Tight Bounds for Learning a Mixture of Two Gaussians

Moritz Hardt Eric Price

Google Research UT Austin

2015-06-17

1/27

Height distribution of American 20 year olds.

- Height distribution of American 20 year olds.
 - Male/female heights are very close to Gaussian distribution.

- Height distribution of American 20 year olds.
 - Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from *unlabeled* population data?

- Height distribution of American 20 year olds.
 - Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from unlabeled population data?
- How many samples to learn μ_1, μ_2 to $\pm \epsilon \sigma$?

- Height distribution of American 20 year olds.
 - Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from unlabeled population data?
- How many samples to learn μ_1, μ_2 to $\pm \epsilon \sigma$?
- d-dimensional setting: also learn weight, shoe size, ...

III. Contributions to the Mathematical Theory of Evolution.

By Karl Pearson, University College, London.

Communicated by Professor Henrici, F.R.S.

Received October 18,-Read November 16, 1893.

[Plates 1-5.]

Contents.	
	Page
I.—On the Dissection of Asymmetrical Frequency-Curves. General Theory, §§ 1-8. Example: Professor Wellow's measurements of the "Forchead" of Crabs.	71-85
§§ 9–10	85-90
II.—On the Dissection of Symmetrical Frequency-Curves. General Theory, §§ 11-12	
Application. Crabs "No. 4," §§ 13-15	90-100
II Investigation of an Asymmetrical Frequency-Curve representing Mr. H. Thomson's	
measurements of the Carapace of Prawns. §§ 16-18	100-106
Table J. First Six Powers of First Thirty Natural Numbers	
Table II. Ordinates of Normal Frequency-Curve	
Tote added February 10, 1894	

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

Pearson's naturalist buddy measured lots of crab body parts.

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)
- But the "forehead" size wasn't symmetric.

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)
- But the "forehead" size wasn't symmetric.
- Maybe there were actually two species of crabs?

Pearson 1894: proposed method for 2 Gaussians

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
 - Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
 - Extended to general *k* mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
 - ► Extended to general *k* mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
 - Our result: tight upper and lower bounds for the sample complexity.

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
 - ► Extended to general *k* mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
 - Our result: tight upper and lower bounds for the sample complexity.
 - For k = 2 mixtures, arbitrary d dimensions.

- Pearson 1894: proposed method for 2 Gaussians
 - "Method of moments"
- Other empirical papers over the years:
 - Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
 - Clustering: Dasgupta '99, DA '00
 - Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
 - ► Extended to general *k* mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
 - Our result: tight upper and lower bounds for the sample complexity.
 - For k = 2 mixtures, arbitrary d dimensions.
 - Lower bound extends to larger k.

• It's important that we want to learn the individual components:

- It's important that we want to learn the individual components:
 - Male/female average heights, std. deviations.

- It's important that we want to learn the individual components:
 - Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}(1/\epsilon^2)$ samples from black box techniques.

- It's important that we want to learn the individual components:
 - Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\Theta(1/\epsilon^2)$ samples from black box techniques.
 - Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]

- It's important that we want to learn the individual components:
 - Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}(1/\epsilon^2)$ samples from black box techniques.
 - Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]
 - Proper learning: [Daskalakis-Kamath '14]

- It's important that we want to learn the individual components:
 - Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\Theta(1/\epsilon^2)$ samples from black box techniques.
 - Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]
 - Proper learning: [Daskalakis-Kamath '14]
 - But only in low dimensions.

- It's important that we want to learn the individual components:
 - Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\Theta(1/\epsilon^2)$ samples from black box techniques.
 - Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]
 - Proper learning: [Daskalakis-Kamath '14]
 - But only in low dimensions.
 - ► Generic high-*d* TV estimation algs use 1d parameter estimation.

A variant of Pearson's 1894 method is optimal!

- A variant of Pearson's 1894 method is optimal!
- ullet Suppose we want means and variances to ϵ accuracy:

7/27

- A variant of Pearson's 1894 method is optimal!
- \bullet Suppose we want means and variances to ϵ accuracy:
 - μ_i to $\pm \epsilon \sigma$

- A variant of Pearson's 1894 method is optimal!
- \bullet Suppose we want means and variances to ϵ accuracy:
 - μ_i to $\pm \epsilon \sigma$
 - σ_i^2 to $\pm \epsilon^2 \sigma^2$

7 / 27

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
 - μ_i to $\pm \epsilon \sigma$
 - \bullet σ_i^2 to $\pm \epsilon^2 \sigma^2$
- In one dimension: $\Theta(1/\epsilon^{12})$ samples *necessary* and *sufficient*.

7 / 27

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
 - μ_i to $\pm \epsilon \sigma$ • σ_i^2 to $\pm \epsilon^2 \sigma^2$
- In one dimension: $\Theta(1/\epsilon^{12})$ samples *necessary* and *sufficient*.
 - Previously: $1/\epsilon^{\approx 300}$, no lower bound.

