 1/n) =
∑

i∈[n]\T

(1/n− pi). (30)

If |T |∈ [γn, (1 − γ)n], we can simply choose p′ to be p averaged over T , and p averaged over
[n] \ T—this is γ-skewed and flat, has p ≻ p′ by Lemma 15, and has ∥p′ − Un∥TV= ∥p− Un∥TV .
The only remaining cases have |T |/∈ [γn, (1− γ)n], since this approach would not be γ-skewed.

Let T ′ ⊂ [n] contain the largest either γn or (1 − γ)n coordinates of p, depending on whether
|T |< γn or |T |> (1− γ)n, and let p′ average p over T ′ and over [n] \ T . This is γ-skewed and flat,
and has p ≻ p′ by Lemma 15, so the only question is the TV bound.

We have that

∥p′−Un∥TV=
∑
i∈T ′

(p′i−1/n) =
∑
i∈T ′

(pi−1/n) = ∥p−Un∥TV−
∑

i∈T\T ′

(pi−1/n)−
∑

i∈T ′\T

(1/n−pi).

Every term in the right two sums is nonnegative, so ∥p′ − Un∥TV≤ ∥p− Un∥TV .
Now, if |T |< γn, then T \ T ′ is empty and, since T ′ takes the largest coordinates in p, pi is

larger on average for i ∈ T ′ \ T than for i ∈ [n] \ T :∑
i∈T ′\T

(1/n− pi) ≤
|T ′ \ T |
|[n] \ T |

∑
i∈[n]\T

(1/n− pi) =
γn− |T |
n− |T | ∥p− Un∥TV≤ γ∥p− Un∥TV

so
∥p′ − Un∥TV≥ (1− γ)∥p− Un∥TV .

Similarly, if |T |> (1− γ)n, then T ′ \ T is empty and∑
i∈T\T ′

(pi − 1/n) ≤ |T \ T ′|
|T |

∑
i∈T

(pi − 1/n) =
|T |−(1− γ)n

|T | ∥p− Un∥TV≤ γ∥p− Un∥TV ,

again giving
∥p′ − Un∥TV≥ (1− γ)∥p− Un∥TV

as desired.

The above results mean that it suffices to prove that our algorithm can distinguish the uni-
form distribution from γ-skewed flat distributions. The inefficiency from not considering extremely
skewed distributions is only 1 +O(γ):

Lemma 19 Suppose a convex symmetric test statistic S and threshold has the property that, when
applied to any ε-far γ-skewed flat distribution p, the false negative rate is at most δ. Then the same
statistic and threshold, when applied to any 1

1−γ ε-far distribution p′, also has false negative rate at
most δ.

Proof For any such p′, Lemma 18 states that there exists a p that is γ-skewed, ε-far from Un in TV,
and with p′ ≻ p. Lemma 16 then states that S on p′ stochastically dominates S on p, so the chance
of falling below the threshold is smaller for p′ than for p—and the latter is δ by assumption.

27



GUPTA PRICE

Implication for Error Exponents. Let ε = ε(n), m = m(n), and τ = τ(n) be functions of n.
Let p be uniform on [m]. The false positive error exponent c+ = c+(ε,m) of a test (S, τ) is

c+ = lim
n→∞

− m

n2ε4
logP

p
[S > τ ].

For a particular family of distributions q, the false negative error exponent c(q)− = c
(q)
− (ε,m) is

c
(q)
− = lim

n→∞
− m

n2ε4
logP

q
[S ≤ τ ].

The false negative error exponent c− is the worst such exponent over all ε-far distributions q:

c− = inf
q:∥p−q∥TV ≥ε

c
(q)
− .

Varying τ allows for a tradeoff between false negatives and false positives. Balancing the two gives
us the error exponent c = c(ε,m) for a test statistic S:

c = sup
τ

min(c+, c−).

If a test statistic has error exponent c, it can distinguish the uniform distribution from any non-
uniform distribution with probability 1 − exp(−(1 + o(1))cε4n2/m). Equivalently, it gets error
probability δ where

n =
1 + o(1)√

c
·

√
m log 1

δ

ε2
.

We define c = c(ε,m, γ) to denote an alternative to c where we only consider ε-far distributions
q that are γ-skewed and flat.

Lemma 20 For any functions ε,m, γ,

(1− 4γ) · c((1− γ)ε,m, γ) ≤ c(ε,m) ≤ c(ε,m, γ).

Proof The upper bound on c is trivial: as an infimum over a larger set of q, c− ≤ c−, so c ≤ c.
For the lower bound on c, we note by Lemma 19 that for any q with ∥p − q∥TV≥ ε that there

exists a γ-skewed flat distribution q′ with ∥p− q′∥TV≥ (1− γ)ε such that

P
q
[S ≤ τ ] ≤ P

q′
[S ≤ τ ]. (31)

This implies that

m

n2ε4
logP

q
[S ≤ τ ] ≤ (1− γ)4

m

n2(1− γ)4ε4
log P

q′
[S ≤ τ ].

so
c
(q)
− (ε,m) ≥ (1− γ)4c

(q′)
− ((1− γ)ε,m),

and hence c ≥ (1− 4γ)c((1− γ)ε,m).
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Lemma 21 Let S by a convex symmetric test statistic. Consider any family of parameters (n, ε,m).
Suppose that there exists a constant γ′ such that, for any γ = Ω(1) > γ′ and ε′ that uniformly
satisfies (1− γ′)ε(n) ≤ ε′(n) ≤ ε(n),

c(ε′,m, γ) = c∗

for a fixed value c∗ [that depends on the family (n, ε,m) but not on the value of n or γ, γ′].
Then

c(ε,m) = c∗.

Proof By Lemma 20,
c(ε,m) ≤ c(ε,m, γ) = c∗.

Moreover, for any C we have
c(ε,m) ≥ (1− 4γ)c∗.

where c is a limit as n → ∞ independent of C. But this means that c(ε,m) = c∗, because it is
larger than any fixed value less than c∗.
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Appendix C. Huber Statistic in Sublinear Regime

C.1. Regime

The Huber statistic is given by

S =
m∑
j=1

hβ

(
Y n
j − n

m

)
(8)

where

hβ(x) :=

{
x2 for |x|< β

2β|x|−β2 otherwise
(9)

is the Huber loss function. Here Y n
j =

∑n
i=1 1{Xi=j} and X1, . . . , Xn are the n samples drawn

from distribution ν supported on [m].

Assumption 2 n = Ω(m), n/m ≪ 1
ε2

, ε ≪ 1, n
2

m ε
4 ≫ 1, and m ≥ C log n for sufficiently large

constant C. In addition, we have the following constraints on β, the Huber parameter, and ∆.

β = ω

(
log

(
1

∆

)
+

√
n

m
log

(
1

∆

))
(11)

∆ = O

(
nε2

m

)
(12)

(β2ε2)3 = o
(
∆2
)

(13)

We will assume that Assumption 2 holds throughout this section.
Note that since ∆ = o(1), (13) implies that

β2ε2 = o(1) (32)

Our goal is to compute an upper bound on the asymptotic expansion of the cumulant generating
function (also called the logarithmic moment generating function) of this statistic.

For ease, instead of analyzing S directly, we will analyze the statistic

S̃ =
m

n2ε2
[S − n] (33)

Note that this has the same error probability as S since it simply applies a translation and scaling to
S.

Consider the moment generating function (MGF) of S̃ with respect to distribution ν, given by

MS̃,ν(θ) = E
ν

[
exp(θS̃)

]
The logarithmic moment generating function of S̃ with respect to distribution ν is given by

Λn,ν(θ) := log
(
MS̃,ν(θ)

)
(34)
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We will compute an asymptotic expansion of the limiting logarithmic moment generating function
of S̃, given by

Λν(θ) = lim
n→∞

m

n2ε4
Λn,ν

(
n2ε4

m
θ

)
For ease of exposition, we define a centering function

ϕ(k) :=
∣∣∣k − n

m

∣∣∣ (35)

C.2. Poissonization

Define S̃Poi(λ) to be the Poissonized statistic, that is the statistic S̃ when the number of balls is
chosen according to the Poisson distribution with mean λ.

We begin by computing the MGF of S̃Poi(λ) with MGF parameter n
2ε4

m θ. That is, let

Aλ(θ) := E
[
exp

(
n2ε4

m
θS̃Poi(λ)

)]
= exp(−ε2θn)E

exp
ε2θ m∑

j=1

hβ

(
Zj −

n

m

) (36)

where Zj ∼ Poi(λνj) and are independent. Due to this independence,

Aλ(θ) = exp(−ε2θn)
m∏
j=1

E
[
exp

(
ε2θhβ

(
Zj −

n

m

))]
Define

f(k) := 1 + ε2θϕ(k)2 +
ε4θ2

2
ϕ(k)4 (37)

We will first show the following

Lemma 22
ε2θE

[
hβ

(
Zj −

n

m

)]
= ε2θE[ϕ(Zj)2] + o(∆2)

ε4θ2

2
E
[
hβ

(
Zj −

n

m

)2]
=
ε4θ2

2
E[ϕ(Zj)4] + o(∆2)

∞∑
l=3

(ε2θ)l

l!
E
[
hβ

(
Zj −

n

m

)l]
= o(∆2)

where hβ is defined in (9), and Zj ∼ Poi(λνj), for λ = n(1 + O(ε2)) and νj = 1/m + O(ε/m)
for all j.

Proof

ε2θE
[
hβ

(
Zj −

n

m

)]
= ε2θ

{
E
[
1{ϕ(Zj)≤β}ϕ(Zj)

2
]
+ E

[
1{ϕ(Zj)>β}β(2ϕ(Zj)− β)

]}
= ε2θ E[ϕ(Zj)

2]− ε2θE[1{ϕ(Zj)>β}ϕ(Zj)
2] + ε2θE[1{ϕ(Zj)>β}β(2ϕ(Zj)− β)]
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By Lemma 45, the second term is o(∆2). For the third term,

ε2θE[1{ϕ(Zj)>β}β(2ϕ(Zj)− β)] ≤ E[1{ϕ(Zj)>β} exp(ε
2|θ|β(2ϕ(Zj)− β))]

By Lemma 47, this is o(∆)2. So, we have the first claim. The second claim can be proved in a
similar way. For the third claim,

∞∑
l=3

(ε2θ)l

l!
E
[
hβ

(
Zj −

n

m

)l]
=

∞∑
l=3

(ε2θ)l

l!
E
[
1{ϕ(Zj)≤β}ϕ(Zj)

2l
]

+

∞∑
l=3

(ε2θ)l

l!
E
[
1{ϕ(Zj)>β}(β(2ϕ(Zj)− β))l

]
By Lemma 42, the first term is o(∆2). For the second term, in a similar fashion as before,

∞∑
l=3

(ε2θ)l

l!
E
[
1{ϕ(Zj)>β}(β(2ϕ(Zj)− β))l

]
≤ E

[
1{ϕ(Zj)>β} exp(ε

2|θ|β(2ϕ(Zj)− β))
]

By Lemma 47, this is o(∆2).

Lemma 23 We have

E
[
exp

(
ε2θhβ

(
Zj −

n

m

))]
= E [f(Zj)] + o

(
∆2
)

(38)

where hβ is defined in (9), and Zj ∼ Poi(λνj), for λ = n(1+O(ε2)) and νj = 1/m+O(ε/m) for
all j.

Proof Follows from Lemma 22.

C.3. Depoissonization

First, we will show that Aλ(θ) is analytic in λ.

Lemma 24 Aλ(θ) is analytic in λ.

Proof We will show that E[exp
(
ε2θhβ

(
Zj − n

m

))
] can be written as a finite sum of analytic func-

tions in λ. Since the sum and product of analytic functions also analytic, this will show that Aλ(θ)
is analytic. Let

A :=
∑

k:ϕ(k)≤β

[
(λνj)

k

k!
e−λνj exp

(
ε2θϕ(k)2

)]

B := E
[
exp

{
ε2θβ

(
2
(
Zj −

n

m

)
− β

)}]

C :=
∑

k:k< n
m
−β

[
(λνj)

k

k!
e−λνj

[
exp

{
ε2θβ

(
2
( n
m

− k
)
− β

)}
− exp

{
ε2θβ

(
2
(
k − n

m

)
− β

)}]]
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Then, the expectations in B and C can be expressed in terms of the moments and MGF of the
Poisson distribution, and so, are analytic. Each of A,B,C is a finite sum of analytic functions, and
so, is analytic. It is easy to verify that

E
[
exp

(
ε2θhβ

(
Zj −

n

m

))]
= A+B + C

is thus analytic.

Now, we want depoissonize Aλ(θ). For ease of exposition, we will prove a more general result.
First we assume the following.

Assumption 3 Suppose ξ is a function such that

Aλ(θ) = exp(−ε2θn)
m∏
j=1

E[exp(ε2θξ(Zj))]

where Aλ(θ) is analytic in λ, and Zj ∼ Poi(λνj).
We assume that, for λ = n(1 +O(ε2)) and νj = 1/m+O(ε/m) for all j, we have

ε2θE[ξ(Zj)] = ε2θE[ϕ(Zj)2] + o(∆2) (39)

ε4θ2

2
E[ξ(Zj)2] =

ε4θ2

2
E[ϕ(Zj)4] + o(∆2) (40)

∞∑
l=3

(ε2θ)l

l!
E[ξ(Zj)l] = o(∆2) (41)

so that
E[exp(ε2θξ(Zj))] = E[f(Zj)] + o

(
∆2
)

where f is defined in (37).
Let Y n

j =
∑n

i=1 1{Xi=j} and X1, . . . , Xn be n samples drawn from distribution ν supported
on [m].