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
 - μ_i to $\pm \epsilon \sigma$ • σ_i^2 to $\pm \epsilon^2 \sigma^2$
- In one dimension: $\Theta(1/\epsilon^{12})$ samples *necessary* and *sufficient*.
 - Previously: $1/\epsilon^{\approx 300}$, no lower bound.
 - Moreover: algorithm is almost the same as Pearson (1894).

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
 - μ_i to $\pm \epsilon \sigma$ • σ_i^2 to $\pm \epsilon^2 \sigma^2$
- In one dimension: $\Theta(1/\epsilon^{12})$ samples *necessary* and *sufficient*.
 - Previously: $1/\epsilon^{\approx 300}$, no lower bound.
 - ▶ Moreover: algorithm is almost the same as Pearson (1894).

• More precisely: if two gaussians are α standard deviations apart, getting $\epsilon \alpha$ precision takes $\Theta(\frac{1}{\alpha^{12}\epsilon^2})$ samples.

• In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
 - ▶ If components overlap, then parameter distance \approx TV.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
 - ▶ If components overlap, then parameter distance \approx TV.
 - If components don't overlap, then clustering is trivial.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
 - $\,\blacktriangleright\,$ If components overlap, then parameter distance \approx TV.
 - If components don't overlap, then clustering is trivial.
 - ▶ Straightforwardly gives $\widetilde{O}(d^{30}/\epsilon^{36})$ samples.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
 - ▶ If components overlap, then parameter distance \approx TV.
 - If components don't overlap, then clustering is trivial.
 - Straightforwardly gives $\widetilde{O}(d^{30}/\epsilon^{36})$ samples.
 - ▶ Best known, but not the $\tilde{O}(d/\epsilon^c)$ we want.

- In *d* dimensions, $\Theta(1/\epsilon^{12} \log d)$ samples for *parameter distance*.
 - " σ^2 " is max variance in any coordinate.
 - Get each entry of covariance matrix to $\pm \epsilon^2 \sigma^2$.
 - Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
 - ▶ If components overlap, then parameter distance \approx TV.
 - If components don't overlap, then clustering is trivial.
 - Straightforwardly gives $\widetilde{O}(d^{30}/\epsilon^{36})$ samples.
 - ▶ Best known, but not the $\widetilde{O}(d/\epsilon^c)$ we want.
- Caveat: assume p_1, p_2 are bounded away from zero throughout.

Algorithm in One Dimension

Algorithm in One Dimension

2 Lower Bound

Algorithm in One Dimension

2 Lower Bound

Algorithm in d Dimensions

Algorithm in One Dimension

2 Lower Bound

Algorithm in d Dimensions

• We want to learn five parameters: $\mu_1, \mu_2, \sigma_1, \sigma_2, p_1, p_2$ with $p_1 + p_2 = 1$.

- We want to learn five parameters: $\mu_1, \mu_2, \sigma_1, \sigma_2, p_1, p_2$ with $p_1 + p_2 = 1$.
- Moments give polynomial equations in parameters:

$$M_1 := \mathbb{E}[x^1] = p_1 \mu_1 + p_2 \mu_2$$

$$M_2 := \mathbb{E}[x^2] = p_1 \mu_1^2 + p_2 \mu_2^2 + p_1 \sigma_1^2 + p_2 \sigma_2^2$$

$$M_3, M_4, M_5, M_6 = [...]$$

11/27

- We want to learn five parameters: $\mu_1, \mu_2, \sigma_1, \sigma_2, p_1, p_2$ with $p_1 + p_2 = 1$.
- Moments give polynomial equations in parameters:

$$M_1 := \mathbb{E}[x^1] = p_1 \mu_1 + p_2 \mu_2$$

 $M_2 := \mathbb{E}[x^2] = p_1 \mu_1^2 + p_2 \mu_2^2 + p_1 \sigma_1^2 + p_2 \sigma_2^2$
 $M_3, M_4, M_5, M_6 = [...]$

Use our samples to estimate the moments.

- We want to learn five parameters: $\mu_1, \mu_2, \sigma_1, \sigma_2, p_1, p_2$ with $p_1 + p_2 = 1$.
- Moments give polynomial equations in parameters:

$$M_1 := \mathbb{E}[x^1] = p_1 \mu_1 + p_2 \mu_2$$

 $M_2 := \mathbb{E}[x^2] = p_1 \mu_1^2 + p_2 \mu_2^2 + p_1 \sigma_1^2 + p_2 \sigma_2^2$
 $M_3, M_4, M_5, M_6 = [...]$

- Use our samples to estimate the moments.
- Solve the system of equations to find the parameters.