We will show the following:

Lemma 25 Suppose Assumption 3 holds. Then, if ν is the uniform distribution such that νj = 1/m
for all j, we have

exp(−ε2θn)E

exp
ε2θ m∑

j=1

ξ(Y n
j )

 = (1 +O(1/n)) exp

{
n2ε4

m
(θ2 + o(1))

}
If ν is an alternate distribution such that νj = 1

m + ε
γm for j ≤ γm, and νj = 1

m − ε
(1−γ)m for

j > γm, for γ = Θ(1), 1− γ = Θ(1), we have

exp(−ε2θn)E

exp
ε2θ m∑

j=1

ξ(Y n
j )

= (1+O(1/n)) exp

{
n2ε4

m

(
θ2+θ

1

γ(1− γ)
+o(1)

)}
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First, we have that our expression stated can be written as an integral.

Lemma 26 Consider any function f : R → R. If we draw Zj ∼ Poi(λνj) for j ∈ [m], and

m∏
j=1

E[f(Zj)]

is analytic in λ, we have

E

 m∏
j=1

f(Y n
j )

 =
n!

2πi

∮
eλ

λn+1

m∏
j=1

E[f(Zj)]dλ

where Y n
1 , . . . , Y

n
m are n samples drawn according to ν.

Proof Conditioning on
∑m

j=1 Zj = k, we have

m∏
j=1

E [f(Zj)] = E

 m∏
j=1

f(Zj)

 =
∞∑
k=0

P

 m∑
j=1

Zj = k

E

 m∏
j=1

f(Zj)
∣∣∣ m∑
j=1

Zj = k



=

∞∑
k=0

λk

k!
e−λ E

 m∏
j=1

f(Y n
j )


Now, for any analytic function ϕ(λ) with power series expansion given by

ϕ(λ) =
∞∑
k=0

akλ
k

we have by Cauchy’s theorem that

an =
1

2πi

∮
ϕ(λ)

1

λn+1
dλ.

By assumption,
∏m
j=1 E[f(Zj)] is analytic in λ. Therefore,

E

 m∏
j=1

f(Y n
j )

 =
n!

2πi

∮
eλ

λn+1

m∏
j=1

E[f(Zj)]dλ

which is the desired bound.

Corollary 27 Under Assumption 3,

exp(−ε2θn)E

exp
ε2θ m∑

j=1

ξ(Y n
j )

 =
n!

2πi

∮
eλAλ(θ)

dλ

λn+1
(42)
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We will choose a contour passing through a particular λ0, and this will make it easy to evaluate
the integral. We carry out the integration along the contour given by λ = λ0e

iψ, where

λ0 = n(1− ε2θ)

We substitute λ0eiψ into (42) to get that

exp(−ε2θn)E

exp
ε2θ m∑

j=1

ξ(Y n
j )

 = e−ε
2θn n!

2π
λ−n0 Re

[∫ π

−π
g(ψ)dψ

]
(43)

with

g(ψ) := e−inψ
m∏
j=1

{ ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k))

}
(44)

We will split this integral into 3 parts. Let

I1 = Re

[∫ π/3

−π/3
g(ψ)dψ

]

I2 = Re

[∫ −π/3

−π
g(ψ)dψ

]

I3 = Re

[∫ π

π/3
g(ψ)dψ

] (45)

We will show that I1 dominates. We show this by bounding g(ψ) in the regionψ ∈ [−π,−π/3]∪
[π/3, π] as follows.

Lemma 28 Under Assumption 3, and m ≥ C log n for sufficiently large constant C, for ψ ∈
[−π,−π/3] ∪ [π/3, π],

|g(ψ)|≤ O

(
en

n

)
Proof By definition of g from (44), and using the assumption on ξ from Assumption 3, we have
that,

|g(ψ)| =

∣∣∣∣∣∣e−inψ
m∏
j=1

{ ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k))

}∣∣∣∣∣∣
≤

∣∣∣∣∣∣
m∏
j=1

{ ∞∑
k=0

(λ0νje
iψ)k

k!

}∣∣∣∣∣∣+
∣∣∣∣∣∣
m∏
j=1

{ ∞∑
k=0

(λ0νje
iψ)k

k!

( ∞∑
l=1

(ε2θ)l

l!
ξ(k)l

)}∣∣∣∣∣∣
Now, for choice of λ0 = n(1− ε2θ), and ψ ∈ [−π,−π/3] ∪ [π/3, π],∣∣∣∣∣∣

m∏
j=1

{ ∞∑
k=0

(λ0νje
iψ)k

k!

}∣∣∣∣∣∣ =
∣∣∣∣∣∣
m∏
j=1

eλ0νje
iψ

∣∣∣∣∣∣ =
∣∣∣eλ0eiψ ∣∣∣ = |en(1−ε2θ)eiψ |≤ O(e0.5n)
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For the second term, by Assumption 3, for our λ0 = n(1− ε2θ), and νj = 1/m+ O(ε/m) for all
m, this is

eλ0
m∏
j=1

{ ∞∑
l=1

(ε2θ)l

l!
E[ξ(Zj)l]

}
= en(1−ε

2θ)
m∏
j=1

{
ε2θE[ϕ(Zj)2] +

ε4

2
θ2 E[ϕ(Zj)4] + o(∆2)

}

By Lemma 38, and since n = o(m/ε2), this is

en(1−ε
2θ)

m∏
j=1

O

(
nε2

m

)
≤ en(1−ε

2θ)−Ω(m)

Since m ≥ C log n for sufficiently large constant C, the claim follows.

Note that this implies that for the integrals defined in (45) that

I2 + I3 = O

(
en

n

)
(46)

Now, we will compute I1. Define G(ψ) := log(g(ψ)). Then, by definition of g in (44),

G(ψ) = −inψ +
m∑
j=1

log

{ ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k))

}
(47)

Note that
Im(G(0)) = 0 (48)

Then, applying Lemma 51,
Re(G′(0)) = 0 (49)

Computing the asymptotic expansion of G′′(ψ) by Lemma 41, we have

G′′(ψ) = −neiψ +O

(
n2ε2

m

)
+ o(1) (50)

Now, by Taylor’s theorem, for any ψ ∈ [−π/3, π/3] there exists ψ̃ ∈ (0, ψ) such that

G(ψ) = G(0) +G′(0)ψ +
G′′(ψ̃)

2
ψ2 (51)

But, by (50), Re[G′′(ψ)] ≤ −0.4n for any ψ ∈ [−π/3, π/3]. So, for ψ ∈ [−π/3, π/3],

Re(G(ψ)) ≤ G(0)− 0.2nψ2 (52)

Now, we have the following upper bound on I1.

Lemma 29
I1 ≤ eG(0)

√
π√

0.2n
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Proof

I1 = Re

[∫ π/3

−π/3
eG(ψ)dψ

]
≤
∫ π/3

−π/3
eRe(G(ψ))dψ ≤ eG(0)

∫ π/3

−π/3
e−0.2nψ2

dψ (53)

≤ eG(0)

∫ ∞

−∞
e−0.2nψ2

dψ = eG(0)

√
π√

0.2n

The next lemma shows that I1 is also lower bounded by the above quantity (up to constants).

Lemma 30
I1 ≥ eG(0) 0.5

√
π√

1.1n
(1 + o(1))

where I1 is defined in (45)

Proof By (50), Im(G′′(ψ)) = −n sin(ψ) +O
(
n2ε2

m

)
. So, for large enough n, since |sin(ψ)|≤ |ψ|,

for any ψ ∈ [−π/3, π/3], |Im(G′′(ψ))|≤ 1.1n|ψ|. So, by (51), (48) and (49), we have that for
constant c > 0 and ψ ∈ [−π/3, π/3],

|Im(G(ψ))|≤ 1.1n|ψ|3+cnε2ψ2

Also, Re(G′′(ψ)) ≥ −1.1n by a similar argument. So, by (51) and (49), for ψ ∈ [−π/3, π/3],

Re(G(ψ)) ≥ G(0)− 1.1nψ2

Now, for tn = 0.1min{n−1/3, 1
ε
√
cn
}, we have that for ψ ∈ [−tn, tn], cos(Im(G(ψ))) ≥ 0.5 so

that Re(eG(ψ)) ≥ 0.5eRe(G(ψ). We can split I1 further into 3 parts:

I1 = Re

[∫ −tn

−π/3
eG(ψ)dψ

]
+ Re

[∫ π/3

tn

eG(ψ)dψ

]
+ Re

[∫ tn

−tn
eG(ψ)dψ

]
Now, by (52),∣∣∣∣∣

∫ −tn

−π/3
eG(ψ)dψ

∣∣∣∣∣ ≤ eG(0)

∫ −tn

−∞
e−0.2nψ2

dψ = tne
G(0)

∫ −1

−∞
e−0.2nt2nψ̄

2
dψ̄

≤ tne
G(0)

∫ −1

−∞
e−0.2nt2n|ψ̄|dψ̄ = eG(0)O

(
1

ntn

)
= eG(0)o

(
1√
n

)
In a similar way, we can bound the second term. For the third term, we have

Re
[∫ tn

−tn
eG(ψ)dψ

]
≥
∫ tn

−tn
0.5eRe(G(ψ))dψ ≥ 0.5eG(0)

∫ tn

−tn
e−1.1nψ2

dψ

≥ 0.5eG(0)

[∫ ∞

−∞
e−1.1nψ2

dψ − 2

∫ −tn

−∞
e−1.1nψ2

dψ

]
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≥ 0.5eG(0)

( √
π√

1.1n
+O

(
1

ntn

))
= 0.5eG(0)

√
π√

1.1n
(1 + o(1))

Combining the bounds, we get that

I1 ≥ eG(0) 0.5
√
π√

1.1n
(1 + o(1))

Combining the upper bound on I1 from Lemma 29 and the lower bound from Lemma 30, we
have

I1 = eG(0) 1√
n
eO(1)

So, by (43) and (46),

exp(−ε2θn)E
ν

[
ξ(Y n

j )
]
= e−ε

2θn n!

2π
λ−n0 eG(0)

√
π√

0.2n
(1 + o(1)) (54)

So, it remains to compute G(0).

Lemma 31 Under Assumption 3,

G(0) = λ0 +
m∑
j=1

{
ε2θ

[
(λ0νj)

2 + λ0νj − 2λ0νj
n

m
+
n2

m2

]

+
ε4θ2

2

[
4(λ0νj)

3 + 6(λ0νj)
2 + (λ0νj)− 8(λ0νj)

2 n

m
− 4

n

m
(λ0νj) + 4

n2

m2
(λ0νj)

]
+ o

(
∆2
)}

(55)

Proof Using equation (47), we have

G(0) = λ0 +
m∑
j=1

log
{
E
[
exp(ε2θξ(Zj))

]}
where Zj ∼ Poi(λ0νj). By Assumption 3, we have that this is

λ0 +
m∑
j=1

log
{
E [f(Zj)] + o

(
∆2
)}

Using the definition of f from (37), this is

λ0 +
m∑
j=1

log

{
1 + ε2θE[ϕ(Zj)2] +

ε4θ2

2
E[ϕ(Zj)4] + o

(
∆2
)}
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Since by Lemma 38, ε2θE[ϕ(Zj)2] and ε4 θ
2

2 E[ϕ(Zj)4] are o(1), using the fact that log(1+x) =
x− x2/2 +O(x3) for x→ 0, we have

G(0) = λ0 +
m∑
j=1

{
ε2θE[ϕ(Zj)2] +

ε4θ2

2

(
E[ϕ(Zj)4]− E[ϕ(Zj)2]2

)
+ o

(
∆2
)}

Now, using Lemma 48, we have that

G(0) = λ0 +

m∑
j=1

{
ε2θ

[
(λ0νj)

2 + λ0νj − 2λ0νj
n

m
+
n2

m2

]
+
ε4θ2

2

[
4(λ0νj)

3 + 6(λ0νj)
2 + (λ0νj)− 8(λ0νj)

2 n

m
− 4

n

m
(λ0νj) + 4

n2

m2
(λ0νj)

]
+ o

(
∆2
)}

Lemma 32 For the uniform distribution so that νj = 1/m for all j, and λ0 = n(1− ε2θ),

G(0) = λ0 + ε2θn+ ε4θ2
(
−n
2
+
n2

m

)
+ o

(
n2ε4

m

)
Proof Substituting νj = 1/m for all j, and λ0 = n(1− ε2θ), we have

m∑
j=1

[
(λ0νj)

2 + λ0νj − 2λ0νj
n

m
+
n2

m2

]
= n− nε2θ +

n2ε4

m
θ2

m∑
j =1

[
4(λ0νj)

3 + 6(λ0νj)
2 + (λ0νj)− 8(λ0νj)

2 n

m
− 4

n

m
(λ0νj) + 4

n2

m2
(λ0νj)

]
= n+ 2

n2

m
+O

(
n2ε2

m

)
So, by Lemma 31, we have

G(0) = λ0 + ε2θn+ ε4θ2
(−n

2
+
n2

m

)
+ o

(
n2ε4

m

)

Lemma 33 For alternate distributions such that νj = 1
m + ε

γm for j ≤ γm, and νj = 1
m − ε

(1−γ)m
for j > γ, for γ = Θ(1), 1− γ = Θ(1), and λ0 = n(1− ε2θ), we have

G(0) = λ0 + ε2θn+ ε4θ2
(
n

2
+
n2

m

)
+ ε4θ

n(γm2θ − γ2m2θ −mn)

γ(γ − 1)m2
+ o

(
n2ε4

m

)
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Proof We have

m∑
j=1

[
(λ0νj)

2 + λ0νj − 2λ0νj
n

m
+
n2

m2

]
= n− n(mn+ γ2m2θ − γm2θ)ε2

γ(γ − 1)m2
+ o

(
n2ε2

m

)

m∑
j =1

[
4(λ0νj)

3 + 6(λ0νj)
2 + (λ0νj)− 8(λ0νj)

2 n

m
− 4

n

m
(λ0νj) + 4

n2

m2
(λ0νj)

]

= n+ 2
n2

m
+O

(
n2ε2

m

)
Thus, for this ν, from Lemma 31,

G(0) = λ0 + ε2θn+ ε4θ2
(
n

2
+
n2

m

)
+ ε4θ

n(γm2θ − γ2m2θ −mn)

γ(γ − 1)m2
+ o

(
n2ε4

m

)

Finally, we prove the main lemma.
Proof [Proof of Lemma 25] By (54), substituting λ0 = n(1 − ε2θ) and G(0) from Lemma 32, we
have for uniform ν,

exp(−ε2θn)E
ν

[
ξ(Y n

j )
]
= e−ε

2θn enn!√
2πn

(n(1− ε2θ))−n exp

{
−nε2θ + nε2θ

+ ε4θ2
(
−n
2
+
n2

m

)
+ o

(
n2ε4

m

)}

= e−ε
2θn enn!

nn
√
2πn

exp

{
−n
(
−ε2θ − ε4θ2

2

)}
exp

{
ε4θ2

(
−n
2
+
n2

m

)
+ o

(
n2ε4

m

)}

=
enn!

nn
√
2πn

exp

{
ε4θ2

(
n2

m

)
+ o

(
n2ε4

m

)}

= (1 +O(1/n)) exp

{
n2ε4

m

(
θ2 + o(1)

)}
By (54), substituting λ0 = n(1− ε2θ) and G(0) from Lemma 33, for ν such that νj = 1

m + ε
γm

for j ≤ γm and νj = 1
m − ε

(1−γ)m for j > (1− γ)m, with γ = Θ(1), (1− γ) = Θ(1), we have

exp(−ε2θn)E
ν
[ξ(Y n

j )] = (1 +O(1/n)) exp

{
n2ε4

m

(
θ2 + θ

1

γ(1− γ)
+ o(1)

)}

Finally, this gives us the MGF of the Huber statistic.
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Lemma 34 We have that for uniform ν such that νj = 1/m for all j,

E
[
exp

(
n2ε4

m
θS̃

)]
= exp(−ε2θn)E

exp
ε2θ m∑

j=1

hβ

(
Y n
j − n

m

)
= (1 +O(1/n)) exp

{
n2ε4

m
(θ2 + o(1))

}
and for alternate ν such that νj = 1

m+ ε
γm for j ≤ γm and νj = 1

m− ε
(1−γ)m for j > (1−γ)m,

for γ = Θ(1), 1− γ = Θ(1),

E
[
exp

(
n2ε4

m
θS̃

)]
= exp(−ε2θn)E

exp
ε2θ m∑

j=1

hβ

(
Y n
j − n

m

)

= (1 +O(1/n)) exp

{
n2ε4

m

(
θ2 + θ

1

γ(1− γ)
+ o(1)

)}
Proof Note that Assumption 3 holds for Aλ(θ) as defined in (36) due to Lemma 22. So, by Lemma
25, the claim holds.

C.4. Application of the Gärtner-Ellis Theorem

In this section, we apply the Gärtner-Ellis Theorem to obtain the probability that our statistic crosses
a threshold, under the uniform distribution, and under one of the worst-case ε-far distributions.

Lemma 35 Under the uniform distribution p, we have that for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
=
τ2

4

Under an ε-far distribution q of the form qj = 1
m + ε

γm for j ≤ l and qj = 1
m − ε

(1−γ)m for

j > l, and γ = Θ(1), 1− γ = Θ(1), for τ < 1
γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Proof Note that by Lemma 34, the limiting logarithmic moment generating function with respect to
the uniform distribution p is given by

Λp(θ) = lim
n→∞

m

n2ε4
log

(
E
p

[
exp

(
n2ε4

m
θS̃

)])
= θ2

Thus, Assumption 1 holds for DΛp = R. Furthermore, the Fenchel-Legendre Transform (de-
fined in equation 28) of Λp is given by

Λ∗
p(τ) = sup

θ
{θτ − θ2} =

τ2

4
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This is a strongly convex function of τ , so the set of exposed points of Λ∗
p whose exposing

hyperplane belongs to Do
Λp

is all of R. Thus, by the Theorem 13 (Gärtner-Ellis), for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
= inf

x≥τ
Λ∗
p(x) =

τ2

4

Similarly, the limiting logarithmic moment generating function with respect to an alternate dis-
tribution q is given by

Λq(θ) = lim
n→∞

− m

n2ε4
log

(
E
q

[
exp

(
n2ε4

m
θS̃

)])
= θ2 +

1

γ(1− γ)
θ

The Fenchel-Legendre transform is given by

Λ∗
q(τ) = sup

θ

{
θτ − θ2 − 1

γ(1− γ)
θ

}
=

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Again, applying the Gärtner-Ellis Theorem gives, for τ < 1
γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃∗
n ≤ τ

])
= inf

x≤τ
Λ∗
q(x) =

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

C.5. Setting the threshold

We need to set our threshold τ so that the minimum of the error probability under the uniform
distribution p, and any ε-far distribution q is maximized. Note that by Lemma 35, it is sufficient to
consider a threshold τ such that 0 < τ < 1

γ(1−γ) , since otherwise, the error probability in one of
the two cases is at least constant. To set our threshold, we will first observe that for any τ in this
range, the “error exponent” under ε-far distributions is minimized for a particular ε-far distribution.
Then, we will set the threshold to maximize the minimum of the error exponent under the uniform
distribution, and under this ε-far distribution.

Lemma 36 Setting the threshold τ = 2, we have for the uniform distribution p,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
= 1

and for any ε-far distribution q such that qj = 1
m + ε

γm for j ≤ γm and qj = 1
m − ε

(1−γ)m for
j > γm and γ = Θ(1), 1− γ = Θ(1),

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ 1

with equality for q such that qj = 1
m + 2ε

m for j ≤ m/2 and qj = 1
m − 2ε

m for j > m/2.
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Proof By Lemma 35, for 0 < τ < 1
γ(1−γ) ,

lim
n→∞

m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Now, the numerator of the right hand side is minimized when γ = 1/2, and the denominator is
maximized when γ = 1/2. Thus, the right hand side is minimized when γ = 1/2. So, we have that,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ 1

4
(τ − 4)2

with equality for distribution q such that qj = 1/m + 2ε/m for j ≤ m/2 and qj = 1/m − 2ε/m
for j > m/2.

Then, the claim follows by substituting in τ = 2 in the expression for the uniform distribution
in Lemma 35 and in the above expression.

Recall that our target sample complexity is

n = (1 + o(1))

√
m log

1

δ
/ε2 (4)

We have our result for the Huber tester.

Theorem 37 (Huber with n/m ≳ 1) The Huber statistic for appropriate β achieves (4) for 1 ≲
n/m≪ 1/ε2, ε, δ ≪ 1 and m ≥ C log n for sufficiently large constant C.

Proof First we need to show that for every (n,m, ε) that satisfy our conditions, there is a β,∆ that
satisfies (12), (11) and (13). We will set

∆ =
nε2

m

so that (12) is satisfied. Then, observe that (11) and (13) can be satisfied as long as

log

(
1

∆

)
+

√
n

m
log

(
1

∆

)
= o

(
∆1/3

ε

)

Now, since n = Ω(m),

log

(
1

∆

)
= log

( m

nε2

)
= o

(
log

(
1

ε

))
= o

(
1

ε1/3

)
= o

(
n1/3

m1/3ε1/3

)
= o

(
∆1/3

ε

)

and since n = o

(
m

ε2 log3
(
m
nε2

)
)

,

√
n

m
log

(
1

∆

)
=

√
n

m
log
( m

nε2

)
= o

(
n1/3

m1/3ε1/3

)
= o

(
∆1/3

ε

)
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By Lemma 36, we have that c̄(ε,m,C) = 1 for every ε that satisfies our assumptions, and every
C > 2. In particular, any ε′ such that

(
1− 1

C′

)
ε(n) ≤ ε′(n) ≤ ε(n) has c̄(ε′,m,C) = 1 for every

C > 2. Thus, by Lemma 21, we have that c(ε,m) = 1 for every ε that satisfies our assumptions.
The claim follows.

Since the Huber statistic for β = 0 is equivalent to the TV statistic, Theorem 37 and Theorem 5
together give us the main result.

Theorem 2 (Huber) The Huber statistic for appropriate β achieves (4) for n/m ≪ 1/ε2, ε, δ ≪
1, and m ≥ C log n for sufficiently large constant C. It achieves (5) under the same conditions and
δ−, δ+ ≪ 1.
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Appendix D. MGF computation Lemmas

D.1. Huber Lemmas

Lemma 38 Suppose Assumption 2 holds. For Zj ∼ Poi(λ0νj) and λ0 = n(1 − ε2θ), νj =
1
m +O

(
ε
m

)
, and for n = Ω(m)

ε2θE[ϕ(Zj + c)2] = O

(
nε2

m

)
ε4θ2

2
E[ϕ(Zj + c)4] = O

((
nε2

m

)2
)

for any 0 ≤ c ≤ 4

Proof
Note that λ0νj = n

m +O(nεm ). Then, using Lemma 48,

ε2θE[ϕ(Zj)2] = ε2θ

(
n

m
+O

(nε
m

)
+O

(
n2ε2

m2

))
= O

(
nε2

m

)
since n = o(m/ε2).

Similarly,

ε4
θ2

2
E[ϕ(Zj)4] = ε4

θ2

2

[
n

m
+O(

n2

m2
) +O(

n3ε2

m3
) +O(

n4ε4

m4
)

]
= O

((
nε2

m

)2
)

Now,

ε2θE[ϕ(Zj + c)2] = ε2θE
[(
Zj + c− n

m

)2]
= ε2θE

[
ϕ(Zj)

2 + 2c
(
Zj −

n

m

)
+ c2

]

= O

(
nε2

m

)
+O(ε2) = O

(
nε2

m

)
since ε2 = O

(
nε2

m

)
.

Similarly,

ε4θ2

2
E[ϕ(Zj + c)4] =

ε4θ2

2
E
[
ϕ(Zj)

4 + 4c
(
Zj −

n

m

)3
+ 6c2ϕ(Zj)

2 + 4c3
(
Zj −

n

m

)
+ c4

]
Now,

E
[
4c
(
Zj −

n

m

)3]
= 4E

[
Z3
j − 3Z2

j

n

m
+ 3Zj

n2

m2
− n3

m3

]
By Lemma 50, this is

4

[
(λ0νj)

3 + 3(λ0νj)
2 + λ0νj − 3((λ0νj)

2 + λ0νj)
n

m
+ 3λ0νj

n2

m2
− n3

m3

]
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Now, since λ0νj = n
m +O

(
nε
m

)
, this is

n

m
+O

(
n2ε

m2

)
+O

(
n3ε3

m3

)
so that

ε4θ2

2
E
[
4c
(
Zj −

n

m

)3]
= O

((
nε2

m

)2
)

= O

((
nε2

m

)2
)

So, finally
ε4θ2

2
E[ϕ(Zj + c)4] = O

((
nε2

m

)2
)

as required.

Lemma 39 Suppose Assumption 2 holds. For Zj ∼ Poi(λ0νj), and λ0 = n(1 − ε2θ), νj =
1
m +O( εm) for all j,

m∏
j=1

{
E [f(Zj)] + o

(
∆2
)}

= exp{O(nε2)}

where f is defined in (37)

Proof

m∏
j=1

{
E [f(Zj)] + o

(
∆2
)}

= exp


m∑
j=1

log
[
E [f(Zj)] + o

(
∆2
)]

Note that due to Lemma 38, ∆ = O
(
nε2

m

)
, and the fact that n = o(m/ε2), the above is

exp


m∑
j=1

log

[
1 +O

(
nε2

m

)]
We can Taylor expand the log since it is of form log(1 + o(1)). The above is then

exp


m∑
j=1

[
O

(
nε2

m

)] = exp{O(nε2)}

Setting η ≥ 2, this is
exp(O(nε2))
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Lemma 40 Suppose Assumption 2 holds. For λ0 = n(1 − ε2θ) and νj = 1
m + O

(
ε
m

)
for all j,

and for ξ that satisfies Assumption 3, where Zj ∼ Poi(λ0νj), we have

e−2λ0νj

∣∣∣∣∣∣
( ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k + 1))

)2

−
( ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k))

)( ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k + 2))

)∣∣∣∣∣ = O(ε2) +O

((
nε2

m

)2
)

and

e−2λ0νj

∣∣∣∣∣
( ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k))

)( ∞∑
k=0

(λ0νje
iψ)k

k!
exp(ε2θξ(k + 1))

)∣∣∣∣∣ = 1+O

(
nε2

m

)

Proof Notation: For simplicity, let Ẽ[f(Wj)] =
∑∞

k=0
(λ0νje

iψ)k

k! f(k) Note that

Ẽ[f(Wj) + g(Wj)] = Ẽ[f(Wj)] + Ẽ[g(Wj)]

Also, note that
∣∣∣e−λ0νj Ẽ[f(Wj)]

∣∣∣ = E[f(Zj)] where Zj ∼ Poi(λ0νj). We have that,

Ẽ[exp(ε2θξ(Wj + 1))]2 = Ẽ

[
1 + ε2θξ(Wj + 1) +

∞∑
l=2

(ε2θξ(Wj + 1))l

l!

]2

= Ẽ
[
1 + ε2θξ(Wj + 1)

]2
+ 2Ẽ

[
1 + ε2θξ(Wj + 1)

]
Ẽ

[ ∞∑
l=2

(ε2θξ(Wj + 1))l

l!

]
+ Ẽ

[ ∞∑
l=2

(ε2θξ(Wj + 1))l

l!

]2
Similarly,

Ẽ[exp(ε2θξ(Wj))]Ẽ[exp(ε2θξ(Wj + 2))] = Ẽ[1 + ε2θξ(Wj)]Ẽ[1 + ε2θξ(Wj + 2)]

+Ẽ[1 + ε2θξ(Wj)]Ẽ

[ ∞∑
l=2

(ε2θξ(Wj + 2))l

l!

]

+Ẽ

[ ∞∑
l=2

(ε2θξ(Wj))
l

l!

]
Ẽ[1 + ε2θξ(Wj + 1)] + Ẽ

[ ∞∑
l=2

(ε2θξ(Wj))
l

l!