Solving the system

Start with five parameters.

- Start with five parameters.
- First, can assume mean zero:
 - Convert to "central moments"

- Start with five parameters.
- First, can assume mean zero:
 - Convert to "central moments"
 - $M_2' = M_2 M_1^2$ is independent of translation.

- Start with five parameters.
- First, can assume mean zero:
 - Convert to "central moments"
 - $M_2' = M_2 M_1^2$ is independent of translation.
- Analogously, can assume $\min(\sigma_1, \sigma_2) = 0$ by converting to "excess moments"

- Start with five parameters.
- First, can assume mean zero:
 - Convert to "central moments"
 - $M_2' = M_2 M_1^2$ is independent of translation.
- Analogously, can assume $min(\sigma_1, \sigma_2) = 0$ by converting to "excess moments"
 - $X_4 = M_4 3M_2^2$ is independent of adding $N(0, \sigma^2)$.

Solving the system

- Start with five parameters.
- First, can assume mean zero:
 - Convert to "central moments"
 - $M_2' = M_2 M_1^2$ is independent of translation.
- Analogously, can assume $min(\sigma_1, \sigma_2) = 0$ by converting to "excess moments"
 - $X_4 = M_4 3M_2^2$ is independent of adding $N(0, \sigma^2)$.
 - "Excess kurtosis" coined by Pearson, appearing in every Wikipedia probability distribution infobox.

Parameters	$\lambda > 0$ rate, or inverse scale
Support	$x \in [0, \infty)$
pdf	$\lambda e^{-\lambda x}$
CDF	1 - e ^{-\(\lambda \times\)}
Mean	λ-1
Median	$\lambda^{-1} \ln(2)$
Mode	0
Variance	λ-2
Skewness	2
Ex. kurtosis	6
Entropy	1 - In(\(\lambda\)
MGF	$\left(1 - \frac{t}{\lambda}\right)^{-1}$ for $t < \lambda$
CF	$\left(1-\frac{it}{\lambda}\right)^{-1}$
Eicher informati	on 1-2

12 / 27

- Start with five parameters.
- First, can assume mean zero:
 - Convert to "central moments"
 - $M_2' = M_2 M_1^2$ is independent of translation.
- Analogously, can assume $min(\sigma_1, \sigma_2) = 0$ by converting to "excess moments"
 - $X_4 = M_4 3M_2^2$ is independent of adding $N(0, \sigma^2)$.
 - "Excess kurtosis" coined by Pearson, appearing in every Wikipedia probability distribution infobox.
- Leaves three free parameters.

Method of Moments: system of equations

Convenient to reparameterize by

$$\alpha = -\mu_1 \mu_2, \beta = \mu_1 + \mu_2, \gamma = \frac{\sigma_2^2 - \sigma_1^2}{\mu_2 - \mu_1}$$

Method of Moments: system of equations

Convenient to reparameterize by

$$\alpha = -\mu_1 \mu_2, \beta = \mu_1 + \mu_2, \gamma = \frac{\sigma_2^2 - \sigma_1^2}{\mu_2 - \mu_1}$$

Gives that

$$\begin{split} X_3 &= \alpha(\beta + 3\gamma) \\ X_4 &= \alpha(-2\alpha + \beta^2 + 6\beta\gamma + 3\gamma^2) \\ X_5 &= \alpha(\beta^3 - 8\alpha\beta + 10\beta^2\gamma + 15\gamma^2\beta - 20\alpha\gamma) \\ X_6 &= \alpha(16\alpha^2 - 12\alpha\beta^2 - 60\alpha\beta\gamma + \beta^4 + 15\beta^3\gamma + 45\beta^2\gamma^2 + 15\beta\gamma^3) \end{split}$$

Method of Moments: system of equations

Convenient to reparameterize by

$$\alpha = -\mu_1 \mu_2, \beta = \mu_1 + \mu_2, \gamma = \frac{\sigma_2^2 - \sigma_1^2}{\mu_2 - \mu_1}$$

Gives that

$$\begin{split} X_3 &= \alpha(\beta + 3\gamma) \\ X_4 &= \alpha(-2\alpha + \beta^2 + 6\beta\gamma + 3\gamma^2) \\ X_5 &= \alpha(\beta^3 - 8\alpha\beta + 10\beta^2\gamma + 15\gamma^2\beta - 20\alpha\gamma) \\ X_6 &= \alpha(16\alpha^2 - 12\alpha\beta^2 - 60\alpha\beta\gamma + \beta^4 + 15\beta^3\gamma + 45\beta^2\gamma^2 + 15\beta\gamma^3) \end{split}$$

All my attempts to obtain a simpler set have failed... It is possible, however, that some other ... equations of a less complex kind may ultimately be found.

Chug chug chug...