]
Ẽ

[ ∞∑
l=2

(ε2θξ(Wj + 2))l

l!

]

So, using the properties of ξ from Assumption 3, this first expression is

e−2λ0νj
∣∣∣Ẽ[exp(ε2θξ(Wj + 1))]2 − Ẽ[exp(ε2θξ(Wj))]Ẽ[exp(ε2θξ(Wj + 2))]

∣∣∣
≤ e−2λ0νj

∣∣∣Ẽ[1 + ε2θξ(Wj + 1)]2 − Ẽ[1 + ε2θξ(Wj)]Ẽ[1 + ε2θξ(Wj + 2)]
∣∣∣+ o(∆2)

= e−2λ0νj
∣∣∣ε2θẼ[1]{2Ẽ[ξ(Wj + 1)]− Ẽ[ξ(Wj)]− Ẽ[ξ(Wj + 2)]

}
+ε4θ2

{
Ẽ[ξ(Wj + 1)]2 − Ẽ[ξ(Wj)]Ẽ[ξ(Wj + 2)]

}∣∣∣+ o(∆2)

= ε2θ {2E[ξ(Zj + 1)]− E[ξ(Zj)]− E[ξ(Zj + 2)]}+ ε4θ2
{
E[ξ(Zj + 1)]2 − E[ξ(Zj)]E[ξ(Zj + 2)]

}
+ o(∆2)
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Using properties of ξ, this is

ε2θ
{
2E[ϕ(Zj + 1)2]− E[ϕ(Zj)2]− E[ϕ(Zj + 2)2]

}
+ ε4θ2

{
E[ϕ(Zj + 1)2]2 − E[ϕ(Zj)2]E[ϕ(Zj + 2)2]

}
+ o(∆2)

Simplifying using the definition of ϕ, and applying Lemma 38, this is

O(ε2) +O

((
nε2

m

)2
)

This gives us the first claim. For the second claim, we have the expression

e−2λ0νj |Ẽ[exp(ε2θξ(Wj))]Ẽ[exp(ε2θξ(Wj + 1))]|= E[exp(ε2θξ(Zj))]E[exp(ε2θξ(Zj + 1))]

By properties of ξ from Assumption 3, and using Lemma 38, this is

1 +O

(
nε2

m

)

Lemma 41 Suppose Assumption 2 holds. For λ0 = n(1 − ε2θ), νj = 1
m + O

(
ε
m

)
, and ξ that

satisfies Assumption 3,
and

G(ψ) = −inψ +
m∑
j=1

log

{ ∞∑
k=0

(λ0νje
iψ)k

k!
ξ(k)

}
we have

G′′(ψ) = −neiψ +O

(
n2ε2

m

)
Proof By Lemmas 38, 40 and 51 we have

G′′(ψ) =
m∑
j=1

(λ0νje
iψ)2

{
O(ε2) +O

((
nε2

m

)2)}
− (λ0νje

iψ)(1 +O(nε
2

m ))

(1 +O(nε
2

m ))

By Lemma 38, this is,

m∑
j=1

{
O

(
n2ε2

m2

)
− (λ0νje

iψ)

(
1 +O

(
nε2

m

))}(
1 +O

(
nε2

m

))

= −(λ0e
iψ)

(
1 +O

(
nε2

m

))
+O

(
n2ε2

m

)
= −neiψ +O

(
n2ε2

m

)
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Lemma 42
Suppose Assumption 2 holds. For λ0 = n(1 +O(ε2) and ν such that νj = 1/m+O(ε/m) for

all j, and θ = O(1), we have∣∣∣∣∣E
[
1{ϕ(Zj+c)≤β}

{ ∞∑
l=3

(ε2θϕ(Zj + c)2)l

l!

}]∣∣∣∣∣ = o
(
∆2
)

where Zj ∼ Poi(λ0νj)

Proof We have that∣∣∣∣∣E
[
1{ϕ(Zj+c)≤β}

{ ∞∑
l=3

(ε2θϕ(Zj + c)2)l

l!

}]∣∣∣∣∣ ≤
∣∣∣∣∣E
[ ∞∑
l=3

(ε2θβ2)l

l!

]∣∣∣∣∣
≤

∞∑
l=3

(ε2θβ2)l

l!

= O

(
(ε2θβ2)3

∞∑
l=0

(ε2θβ2)l

l!

)

Also,
∞∑
l=0

(ε2θβ2)l

l!
= exp(ε2θβ2)

But, by (32),
ε2θβ2 = o(1)

Thus, we have that
exp(ε2θβ2) = eo(1) = O(1)

Putting the above together gives us the claim.

Lemma 43 Suppose Assumption 2 holds. For λ = n(1 + O(ε2) + O( nmε
2)) and ν such that

νj = 1/m+O(ε/m) for all j, for any β,

P[ϕ(Zj + c) > β] ≤ 2 exp

{
−Ω(β2)

O( nm)

}
+ 2 exp {−Ω(β)}

for integer 0 ≤ c ≤ 3 and any constant η > 0.

Proof Note that for the conditions given,

λνj =
n

m
+O(

nε

m
)

Now, since Zj ∼ Poi(λνj) and λ = n(1 +O(ε2) +O( nmε
2)),

E[1ϕ(Zj+c)>β] = P[ϕ(Zj + c) > β] = P
[∣∣∣Zj + c− n

m

∣∣∣ > β
]
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≤ P
[
|Zj − λνj | > β +

∣∣∣λνj + c− n

m

∣∣∣] ≤ P
[
|Zj − λνj | > β +O(

nε

m
)
]

Using Poisson concentration bounds (Canonne, 2017), this is at most

2 exp

{
−

(
β +O(nεm )

)2
λνj +

(
β +O(nεm )

)} = 2 exp

{
−
(
β +O(nεm )

)2
n
m + β +O(nεm )

}

Now, if β = O( nm), this is

2 exp

{
− (β +O(nεm ))2

O( nm) +O(nεm )

}
= 2 exp

{
−Ω(β2)

O( nm)

}
Similarly, if instead n

m = O(β), the bound is

2 exp

{
− (β +O(nεm ))2

O(β) +O(nεm )

}
= 2 exp {−Ω(β)}

The claim follows.

Lemma 44 Suppose Assumption 2 holds. For λ = n(1 + O(ε2) + O( nmε
2)) and ν such that

νj = 1/m+O(ε/m) for all j, for β such that (11) is satisfied,

E[1ϕ(Zj+c)>β] = O
(
∆2η

)
for integer 0 ≤ c ≤ 3 and any constant η > 0.

Proof
By Lemma 43,

E[1{ϕ(Zj+c)>β}] ≤ 2 exp

{
−Ω(β2)

O( nm)

}
+ 2 exp {−Ω(β)}

But by (11), this is

4 exp

{
−ω

(
log

(
1

∆

))}
= O

(
∆2η

)

Lemma 45 Suppose Assumption 2 holds. For λ = n(1 + O(ε2)), νj = 1/m+ O(ε/m) for all j,
we have ∣∣∣E [1{ϕ(Zj+c)>β}ε2θϕ(Zj + c)2

]∣∣∣ = o
(
∆2
)

∣∣∣∣E [1{ϕ(Zj+c)>β} ε4θ22
ϕ(Zj + c)4

]∣∣∣∣ = o
(
∆2
)

for integer 0 < c ≤ 3 and Zj ∼ Poi(λνj)
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Proof
We have∣∣∣E [1{ϕ(Zj+c)>β}ε2θϕ(Zj + c)2

]∣∣∣ ≤ ∞∑
l=0

∣∣∣P [ϕ(Zj + c) > 2lβ
]
ε2θ(2l+1β)2

∣∣∣
By Lemma 43, this is

∞∑
l=0

∣∣∣∣(2 exp{−Ω(22lβ2)

O( nm)

}
+ 2 exp

{
−Ω(2lβ)

})
ε2θ(2l+1β)2

∣∣∣∣
By (11), this is

∞∑
l=0

∣∣∣O (∆2lη
)
ε2θ(2l+1β)2

∣∣∣
Note that by (13), ε2β2 = o(1). Thus, this is

∞∑
l=0

∣∣∣O (∆2lη
)
o(1)22(l+1)

∣∣∣
Setting η ≥ 3, since 22(l+1) ≤ O(22

l
) we have that this is this is

O
(
∆3
) ∞∑
l=0

∣∣∣o(1)2l∣∣∣ = O
(
∆3
)

The first claim follows. The second claim can be proved in a similar way.

Lemma 46 Suppose Assumption 2 holds. For λ = n(1 + O(ε2) + O( nmε
2)) and ν such that

νj = 1/m+O(ε/m) for all j,

E
[
exp(ε2θβ(2ϕ(Zj + c)− β))

]
= O(1)

for integer 0 ≤ c ≤ 3

Proof
exp(ε2θβ(2ϕ(k)− β)) = exp

{
ε2θβ

(
2
∣∣∣k − n

m

∣∣∣− β
)}

= exp
{
ε2θβ

(
1{k≤ n

m
}2
( n
m

− k
)
+ 1{k> n

m
}2
(
k − n

m

)
− β

)}
= 1{k≤ n

m
} exp

{
ε2θβ

(
2
( n
m

− k
)
− β

)}
+ 1{k> n

m
} exp{

(
2θβ

(
2
(
k − n

m

)
− β

)}
Since exp(x) ≥ 0 for all x, this is at most

exp
{
ε2θβ

(
2
( n
m

− k
)
− β

)}
+ exp

{
ε2θβ

(
2
(
k − n

m

)
− β

)}
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Thus,

E
[
exp(ε2θβ(2ϕ(Zj + c)− β))

]
≤ E

[
exp

{
ε2θβ

(
2
( n
m

− Zj − c
)
− β

)}]
+ E

[
exp

{
ε2θβ

(
2
(
Zj + c− n

m

)
− β

)}]
Now,

E
[
exp

{
ε2θβ

(
2
( n
m

− Zj − c
)
− β

)}]
= exp

{
ε2θβ

(
2n

m
− 2c− β

)}
E
[
exp

{
−2ε2θβZj

}]
(56)

But, since Zj ∼ Poi(λνj), we have

E[exp{−2ε2θβZj}] = exp
{
λνj

(
e−2ε2θβ − 1

)}
Note that

λνj =
n

m
+O(

nε

m
)

So,
E[exp{−2ε2θβZj}] = exp

{ n
m
(1 +O(ε))

(
e−2ε2θβ − 1

)}
Using the fact that ex ≤ 1 + x for all x, the above is at most

exp
{ n
m
(1 +O(ε))(−2ε2θβ)

}
= exp

{
−2ε2θβ

n

m
+O(

n

m
εθβ)

}
Since n = o(m/ε2), and θ = Θ(ε2),

O
( n
m
εθβ
)
= o (βε)

Using (32), this is o(1).
Thus,

E[exp{−2ε2θβZj}] = exp
{
−2ε2θβ

n

m
+ o(1)

}
Thus, using this in (56), we have that

E
[
exp

{
ε2θβ

(
2
( n
m

− Zj − c
)
− β

)}]
= exp

{
−ε2θβ2 − 2cε2θβ + o(1)

}
Equation (32) tells us that

ε2θβ2 = o(1)

Similarly,
ε2θβ = o(ε)

So,
E
[
exp

{
ε2θβ

(
2
( n
m

− Zj − c
)
− β

)}]
= exp {o(1)} = O(1)

Using a very similar argument, we can show that

E
[
exp

{
ε2θβ

(
2
(
Zj + c− n

m

)
− β

)}]
= O(1)
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.
So, by the above and (D.1),

E
[
exp(ε2θβ(2ϕ(Zj + c)− β))

]
= O(1)

Lemma 47 Suppose Assumption 2 holds. For λ = n(1 + O(ε2) + O( nmε
2)) and ν such that

νj = 1/m+O(ε/m) for all j,

E
[
1{ϕ(Zj+c)>β} exp

{
ε2θβ(2ϕ(Zj + c)− β)

}]
= O (∆η)

with integer 0 ≤ c ≤ 3 and any constant η > 0.

Proof By the Cauchy-Schwarz inequality,

E
[
1{ϕ(Zj+c)>β} exp

{
ε2θβ(2ϕ(Zj + c)− β)

}]
≤
√

E[1{ϕ(Zj+c)>β}]E [exp {ε2θβ(2ϕ(Zj + c)− β)}]

By Lemmas 44 and 46, this is O (∆η).

D.2. General Lemmas

Lemma 48 For Zj ∼ Poi(λνj), and ϕ defined in (35)

E[ϕ(Zj)2] = (λνj)
2 + λνj − 2λνj

n

m
+
n2

m2

E[ϕ(Zj)4] = (λνj)
4 + 6(λνj)

3 + 7(λνj)
2 + λνj − 4

n

m

[
(λνj)

3 + 3(λνj)
2 + λνj

]
+ 6

( n
m

)2 [
(λνj)

2 + λνj
]
− 4

( n
m

)3
λνj +

( n
m

)4
Proof

E[ϕ(Zj)2] = E
[(
Zj −

n

m

)2]
= E

[
Z2
j − 2Zj

n

m
+
n2

m2

]
= (λνj)

2 + λνj − 2λνj
n

m
+
n2

m2

E[ϕ(Zj)4] = E
[(
Zj −

n

m

)4]
= E

[
Z4
j − 4

n

m
Z3
j + 6

( n
m

)2
Z2
j − 4

( n
m

)3
Zj +

( n
m

)4]
= (λνj)

4 + 6(λνj)
3 + 7(λνj)

2 + λνj − 4
n

m

[
(λνj)

3 + 3(λνj)
2 + λνj

]
+ 6

( n
m

)2 [
(λνj)

2 + λνj
]
− 4

( n
m

)3
λνj +

( n
m

)4
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Lemma 49 For Zj ∼ Poi(λνj), and ϕ defined in (35)

E
[
ϕ(Zj + 1)2 − ϕ(Zj)

2
]
= 2λνj + 1− 2n

m
E
[
ϕ(Zj + 1)4 − ϕ(Zj)

4
]
= 4(λνj)

3 + 18(λνj)
2 + 14(λνj) + 1

− 4n

m
(3(λνj)

2 + 6λνj + 1) +
6n2

m2
(2λνj + 1)− 4n3

m3

Proof

E[ϕ(Zj + 1)2 − ϕ(Zj)
2] = E

[
2Zj + 1− 2n

m

]
= 2λνj + 1− 2n

m

E[ϕ(Zj + 1)4 − ϕ(Zj)
4]

= E
[
(4Z3

j + 6Z2
j + 4Zj + 1)− 4n

m
(3Z2

J + 3Zj + 1) + 6
n2

m2
(2Zj + 1)− 4

n3

m3

]
= 4(λνj)

3 + 18(λνj)
2 + 14(λνj) + 1− 4n

m
(3(λνj)

2 + 6λνj + 1) +
6n2

m2
(2λνj + 1)− 4n3

m3

Lemma 50 The first four moments of the Poisson distribution are given by

E[X] = λ

E[X2] = λ2 + λ

E[X3] = λ3 + 3λ2 + λ

E[X4] = λ4 + 6λ3 + 7λ2 + λ

for X ∼ Poi(λ)

Proof Computation of moments.

Lemma 51 For any function f and

G(ψ) = −inψ +
m∑
j=1

log

{ ∞∑
k=0

[
(λ0νje

iψ)k

k!
f(k)

]}

we have

G′(ψ) = −in+ i

m∑
j=1

(λ0νje
iψ)

∑∞
k=0

(λ0νje
iψ)k

k! f(k + 1)∑∞
k=0

(λ0νjeiψ)k

k! f(k)
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so that Re(G′(0)) = 0, and

G′′(ψ) =

m∑
j=1

 1(∑∞
k=0

(λ0νjeiψ)k

k! f(k)
)2
[
(λ0νje

iψ)2

{(∑∞
k=0(λ0νje

iψ)k

k!
f(k + 1)

)2

−
( ∞∑
k=0

(λ0νje
iψ)k

k!
f(k)

)( ∞∑
k=0

(λ0νje
iψ)k

k!
f(k + 2)

)}

−(λ0νje
iψ)

( ∞∑
k=0

(λ0νje
iψ)k

k!
f(k)

)( ∞∑
k=0

(λ0νje
iψ)k

k!
f(k + 1)

)]}

Proof Follows from taking derivatives.
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Appendix E. Lower bounds

E.1. The collisions tester is asymptotically bad when n = Θ(m) and ε = ω
(
log1/4 n
n1/8

)
The following lower bound showing the collisions tester is asymptotically suboptimal is based on a
note of Peebles (Peebles, 2015).

Theorem 52 When n = Θ(m) and ε = ω
(
log1/4 n
n1/8

)
, the collisions tester has error probability

exp
(
−o
(
n2ε4

m

))
, and so, takes ω(

√
m log(1/δ)/ε2) samples to distinguish between the uniform

distribution and an ε-far distribution with error probability δ.

[Due to Peebles.] When n = Θ(m) and ε = ω
(
log1/4 n
n1/8

)
, the collisions tester has error prob-

ability exp
(
−o
(
n2ε4

m

))
, and so, takes ω(

√
m log(1/δ)/ε2) samples to distinguish between the

uniform distribution and an ε-far distribution with error probability δ.
Proof First, let X1, . . . , Xn be the elements sampled from our distribution. Let Ei,j be the event
that Xi = Xj . Under the uniform distribution p, we have that the probability that Xi = Xj is

P
p
[Ei,j ] =

m∑
j=1

p2j =
1

m

Thus, the expected number of collisions under the uniform distribution is

E
p

∑
i<j

Ei,j

 =
∑
i<j

E
p
[Ei,j ] =

(
n

2

)
/m

Now, consider the ε-far distribution q such that qj = 1
m + 2ε

m for j ≤ m/2 and qj = 1
m − 2ε

m for
j > m/2. We have that the probability that Xi = Xj under q is

P
q
[Ei,j ] =

m∑
j=1

q2j =
1

m
+

m∑
j=1

(
qj −

1

m

)2

=
1 + 4ε2

m

Thus, the expected number of collisions under q is

E
q

∑
i<j

Ei,j

 =
∑
i<j

E[Ei,j ] =
(
n

2

)
1 + 4ε2

m

Now, under p, if we sample the first element at least 4n/
√
m times, then we will have at least(

4n/
√
m

2

)
>
(
n
2

)
1+4ε2

m collisions for large enough n,m. In this case, since the number of collisions
under p is more than the expected number of collisions under q, and our threshold will be less than
the expected number of collisions under q, we will output q, and make a mistake. This happens with
probability at least

1

n4n/
√
m

= exp

(
− 4n√

m
log n

)
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This is bigger than exp(−Ω(n
2ε4

m )), the error probability of the TV tester, as long as

4n√
m

log n = o

(
n2ε4

m

)
Since n = Θ(m), this happens as long as

ε = ω

(
log1/4 n

n1/8

)

Thus, for error probability δ, we require ω(
√
m log(1/δ)/ε2) samples in the regime stated.

E.2. Paninski tester is asymptotically bad when n ≥ Θ(m logm)

When n ≥ 48m logm, the Paninski tester fails to distinguish between the uniform distribution on
m and an ε-far distribution with error probability Ω(1) for ε < 1/3.
Proof Recall that the Paninski tester counts the number of bins that see exactly one sample. Let
Ej = 1{Yj=1} be the event that the bin j has exactly 1 sample. Now, for p the uniform distribution
on [m], the expected number of samples that land in the jth bin is

E
p
[Yj ] =

n

m
= 48 logm

Thus, by the Bernstein’s inequality,

P
p
[Yj ≤ logm] = P

p

[
Yj ≤

(
1− 47

48

)
E
p
[Yj ]

]
≤ e−(

47
48)

2×12 logm = e−3 logm ≤ 1

m3

So, by union bound,

P
p
[∃j, Yj ≤ logm] ≤

m∑
j=1

P
p
[Yj ≤ logm] ≤ 1

m2

So, with probability 1−1/m2, every bin has at least logm balls, which means that the Paninski
statistic is 0 with probability 1− 1/m2.

Now, under ε-far distribution q such that qj = 1
m + 2ε

m for j ≤ m/2 and qj = 1
m − 2ε

m for
j > m/2, we have, for j ≤ m/2

E
q
[Yj ] =

n

m
= (1 + 2ε)48 logm

and for j > m/2,

E
q
[Yj ] =

n

m
= (1− 2ε)48 logm

Then, for j ≤ m/2, since ε > 0,

P
q
[Yj ≤ logm] = P

q

[
Yj ≤

(
1− 47 + 96ε

48 + 96ε

)
E
q
[Yj ]

]
≤ P

q

[
Yj ≤

(
1− 47

48

)
E
q
[Yj ]

]
≤ 1

m3
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On the other hand, for j > m/2

P
q
[Yj ≤ logm] = P

q
[Yj ≤

(
1− 47− 96ε

48(1− 2ε)
E
q
[Yj ]

)
≤ e

−
(

47−96ε
48(1−2ε)

)2
×(1−2ε)12 logm

Since ε < 1/3, this is at most

e−
152×3

482
×12 logm ≤ 1

m3

Thus, we have that

P
q
[∃j, Yj ≤ logm] ≤

m∑
j=1

P
q
[Yj ≤ logm] ≤ 1

m2

So again, with probability 1 − 1/m2, every bin has at least logm balls under q, so that the
Paninski statistic is 0 with 1 − 1

m2 . Putting the above together gives us that we will fail with
probability Ω(1).
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Appendix F. TV Tester in the Superlinear Regime

Lemma 53 The TV tester can distinguish between the uniform distribution on [m] and an ε-far
distribution with failure probability e−

1
2
ε2n(1+o(1)) when ε = o(1) and n = ω(m/ε2).

Proof Let Y be the empirical distribution when n samples are drawn from the distribution. The TV
tester compares the empirical distribution Y to the uniform distribution and outputs uniform if and
only if

∥Y − p∥TV<
ε

2

where p is the uniform distribution on [m].
Since by the definition of TV distance,

∥Y − p∥TV= max
S⊆[m]

|YS − pS |

we have that under the uniform distribution p, the probability of failure is

P
p
[∥Y − p∥TV≥ τ∗] = P

p

[
max
S⊆[m]

|YS − pS |≥
ε

2

]

≤
∑
S⊆[m]

P
p
[|YS − pS |≥

ε

2
]

Note that the summand is the probability that the empirical mean of n samples from a coin with
probability of heads |S|

m deviates from its expectation by at least ε2 . By the Chernoff bound, this is
at most

e
−D

(
|S|
m

+ ε
2
∥ |S|
m

)
n ≤ e−

1
2
ε2n

since for any r, τ , D(r + τ∥r) ≥ 2τ2.
Thus,

P
p

[
∥Y − p∥TV≥

ε

2

]
≤ 2me−

1
2
ε2n = e−

1
2
ε2n(1+o(1))

since n = ω(m/ε2).
Now, under ε-far distribution q, since ∥p− q∥TV≥ ε, the set S = {j|qj > pj} has |qS − pS |≥ ε

so that
∑

j∈S qj ≥
|S|
m + ε. Now, since ∥Y − p∥TV≥ |YS − pS |, we have

P
q

[
∥Y − p∥TV≤

ε

2

]
≤ P

q

[
|YS − pS |≤

ε

2

]
Now, the RHS of the above is at most the probability that the empirical mean of n samples from

a coin with probability of heads at least 1
2 + ε is less than 1

2 + ε
2 . By the Chernoff bound, this is at

most
e−D( 1

2
+ ε

2
∥ 1
2
+ε)n ≤ e−

1
2
nε2

Thus, the TV tester fails with probability at most e−
1
2
nε2(1+o(1)) as required.

Lemma 54 When n = ω
(
m
ε2

)
and ε = o(1), any tester that distinguishes between the uniform

distribution on [m] and an ε-far distribution fails with probability at least e−
1
2
nε2(1+o(1)).
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Proof Let p be the uniform distribution on [m], and let q be the ε-far distribution such that qj =
1
m + 2ε

m for j ≤ m/2 and qj = 1
m − 2ε

m for j > m/2. Let Y be the empirical distribution from the

samples drawn, and let B = {∑m/2
j=1 Yj ≥ 1

2 + ε
2}. Under the uniform distribution, by Lemma 56,

P
p
[B] ≥ e−

1
2
ε2n(1+o(1)) (57)

Now, the likelihood ratio of Y ∈ B is given by

q

p
(Y ) ≥ (1 + 2ε)(

1
2
+ ε

2
)n(1− 2ε)(

1
2
− ε

2
)n

= e(
1
2
+ ε

2) log(1+2ε)n+( 1
2
− ε

2) log(1−2ε)n

Now,(
1

2
+
ε

2

)
log (1 + 2ε) +

(
1

2
− ε

2

)
log (1− 2ε) =

(
1

2
+
ε

2

){
log

(
1
2 + ε

2
1
2

)
− log

(
1
2 + ε

2
1
2 + ε

)}

+

(
1

2
− ε

2

){
log

(
1
2 − ε

2
1
2

)
− log

(
1
2 − ε

2
1
2 − ε

)}

= D

(
1

2
+
ε

2
∥1
2

)
−D

(
1

2
+
ε

2
∥1
2
+ ε

)
= o(ε2)

since D(12 + ε
2∥1

2) =
ε2

2 (1 + o(1)) and D(12 + ε
2∥1

2 + ε) = ε2

2 (1 + o(1)). Thus,

q

p
(X) ≥ eo(ε

2) (58)

Now, suppose there is a test ϕ that uses n samples and distinguishes between the two cases with
failure probability e−(

1
2
+ξ)nε2 for ξ > 0, so that ϕ = 0 denotes that the test outputs uniform, and

ϕ = 1 denotes that the test outputs far from uniform.
By assumption,

P
p
[ϕ = 1] ≤ e−(

1
2
+ξ)nε2

Now,
P
q
[ϕ = 0] ≥ P

q
[{ϕ = 0} ∩B] ≥ q

p
({ϕ = 0} ∩B)P

p
[{ϕ = 0} ∩B]

But by (57) and our assumption,

P
p
[{ϕ = 0} ∩B] ≥ P

p
[B]− P

p
[ϕ = 1] ≥ e−

1
2
ε2n(1+o(1))

so that, using (58)
P
q
[ϕ = 0] ≥ e−

1
2
ε2n(1+o(1))

Thus, ϕ has error probability at least e−
1
2
ε2n(1+o(1)), and we have a contradiction, so that any

test fails with probability at least e−
1
2
nε2(1+o(1)).
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Theorem 3 (Superlinear regime) For n/m≫ 1/ε2 and ε≪ 1, the TV statistic achieves

n = (2 + o(1))
log 1

δ

ε2

and no other tester can do better.

Proof By Lemmas 53 and 54, the claim follows.

F.1. Anticoncentration of a Binomial Variable

In this section we show that the Chernoff bound has sharp constants for binomial random variables
B(n, 12).

We use the following lower bound on binomial coefficients, found in Lemma 4.7.1 of (Ash,
1990):

Lemma 55 If n and np are integers, then(
n

p

)
≥ 1√

8np(1− p)
2nh(p)

where h(p) := −p log2 p− (1− p) log2(1− p) is the binary entropy function.

Lemma 56 Let X ∼ B(n, 1/2), and 1√
n
≪ ε≪ 1. Then

P[X >
n

2
+ εn] = exp(−2ε2n(1 + o(1)).

Proof The upper bound is the standard Chernoff bound, so we focus on the lower bound. For any
ε′ ∈ [ε, ε+ 3/

√
n] with n

2 + ε′n integral we have by Lemma 55 that

P[X =
n

2
+ ε′n] = 2−n

(
n

(1/2 + ε′)n

)
≥ 1√

2n(1 + o(1))
2−n(1−h(

1
2
+ε′)).

Now, the binary entropy function has Taylor series

h(
1

2
+ ε′) = 1− 2

ln 2
(ε′)2 +O((ε′)4).

Since ε′ = ε(1 + o(1)) by construction, this means

P[X =
n

2
+ ε′n] ≥ 1√

2n(1 + o(1))
e−2nε2(1+o(1)).

Summing over the 3
√
n such ε′, we have

P[X ≥ n

2
+ εn] ≥ e−2nε2(1+o(1))

as desired.
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Appendix G. Squared Statistic in Sublinear Regime

Define a centering function
ϕ(k) :=

∣∣∣k − n

m

∣∣∣ (35)

We will analyze the squared statistic S given by

S =
m∑
j=1

ϕ(Y n
j )

2

where Y n
j =

∑n
i=1 1Xi=j and X1, . . . , Xn are the n samples drawn from distribution ν supported

on [m]. Note that this is equivalent to the collisions statistic, since it simply applies a translation
and scaling. We will set

β := κ
n2ε4

m
(59)

for constant κ > 0 to be set later. We also define a parameter ∆.

Assumption 4 1 ≲ n/m ≪ 1
ε2

, ε ≪ 1
n3/13 , n

2

m ε
4 ≫ logm and m ≥ C log n for sufficiently large

constant C. In addition, we have the following constraints on β and ∆.

β = ω

(
log

(
1

∆

)
+

√
n

m
log

(
1

∆

))
(11)

∆ = O

(
nε2

m

)
(12)

(β2ε2)3 = o
(
∆2
)

(13)

We assume that Assumption 4 holds throughout this section. Observe that Assumption 4 implies
Assumption 2. Note that since n = Θ(m) and n2ε4

m = ω(logm), we have that

ε = ω

(
logm

n1/4

)
(60)

For ease of exposition, we will analyze

S̃ =
m

n2ε2
[S − n] (61)

We will study the log MGF of this statistic conditioned on all ϕ(Y n
j )’s at most β, given by

Λn,ν := log
(
E
ν

[
exp(θS̃)|∀j, ϕ(Y n

j ) ≤ β
])

(62)

We will compute an asymptotic expansion of the limiting log MGF conditioned on all ϕ(Y n
j ) at

most β given by

Λν(θ) := lim
n→∞

m

n2ε4
Λn,ν

(
n2ε4

m
θ

)
(63)
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G.1. Poissonization

Let S̃Poi(λ) be the Poissonized statistic. We compute the conditional MGF of S̃Poi(λ) with MGF
parameter n

2ε4

m θ conditioned on it being the case that ϕ(Zj) ≤ β for all j. That is,

Aλ(θ) := exp(−ε2θn)E

1{∀j,ϕ(Zj)≤β} exp
ε2θ m∑

j=1

ϕ(Zj)
2

 (64)

where Zj ∼ Poi(λνj) and are independent. Due to this independence,

Aλ(θ) = exp(−ε2θn)
m∏
j=1

E
[
1{ϕ(Zj)≤β} exp

(
ε2θϕ(Zj)

2
)]

Lemma 57 Suppose Assumption 4 holds. We have,

ε2θE[1{ϕ(Zj)≤β}ϕ(Zj)
2] = ε2θE[ϕ(Zj)2] + o(∆2)

ε4θ2

2
E
[
1{ϕ(Zj)≤β}ϕ(Zj)

4
]
=
ε4θ2

2
E[ϕ(Zj)4] + o(∆2)

∞∑
l=3

(ε2θ)l

l!
E
[
1{ϕ(Zj)≤β}ϕ(Zj)

2l
]
= o(∆2)

when Zj ∼ Poi(λνj) for λ = n(1 +O(ε2)) and νj = 1/m+O(ε/m) for all j.

Proof For the first claim,

ε2θE[1{ϕ(Zj)≤β}ϕ(Zj)
2] = ε2θE[ϕ(Zj)2]− ε2θE[1{ϕ(Zj)>β}ϕ(Zj)

2]

By Lemma 45, the second term is o(∆2). Thus, we have the first claim. The second claim can be
proved in a similar way. The third claim follows by Lemma 42.

G.2. Depoissonization

As before, we will first show that Aλ(θ) is analytic in λ.

Lemma 58 Aλ(θ) is analytic in λ.

Proof We will show that E[1{ϕ(Zj)≤β} exp(ε
2θϕ(Zj)

2)] is analytic. We have that it can be written
as ∑

k:ϕ(k)≤β

[
(λνj)

k

k!
e−λνj exp(ε2θϕ(k)2)

]
which is a finite sum of analytic functions, and is thus analytic. The claim follows.

Note that for Aλ(θ) defined in (64), by Lemmas 57 and 58, Assumption 3 holds for

ξ(k) = 1{ϕ(k)≤β} exp(ε
2θϕ(k)2)

Then, we have the following

63



GUPTA PRICE

Lemma 59 We have that for uniform distribution p such that pj = 1/m for all j,

E
p

[
exp

(
n2ε4

m
θS̃

)
|∀j, ϕ(Y n

j ) ≤ β

]
= exp(−ε2θn)E

p

exp
ε2θ m∑

j=1

1{ϕ(Y nj )≤β}ϕ(Y
n
j )

2


= (1 +O(1/n)) exp

{
n2ε4

m
(θ2 + o(1))

}
and for alternate distributions q such that qj = 1

m + ε
γm for j ≤ l and νj = 1

m − ε
(1−γ)m for

j > l,

E
q

[
exp

(
n2ε4

m
θS̃

)
|∀j, ϕ(Y n

j ) ≤ β

]
= exp(−ε2θn)E

q

exp
ε2θ m∑

j=1

1{ϕ(Y nj )≤β}ϕ(Y
n
j )

2


= (1 +O(1/n)) exp

{
n2ε4

m

[
θ2 + θ

1

γ(1− γ)
+ o(1)

]}
Proof By Lemma 25, the claim holds.

G.3. Application of the Gärtner-Ellis Theorem

In this section, we apply the Gärtner-Ellis Theorem to obtain the probability that our statistic crosses
a threshold, under the uniform distribution, and under one of the worst-case ε-far distributions.

Lemma 60 Under the uniform distribution p, we have that for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ |∀j, ϕ(Y n

j ) ≤ β
])

=
τ2

4

Under an ε-far distribution q of the form qj = 1
m + ε

γm for j ≤ l and qj = 1
m − ε

(1−γ)m for

j > l, and γ = Θ(1), 1− γ = Θ(1), for τ < 1
γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ |∀j, ϕ(Y n

j ) ≤ β
])

=
(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Proof Note that by Lemma 59, the limiting logarithmic moment generating function with respect to
the uniform distribution p is given by

Λp(θ) = lim
n→∞

m

n2ε4
log

(
E
p

[
exp

(
n2ε4

m
θS̃

)
|∀j, ϕ(Y n

j ) ≤ β

])
= θ2

Thus, Assumption 1 holds for DΛp = R. Furthermore, the Fenchel-Legendre Transform (de-
fined in equation 28) of Λp is given by

Λ∗
p(τ) = sup

θ
{θτ − θ2} =

τ2

4
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This is a strongly convex function of τ , so the set of exposed points of Λ∗
p whose exposing

hyperplane belongs to Do
Λp

is all of R. Thus, by the Theorem 13 (Gärtner-Ellis), for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ |∀j, ϕ(Y n

j ) ≤ β
])

= inf
x≥τ

Λ∗
p(x) =

τ2

4

Similarly, the limiting logarithmic moment generating function with respect to an alternate dis-
tribution q is given by

Λq(θ) = lim
n→∞

− m

n2ε4
log

(
E
q

[
exp

(
n2ε4

m
θS̃

)
|∀j, ϕ(Y n

j ) ≤ β

])
= θ2 +

1

γ(1− γ)
θ

The Fenchel-Legendre transform is given by

Λ∗
q(τ) = sup

θ

{
θτ − θ2 − 1

γ(1− γ)
θ

}
=

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Again, applying the Gärtner-Ellis Theorem gives, for τ < 1
γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃∗
n ≤ τ |∀j, ϕ(Y n

j ) ≤ β
])

= inf
x≤τ

Λ∗
q(x) =

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

G.4. Removing the conditioning

So far, we have analyzed the probability that S̃ crosses a threshold τ under the uniform distribution,
and under a family of ε-far distributions conditioned on the event that ϕ(Y n

j ) ≤ β for all j. We will
now remove this conditioning.

Lemma 61 Under the uniform distribution p, we have that for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
=
τ2

4

Under an ε-far distribution q for the form qj =
1
m + ε

γm for j ≤ l and qj = 1
m − ε

(1−γ)m for j > l,

and γ = Θ(1), 1− γ = Θ(1), for τ < 1
γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Proof For the uniform distribution we will upper and lower bound Pp[S̃ ≥ τ ] by

e
n2ε4

m
τ2

4
(1+o(1))

The claim for the uniform distribution will follow.
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Under any distribution ν,

P
ν

[
S̃ ≥ τ

]
= P

ν

[
S̃ ≥ τ |∀j, ϕ(Y n

j ) ≤ β
]
P
ν
[∀j, ϕ(Y n

j ) ≤ β]

+P
ν

[
S̃ ≥ τ |∃j, ϕ(Y n

j ) > β
]
P
ν
[∃j, ϕ(Y n

j ) > β]

Now, by Bernstein’s inequality, since nε4 = ω(1) by (60) and β = κn
2ε4

m , we have, for the
uniform distribution p, for every j,

P
p
[ϕ(Y n

j ) > β] ≤ 2e−
κ
4
n2ε4

m

Thus, by union bound,

P
p

[
∃j, ϕ(Y n

j ) > β
]
≤

m∑
j=1

P
p
[ϕ(Y n

j ) > β] ≤ 2me−
κn2ε4

4m = 2e−
κn2ε4

4m
+logm = 2e−

κn2ε4

4m
(1+o(1))

since n2ε4

m = ω(logm). For Pp[∀j, ϕ(Y n
j ) ≤ β] and Pp[S̃ ≥ τ |∃j, ϕ(Y n

j ) > β], we apply the
trivial upper bound of 1. So, for κ ≥ 2τ2, by Lemma 60,

P
p
[S̃ ≥ τ ] ≤ e−

τ2

4
n2ε4

m + 2e−
τ2

2
n2ε4

m
(1+o(1)) = e−

τ2

4
n2ε4

m (1 + o(1))

For the lower bound, note that

P
p
[∀j, ϕ(Y n

j ) ≤ β] ≥ 1−
∑
j

P
p
[ϕ(Y n

j ) > β] ≥ 1− 2me−
κ
4
n2ε4

m = 1− 2e−
κ
4
n2ε4

m
(1+o(1))

For the second term, i.e., Pp
[
S̃ ≥ τ |∃j, ϕ(Y n

j ) > β
]
Pp[∃j, ϕ(Y n

j ) > β], we apply the trivial

lower bound of 0. Again, setting κ ≥ 2τ2, we get

P
p

[
S̃ ≥ τ

]
≥ e−

n2ε4

m
τ2

4
(1+o(1))

So, we have the claim for the uniform distribution. We will upper and lower bound the proba-
bility of crossing τ for ε-far distribution q in the same way. For ease, let

cτ :=
(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

By Bernstein’s inequality, we have that since γ = Θ(1) and 1 − γ = Θ(1) so that qj =

1/m+O(ε/m) for every j, and since nε4 = ω(1) by (60) and β = κn
2ε4

m , for every j, under ε-far
distribution q,

P
q
[ϕ(Y n

j ) > β] ≤ 2e−
κ
4
n2ε4

m
(1+o(1))

Then, setting κ ≥ 8cτ , and repeating the same argument as in the uniform case, we obtain the
required upper and lower bounds on Pq[S̃ ≤ τ ]. The claim follows.
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G.5. Setting the threshold

We need to set our threshold τ so that the minimum of the error probability under the uniform
distribution p, and any ε-far distribution q is maximized. Note that, it is sufficient to consider a
threshold τ such that 0 < τ < 1

γ(1−γ) , since otherwise, the error probability in one of the two cases
is at least constant. To set our threshold, we will first observe that for any τ in this range, the “error
exponent” under ε-far distributions is minimized for a particular ε-far distribution. Then, we will
set the threshold to maximize the minimum of the error exponent under the uniform distribution,
and under this ε-far distribution.

Lemma 62 Setting the threshold τ = 2, we have for the uniform distribution p,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
= 1

and for any ε-far distribution q such that qj = 1
m + ε

γm for j ≤ l and qj = 1
m − ε

(1−γ)m for j > l

and γ = Θ(1), 1− γ = Θ(1),

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ 1

with equality for q such that qj = 1/m+ 2ε/m for j ≤ m/2 and qj = 1/m− 2ε/m for j > m/2.

Proof By Lemma 61, for 0 < τ < 1
γ(1−γ) ,

lim
n→∞

m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

(τγ(γ − 1) + 1)2

4γ2(γ − 1)2

Now, the numerator of the right hand side is minimized when γ = 1/2, and the denominator is
maximized when γ = 1/2. Thus, the right hand side is minimized when γ = 1/2. So, we have that,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ 1

4
(τ − 4)2

with equality for distribution q such that qj = 1/m + 2ε/m for j ≤ m/2 and qj = 1/m − 2ε/m
for j > m/2.

Then, the claim follows by substituting in τ = 2 in the expression for the uniform distribution
in Lemma 35 and in the above expression.

Recall that our target sample complexity is

n = (1 + o(1))

√
m log

1

δ
/ε2 (4)

We have our result for the squared/collisions tester.

Theorem 4 (Collisions for large δ) The quadratic statistic achieves (4) for n/m = Θ(1), log n≪
log 1

δ ≪ n1/13 and ε≪ 1.
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Proof We need to show that we can satisfy (12), (11) and (13) for the β that we chose in (59), and
some ∆. Set

∆ =
nε2

m
= Θ(ε2)

so that (12) is satisfied. Now,

β = κ
n2ε4

m
= ω(logm) = ω

(
log

(
1

∆

))
and since n = Θ(m),

β = κ
n2ε4

m
= Θ

(√
n

m

n2ε4

m

)
= ω

(√
n

m
logm

)
= ω

(√
n

m
log

(
1

∆

))

Thus, (11) is satisfied. For (13), note that

(
β2ε2

)3
= Θ

((
n4ε10

m2

)3
)

= Θ

(
n12ε30

m6

)
= Θ

(
n6ε30

)
= o(ε4) = o(∆2)

since ε = o
(

1
n3/13

)
. So, the conditions are satisfied.

By Lemma 62, we have that c̄(ε,m,C) = 1 for every ε that satisfies our assumptions, and every
C > 2. In particular, any ε′ such that

(
1− 1

C′

)
ε(n) ≤ ε′(n) ≤ ε(n) has c̄(ε′,m,C) = 1 for every

C > 2. Thus, by Lemma 21, we have that c(ε,m) = 1 for every ε that satisfies our assumptions.
The claim follows.
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Appendix H. Empty bins statistic in Sublinear Regime

Assumption 5 n/m ≲ 1, ε, δ ≪ 1, n≫ 1.

We will assume that Assumption 5 holds throughout this section. Let our statistic be

S :=
m∑
j=1

1{Y nj =0}

where Y n
j =

∑n
i=1 1{Xi=j}, and X1, . . . , Xn are the n samples drawn from the distribution ν

supported on [m]. In other words, it is the number of empty bins. Note that this has the same error
probability as the total variation statistic when n ≤ m. For ease of exposition, we will analyze the
statistic

S̃ =
m

n2ε2
[S −me−n/m] (65)

Note that this has the same error probability as S. Consider the moment generating function (MGF)
of S̃ with respect to distribution ν, given by

MS̃,ν(θ) = E
ν

[
exp(θS̃)

]
Note that the logarithmic moment generating function of this statistic is given by

Λn,ν(θ) := log(E
ν
[exp(θS̃)]) (66)

We wish to study the error exponent (Huang and Meyn, 2013) of this statistic with respect to nor-
malization n2ε4

m . To do this, we will compute the asymptotic expansion of the limiting logarithmic
moment generating function of the statistic, given by

Λν(θ) := lim
n→∞

m

n2ε4
Λn,ν(

n2ε4

m
θ) (67)

H.1. Poissonization

Define S̃Poi(λ) to be the Poissonized statistic, that is the statistic S̃ when the number of samples
is chosen according to the Poisson distribution with mean λ. We begin by computing the MGF of
S̃Poi(λ) with MGF parameter n

2ε4

m θ. Let this be

Aλ(θ) := E
[
exp

(
n2ε4

m
θS̃Poi(λ)

)]
= exp

(
−me−n/mε2θ

)
E

exp
ε2θ m∑

j=1

1{Zj=0}


where Zj ∼ Poi(λνj) are independent. Due to this independence,

Aλ(θ) = exp
(
−me−n/mε2θ

) m∏
j=1

E
[
exp

(
ε2θ1{Zj=0}

)]
(68)

Now, we have the following.
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Lemma 63
E
[
exp

(
ε2θ1{Zj=0}

)]
= e−λνjeε

2θ − e−λνj + 1

when Zj ∼ Poi(λνj).

Proof

E
[
exp

(
ε2θ1{Zj=0}

)]
= exp(ε2θ)P[Zj = 0] +

∞∑
k=1

P[Zj = k]

= exp(ε2θ)P[Zj = 0] + 1− P[Zj = 0] = e−λνjeε
2θ − e−λνj + 1

H.2. Depoissonization

First, we will show that Aλ(θ) is analytic in λ.

Lemma 64 Aλ(θ) is analytic in λ.

Proof By Lemma 63, E[exp(ε2θ1{Zj=0})] is analytic λ since it is the finite sum of analytic func-
tions. Then, Aλ(θ) is the finite product of analytic functions, and is hence analytic. The claim
follows.

Lemma 65

MS̃,ν

(
n2ε4

m
θ

)
=

n!

2πi

∮
eλ

λn+1
Aλ(θ)dλ (69)

Proof Follows from Lemma 26 since Aλ(θ) is analytic in λ.

We will choose a contour passing through a particular λ0, and this will make it easy to evaluate
the integral. We carry out the integration along the contour given by λ = λ0e

iψ, where

λ0 = n(1 + e−n/mε2θ) (70)

We substitute λ = λ0e
iψ and Aλ(θ) from (68) into (69) to get that

MS̃,ν

(
n2ε4

m
θ

)
= exp

(
−me−n/mε2θ

) n!
2π
λ−n0 Re

[∫ π

−π
g(ψ)dψ

]
(71)

with

g(ψ) := e−inψeλ0e
iψ

m∏
j=1

{
e−λ0νje

iψ
eε

2θ − e−λ0νje
iψ

+ 1
}

(72)
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We will split this integral into 3 parts. Let

I1 = Re

[∫ π/3

−π/3
g(ψ)dψ

]

I2 = Re

[∫ −π/3

−π
g(ψ)dψ

]

I3 = Re

[∫ π

π/3
g(ψ)dψ

] (73)

We will show that I1 dominates. We show this by bounding g(ψ) in the regionψ ∈ [−π,−π/3]∪
[π/3, π] as follows.

Lemma 66 For ψ ∈ [−π,−π/3] ∪ [π/3, π],

|g(ψ)|≤ exp{0.5n(1 +O(ε2)) + 0.5me−n/mε2θ(1 +O(ε2))}

Proof By definition of g from (72) and Lemma 77, we have that for Zj ∼ Poi(λ0νj),

|g(ψ)| =

∣∣∣∣∣∣e−inψeλ0eiψ
m∏
j=1

{
e−λ0νje

iψ
eε

2θ − e−λ0νje
iψ

+ 1
}∣∣∣∣∣∣

=
∣∣∣e−inψeλ0eiψ exp{me− n

m
eiψε2θ(1 +O(ε2)) +O(nε3)

} ∣∣∣
Since λ0 = n(1 +O(ε2)), this is∣∣∣e−inψ exp{neiψ +me−

n
m
eiψε2θ(1 +O(ε2)) +O(nε2)}

∣∣∣
The claim follows since |e−inψ|= 1 and

|exp(eiψ)|= |exp(cos(ψ) + i sin(ψ))|= exp(cos(ψ)) ≤ exp(0.5)

for ψ in the range stated.

Note that this implies that for the integrals defined in (73) that

I2 + I3 = O(e0.6n+0.6me−n/mε2θ) (74)

Now, we will compute I1. Define G(ψ) := log(g(ψ)). Then, by definition of g in (72),

G(ψ) = −inψ + λ0e
iψ +

m∑
j=1

log
{
e−λ0νje

iψ
eε

2θ − e−λ0νje
iψ

+ 1
}

(75)

Note that
Im(G(0)) = 0 (76)

Then, applying Lemma 51,
Re(G′(0)) = 0 (77)
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Now, computing the asymptotic expansion of G′′(ψ) by Lemma 78, we have

G′′(ψ) = −neiψ +O
(
nε2
)

(78)

Now, by Taylor’s theorem, for any ψ ∈ [−π/3, π/3] there exists ψ̃ ∈ (0, ψ) such that

G(ψ) = G(0) +G′(0)ψ +
G′′(ψ̃)

2
ψ2 (79)

But, by (78), Re[G′′(ψ)] ≤ −0.4n for any ψ ∈ [−π/3, π/3]. So, for ψ ∈ [−π/3, π/3],

Re(G(ψ)) ≤ G(0)− 0.2nψ2 (80)

Now, we have the following upper bound on I1.

Lemma 67
I1 ≤ eG(0)

√
π√

0.2n

Proof

I1 = Re

[∫ π/3

−π/3
eG(ψ)dψ

]
≤
∫ π/3

−π/3
eRe(G(ψ))dψ ≤ eG(0)

∫ π/3

−π/3
e−0.2nψ2

dψ (81)

≤ eG(0)

∫ ∞

−∞
e−0.2nψ2

dψ = eG(0)

√
π√

0.2n

The next lemma shows that I1 is also lower bounded by the above quantity (up to constants).

Lemma 68
I1 ≥ eG(0) 0.5

√
π√

1.1n
(1 + o(1))

where I1 is defined in (73)

Proof By (78), Im(G′′(ψ)) = −n sin(ψ) + O
(
nε2
)
. So, for large enough n, since |sin(ψ)|≤ |ψ|,

for any ψ ∈ [−π/3, π/3], |Im(G′′(ψ))|≤ 1.1n|ψ|. So, by (79), (76) and (77), we have that for
constant c > 0 and ψ ∈ [−π/3, π/3],

|Im(G(ψ))|≤ 1.1n|ψ|3+cnε2ψ2

Also, Re(G′′(ψ)) ≥ −1.1n by a similar argument. So, by (79) and (77), for ψ ∈ [−π/3, π/3],

Re(G(ψ)) ≥ G(0)− 1.1nψ2

Now, for tn = 0.1min{n−1/3, 1
ε
√
cn
}, we have that for ψ ∈ [−tn, tn], cos(Im(G(ψ))) ≥ 0.5 so

that Re(eG(ψ)) ≥ 0.5eRe(G(ψ). We can split I1 further into 3 parts:

I1 = Re

[∫ −tn

−π/3
eG(ψ)dψ

]
+ Re

[∫ π/3

tn

eG(ψ)dψ

]
+ Re

[∫ tn

−tn
eG(ψ)dψ

]
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Now, by (80),∣∣∣∣∣
∫ −tn

−π/3
eG(ψ)dψ

∣∣∣∣∣ ≤ eG(0)

∫ −tn

−∞
e−0.2nψ2

dψ = tne
G(0)

∫ −1

−∞
e−0.2nt2nψ̄

2
dψ̄

≤ tne
G(0)

∫ −1

−∞
e−0.2nt2n|ψ̄|dψ̄ = eG(0)O

(
1

ntn

)
= eG(0)o

(
1√
n

)
In a similar way, we can bound the second term. For the third term, we have

Re
[∫ tn

−tn
eG(ψ)dψ

]
≥
∫ tn

−tn
0.5eRe(G(ψ))dψ ≥ 0.5eG(0)

∫ tn

−tn
e−1.1nψ2

dψ

≥ 0.5eG(0)

[∫ ∞

−∞
e−1.1nψ2

dψ − 2

∫ −tn

−∞
e−1.1nψ2

dψ

]
≥ 0.5eG(0)

( √
π√

1.1n
+O

(
1

ntn

))
= 0.5eH(0)

√
π√

1.1n
(1 + o(1))

Combining the bounds, we get that

I1 ≥ eG(0) 0.5
√
π√

1.1n
(1 + o(1))

Combining the upper bound on I1 from Lemma 67 and the lower bound from Lemma 68, we
have

I1 = eG(0) 1√
n
eO(1)

So, by (71) and (74),

MS̃,ν

(
n2ε4

m
θ

)
= exp(−me−n/mε2θ) n!

2π
λ−n0 eG(0)

√
π√

0.2n
(1 + o(1)) (82)

So, it remains to compute G(0).

Lemma 69 Under the uniform distribution given by νj = 1/m for all j, and λ0 = n(1 +
e−n/mε2θ),

G(0) = λ0 +me−n/mε2θ + ε4θ2[−ne−2n/m +m
e−n/m

2
−m

e−2n/m

2
] +O(mε6)

Proof By definition of G(ψ) in equation (75) and Lemma 63,

G(0) = λ0 +
m∑
j=1

log[1 + e−λ0νj (eε
2θ − 1)]
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Now, since eε
2θ − 1 = ε2θ + ε4θ2

2 +O(ε6), this is

λ0 +

m∑
j=1

[e−λ0νj (ε2θ +
ε4θ2

2
)− ε4θ2

2
e−2λ0νj +O(ε6)]

Substituting in λ0 from (70), and νj = 1/m for all j, this is

= λ0 +

m∑
j=1

[e−
n
m e−

n
m
e−

n
m ε2θ(ε2θ +

ε4θ2

2
)− ε4θ2

2
e−2 n

m
(1+O(ε2))) +O(ε6)]

= λ0 +

m∑
j=1

[e−
n
m (1− n

m
e−

n
m ε2θ)(ε2θ +

ε4θ2

2
)− ε4θ2

2
e−2 n

m +O(ε6)]

= λ0 +
m∑
j=1

[e−
n
m ε2θ − n

m
e−2 n

m ε4θ2 +
e−

n
m

2
ε4θ2 − ε4θ2

2
e−2 n

m +O(ε6)]

= λ0 +me−
n
m ε2θ + ε4θ2[−ne−2 n

m +m
e−

n
m

2
−m

e−2 n
m

2
] +O(mε6)

Lemma 70 Under distribution ν such that νj = 1
m + ε

γm for j ≤ γm and νj = 1
m − ε

(1−γ)m for

j > l, for γ = Θ(1), (1− γ) = Θ(1), and λ0 = n(1 + e−n/mε2θ), we have

G(0) = λ0 +me−
n
m ε2θ + ε4θ2

[
−ne−2n/m +m

e−n/m

2
−m

e−2n/m

2

]
+ ε4θ

e−n/mn2

2mγ(1− γ)

Proof By definition of G(ψ) in equation (75) and Lemma 63,

G(0) = λ0 +

m∑
j=1

log[1 + e−λ0νj (eε
2θ − 1)]

Now, since eε
2θ − 1 = ε2θ + ε4θ2

2 +O(ε6), this is

λ0 +

m∑
j=1

[e−λ0νj (ε2θ +
ε4θ2

2
)− ε4θ2

2
e−2λ0νj +O(ε6)]

Substituting in λ0 and ν, this is

= λ0 +me−
n
m ε2θ + ε4θ2

[
−ne−2n/m +m

e−n/m

2
−m

e−2n/m

2

]
+ ε4θ

e−n/mmn2

2mγ(1− γ)

Finally, we compute the MGF.
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Lemma 71 Under the uniform distribution p over [m],

MS̃,p

(
n2ε4

m
θ

)
= (1 +O(1/n)) exp

{
n2ε4

m
θ2

[
−m
n

e−
2n
m

2
+
m2

n2
e−n/m

2
− m2

n2
e−

2n
m

2

]}

and over distribution q such that qj = 1
m + ε

γm for j ≤ γm and νj = 1
m − ε

(1−γ)m for j > γm, for
γ = Θ(1) and 1− γ = Θ(1), we have

MS̃,q

(
n2ε4

m
θ

)
= (1 +O(1/n)) exp

{
n2ε4

m
θ2

[
−m
n

e−
2n
m

2
+
m2

n2
e−n/m

2
− m2

n2
e−

2n
m

2

]
+ ε4θ

e−n/mn2

2mγ(1− γ)

}

Proof For the uniform distribution p, by (82), substituting λ0 = n(1 + e−n/mε2θ) and G(0) from
Lemma 69, we have

MS̃,p

(
n2ε4

m
θ

)
= exp(−me−n/mε2θ) e

nn!√
2πn

(n(1 + e−n/mε2θ))−n

exp

(
ne−n/mε2θ +me−n/mε2θ + ε4θ2

[
−ne−2 n

m +m
e−

n
m

2
−m

e−2 n
m

2

]
+O(mε6)

)

=
enn!√
2πn

exp(−n(log n+ log(1 + e−n/mε2θ)))

exp

(
ne−n/mε2θ + ε4θ2

[
−ne−2n/m +m

e−n/m

2
−m

e−2n/m

2

]
+O(mε6)

)

=
enn!

nn
√
2πn

exp

{
−n(e−n/mε2θ − e−2n/mε4θ2

2
)

}

exp

{
ne−n/mε2θ + ε4θ2

[
−ne−2n/m +m

e−n/m

2
−m

e−2n/m

2

]
+O(mε6)

}

= (1 +O(1/n)) exp

{
n2ε4

m
θ2

[
−m
n

e−
2n
m

2
+
m2

n2
e−n/m

2
− m2

n2
e−

2n
m

2

]}
by Stirling’s approximation.

Similarly, for q as stated, we have the claim.

H.3. Application of the Gärtner-Ellis Theorem

In this section, we apply the Gärtner-Ellis Theorem to obtain the probability that our statistic crosses
a threshold, under the uniform distribution, and under one of the worst-case ε-far distributions.

Lemma 72 When n = Θ(m), let α = n/m. Then, under the uniform distribution p, we have that
for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
=

τ2α2e2α

2eα − 2− 2α
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Under an ε-far distribution q of the form qj =
1
m + ε

γm for j ≤ γm and qj = 1
m − ε

(1−γ)m for

j > γm, and γ = Θ(1), 1− γ = Θ(1), for τ < e−α

2γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

α2(2τeαγ(γ − 1) + 1)2

8(−1− α+ eα)γ2(γ − 1)2

Proof Note that by Lemma 71, the limiting logarithmic moment generating function with respect to
the uniform distribution p is given by

Λp(θ) = lim
n→∞

m

n2ε4
log

(
MS̃,p

(
n2ε4

m
θ

))
= θ2

[
−e

−2α

2α
+
e−α

2α2
− e−2α

2α2

]
Thus, Assumption 1 holds for DΛp = R. Furthermore, the Fenchel-Legendre Transform (de-

fined in equation 28) of Λp is given by

Λ∗
p(τ) = sup

θ

{
θτ − θ2

[
−e

−2α

2α
+
e−α

2α2
− e−2α

2α2

]}
=

τ2α2e2α

2eα − 2− 2α

This is a strongly convex function of τ , so the set of exposed points of Λ∗
p whose exposing

hyperplane belongs to Do
Λp

is all of R. Thus, by the Theorem 13 (Gärtner-Ellis), for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
= inf

x≥τ
Λ∗
p(x) =

τ2α2e2α

2eα − 2− 2α

Similarly, the limiting logarithmic moment generating function with respect to an alternate dis-
tribution q is given by

Λq(θ) = lim
n→∞

− m

n2ε4
log

(
E
q

[
exp

(
n2ε4

m
θS̃

)])
= θ2

[
−e

−2α

2α
+
e−α

2α2
− e−2α

2α2

]
+ θ

e−α

2γ(1− γ)

The Fenchel-Legendre transform is given by

Λ∗
q(τ) = sup

θ

{
θτ − θ2

[
−e

−2α

2α
+
e−α

2α2
− e−2α

2α2

]
− θ

e−α

2γ(1− γ)

}
=

α2(2τeαγ(γ − 1) + 1)2

8(−1− α+ eα)γ2(γ − 1)2

Again, applying the Gärtner-Ellis Theorem gives, for τ < e−α

2γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃∗
n ≤ τ

])
= inf

x≤τ
Λ∗
q(x) =

α2(2τeαγ(γ − 1) + 1)2

8(−1− α+ eα)γ2(γ − 1)2

Lemma 73 When n = o(m), under the uniform distribution p, we have for τ > 0,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
= τ2

and under an ε-far distribution q such that qj = 1
m + ε

γm for j ≤ γm and qj = 1
m − ε

(1−γ)m for

j > γm, for γ = Θ(1), 1− γ = Θ(1), and τ < 1
2γ(1−γ) ,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

(2τγ(γ − 1) + 1)2

4γ2(γ − 1)2
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Proof Since n = o(m), we have by Lemma 71, Taylor expanding,

MS̃,p

(
n2ε4

m

)
= exp

{
n2ε4

m
θ2
[
1

4
+O(n/m)

]}
and similarly,

MS̃,q

(
n2ε4

m

)
= exp

{
n2ε4

m
θ

[
1

4
θ +

1

2γ(1− γ)
+O(n/m)

]}
Then, by a similar argument as in 72, the claim follows.

H.4. Setting the threshold

We need to set our threshold τ so that the minimum of the error probability under the uniform
distribution p, and any ε-far distribution q is maximized. Note that by Lemmas 72 and 73, it is
sufficient to consider a threshold τ such that 0 < τ < e−α

2γ(1−γ) when n = Θ(m) and 0 < τ <
1

2γ(1−γ) when n = o(m), since otherwise, the error probability in one of the two cases is at least
constant. To set our threshold, we will first observe that for any τ in this range, the “error exponent”
under ε-far distributions is minimized for a particular ε-far distribution. Then, we will set the
threshold to maximize the minimum of the error exponent under the uniform distribution, and under
this ε-far distribution.

Lemma 74 When n = Θ(m) so that α = n/m, setting the threshold τ = e−α, we have for the
uniform distribution p,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
=

α2

2(−1− α+ eα)

and for any ε-far distribution q such that qj = 1/m+ ε
γm for j ≤ γm and qj = 1/m− ε

(1−γ)m for
j > γm and γ = Θ(1), 1− γ = Θ(1),

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ α2

2(−1− α+ eα)

with equality for q such that qj = 1/m+ 2ε/m for j ≤ m/2 and qj = 1/m− 2ε/m for j > m/2.

Proof By Lemma 72, for 0 < τ < e−α

2γ(1−γ) ,

lim
n→∞

m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
=

α2(2τeαγ(γ − 1) + 1)2

8(−1− α+ eα)γ2(γ − 1)2

Now, the numerator of the right hand side is minimized when γ = 1/2, and the denominator is
maximized when γ = 1/2. Thus, the right hand side is minimized when γ = 1/2. So, we have that,

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ 2α2(1− 1

2τe
α)2

(−1− α+ eα)
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with equality for distribution q such that qj = 1/m + 2ε/m for j ≤ m/2 and qj = 1/m − 2ε/m
for j > m/2.

Then, the claim follows by substituting in τ = e−α in the expression for the uniform distribution
in Lemma 72 and in the above expression.

Lemma 75 When n = o(m), setting the threshold τ = 1, we have for the uniform distribution p,

lim
n→∞

− m

n2ε4
log

(
P
p

[
S̃ ≥ τ

])
= 1

and for any ε-far distribution q such that qj = 1/m+ ε
γm for j ≤ γm and qj = 1/m− ε

(1−γ)m for
j > γm, and γ = θ(1), 1− γ = Θ(1),

lim
n→∞

− m

n2ε4
log

(
P
q

[
S̃ ≤ τ

])
≥ 1

with equality for distribution q such that qj = 1/m + 2ε/m for j ≤ m/2 and qj = 1/m − 2ε/m
for j > m/2.

Proof Follows from Lemma 73 and using a similar argument as in Lemma 74.

Finally, we have our results.

Theorem 5 (TV) The TV statistic uses

n = (1 + o(1))

√
2(en/m − 1− n/m)

(n/m)2

√
m log 1

δ

ε2

for n ≤ m, n≫ 1, and ε, δ ≪ 1.

Proof Recall that our statistic is equivalent to the TV tester when n ≤ m. When n = Θ(m), by
Lemma 74, we have that c̄(ε,m,C) = 1 for every ε that satisfies our assumptions, and everyC > 2.
In particular, any ε′ such that

(
1− 1

C′

)
ε(n) ≤ ε′(n) ≤ ε(n) has c̄(ε′,m,C) = 1 for every C > 2.

Thus, by Lemma 21, we have that c(ε,m) = 1 for every ε that satisfies our assumptions.

So, we have shown that our tester fails with probability e−
n2ε4

m
(ξ+o(1)) for

ξ =
α2

2(−1− α+ eα)

where α = n/m. This implies that the TV tester uses n =

√
m log(1/δ)

ε2
(c+o(1)) samples for failure

probability δ, where

c =

√
2(eα − 1− α)

α

as required. Now, c > 1 for 0 ≤ α ≤ 1. The claim for the n = Θ(m) case follows. By a similar
argument using Lemma 75, the claim for the n = o(m) case follows.
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H.5. Empty bins lemmas

We assume that Assumption 5 holds throughout this section.

Lemma 76 Suppose Assumption 5 holds.

∞∑
k=0

{
(λ0νje

iψ)k

k!
e−λ0νje

iψ
exp(ε2θ1{k=0})

}
= 1 +O(ε2)

for λ0 = n(1 +O(ε)) and νj = 1/m+O(ε/m) for all j,

Proof By Lemma 63,
∞∑
k=0

{
(λ0νje

iψ)k

k!
e−λ0νje

iψ
exp(ε2θ1{k=0})

}
= e−λ0νje

iψ
eε

2θ − e−λ0νje
iψ

+ 1

= e−λ0νje
iψ
(ε2θ +O(ε4)) + 1

Substituting λ0 and νj , this is

1 + e−
n
m
eiψ(1+O(ε))(ε2θ +O(ε4))

= 1 +O(ε2)

Lemma 77 Suppose Assumption 5 holds. For λ0 = n(1 + e−n/mε2θ), νj = 1
m +O

(
ε
m

)
for all j,

m∏
j=1

{
e−λ0νje

iψ
eε

2θ − e−λ0νje
iψ

+ 1
}
= exp

{
me−

n
m
eiψε2θ(1 +O(ε2)) +O(nε3)

}
Proof By Lemma 63,

m∏
j=1

{
e−λ0νje

iψ
eε

2θ − e−λ0νje
iψ

+ 1
}
=

m∏
j=1

{
e−λ0νje

iψ
(ε2θ +O(ε4)) + 1

}

= exp


m∑
j=1

log
[
e−λ0νje

iψ
(ε2θ +O(ε4)) + 1

]
Substituting λ0 = n(1 +O(ε2)) and νj = 1/m+O(ε/m), since n = O(m), this is

= exp


m∑
j=1

log
[
e−

n
m
eiψ(1+O(ε))(ε2θ +O(ε4)) + 1

]
= exp

{
m
[
e−

n
m
eiψ(1+O(ε))(ε2θ +O(ε4))

]}
= exp

{
me−

n
m
eiψε2θ(1 +O(ε2)) +O(nε3)

}
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Lemma 78 Suppose Assumption 5 holds. For λ0 = n(1 + e−n/mε2θ), νj = 1
m +O( εm), and

f(k) = exp(ε2θ1{k=0})

and

G(ψ) = −inψ + λ0e
iψ +

m∑
j=1

log
{
e−λ0νje

iψ
eε

2θ − eλ0νje
iψ

+ 1
}

we have
G′′(ψ) = −neiψ +O(nε2)

Proof First, note that for c > 0, since 1{k+c=0} = 0 for every k ≥ 0, f(k+c) = 1, for every k ≥ 0.
So,

∞∑
k=0

{
(λ0νje

iψ)k

k!
e−λ0νje

iψ
f(k + c)

}
= 1

By Lemma 76, we have that
∞∑
k=0

{
(λ0νje

iψ)k

k!
e−λ0νje

iψ
f(k)

}
= 1 +O(ε2)

So, we have( ∞∑
k=0

(λ0νje
iψ)k

k!
e−λ0νje

iψ
f(k + 1)

)2

−
( ∞∑
k=0

(λ0νje
iψ)k

k!
e−λ0νje

iψ
f(k)

)( ∞∑
k=0

(λ0νje
iψ)k

k!
e−λ0νje

iψ
f(k + 2)

)
= O(ε2)

and ( ∞∑
k=0

(λ0νje
iψ)k

k!
e−λ0νje

iψ
f(k)

)( ∞∑
k=0

(λ0νje
iψ)k

k!
e−λ0νje

iψ
f(k + 2)

)
= 1 +O(ε2)

and ( ∞∑
k=0

(λ0νje
iψ)k

k!
e−λ0νje

iψ
f(k)

)2

= 1 +O(ε2)

So, by Lemma 51, we have that

G′′(ψ) =

m∑
j=1

(λ0νje
iψ)2O(ε2)− (λ0νje

iψ)(1 +O(ε2))

1 +O(ε2)

=
m∑
j=1

{
O(
n2ε2

m2
)− (λ0νje

iψ)(1 +O(ε2))

}
(1 +O(ε2))

= −(λ0e
iψ)(1 +O(ε2)) +O

(
n2ε2

m

)
= −neiψ +O(nε2)

since n = O(m) and λ0 = n(1 +O(ε2)).
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