- Chug chug chug...
- Get a 9th degree polynomial in the excess moments X_3, X_4, X_5 :

$$\begin{split} p(\alpha) &= 8\alpha^9 + 28X_4\alpha^7 - 12X_3^2\alpha^6 + (24X_3X_5 + 30X_4^2)\alpha^5 \\ &\quad + (6X_5^2 - 148X_3^2X_4)\alpha^4 + (96X_3^4 - 36X_3X_4X_5 + 9X_4^3)\alpha^3 \\ &\quad + (24X_3^3X_5 + 21X_3^2X_4^2)\alpha^2 - 32X_3^4X_4\alpha + 8X_3^6 \\ &= 0 \end{split}$$

14 / 27

- Chug chug chug...
- Get a 9th degree polynomial in the excess moments X_3, X_4, X_5 :

$$\begin{split} p(\alpha) &= 8\alpha^9 + 28X_4\alpha^7 - 12X_3^2\alpha^6 + (24X_3X_5 + 30X_4^2)\alpha^5 \\ &\quad + (6X_5^2 - 148X_3^2X_4)\alpha^4 + (96X_3^4 - 36X_3X_4X_5 + 9X_4^3)\alpha^3 \\ &\quad + (24X_3^3X_5 + 21X_3^2X_4^2)\alpha^2 - 32X_3^4X_4\alpha + 8X_3^6 \\ &= 0 \end{split}$$

• Easy to go from solutions $\alpha = -\mu_1 \mu_2$ to mixtures μ_i, σ_i, p_i .

• Get a 9th degree polynomial in the excess moments X_3, X_4, X_5 .

- Get a 9th degree polynomial in the excess moments X_3 , X_4 , X_5 .
 - Positive roots correspond to mixtures that match on five moments.

- Get a 9th degree polynomial in the excess moments X_3 , X_4 , X_5 .
 - Positive roots correspond to mixtures that match on five moments.
 - Pearson's proposal: choose root with closer 6th moment.

- Get a 9th degree polynomial in the excess moments X_3 , X_4 , X_5 .
 - Positive roots correspond to mixtures that match on five moments.
 - Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]

- Get a 9th degree polynomial in the excess moments X_3 , X_4 , X_5 .
 - Positive roots correspond to mixtures that match on five moments.
 - Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?

- Get a 9th degree polynomial in the excess moments X_3 , X_4 , X_5 .
 - Positive roots correspond to mixtures that match on five moments.
 - Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?
 - Usually works well

- Get a 9th degree polynomial in the excess moments X_3, X_4, X_5 .
 - Positive roots correspond to mixtures that match on five moments.
 - Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?
 - Usually works well
 - Not when there's a double root.

• Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

• How robust is the solution to perturbations of X_3, \ldots, X_6 ?

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

- How robust is the solution to perturbations of X_3, \ldots, X_6 ?
- We know $q(x) := r/(x \alpha)^2$ has no positive roots.

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

- How robust is the solution to perturbations of X_3, \ldots, X_6 ?
- We know $q(x) := r/(x \alpha)^2$ has no positive roots.
- By compactness: $q(x) \ge c > 0$ for some constant c.

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

- How robust is the solution to perturbations of X_3, \ldots, X_6 ?
- We know $q(x) := r/(x \alpha)^2$ has no positive roots.
- By compactness: $q(x) \ge c > 0$ for some constant c.
- Therefore plugging in empirical moments X_i to estimate polynomials p_5 , p_6 is robust:

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

- How robust is the solution to perturbations of X_3, \ldots, X_6 ?
- We know $q(x) := r/(x \alpha)^2$ has no positive roots.
- By compactness: $q(x) \ge c > 0$ for some constant c.
- Therefore plugging in empirical moments \widetilde{X}_i to estimate polynomials p_5 , p_6 is robust:
 - Given approximations $|\widetilde{p}_5 p_5|, |\widetilde{p}_6 p_6| \le \epsilon$,

$$|\alpha - \arg\min \widetilde{r}(x)| \lesssim \epsilon$$
.

- Can create another ninth degree polynomial p_6 from X_3, X_4, X_5, X_6 .
- Then α is the *unique* positive root of

$$r(\alpha) := p_5(\alpha)^2 + p_6(\alpha)^2 = 0.$$

- How robust is the solution to perturbations of X_3, \ldots, X_6 ?
- We know $q(x) := r/(x \alpha)^2$ has no positive roots.
- By compactness: $q(x) \ge c > 0$ for some constant c.
- Therefore plugging in empirical moments X_i to estimate polynomials p_5 , p_6 is robust:
 - Given approximations $|\widetilde{p}_5 p_5|, |\widetilde{p}_6 p_6| \le \epsilon$,

$$|\alpha - \arg\min \widetilde{r}(x)| \lesssim \epsilon.$$

▶ Getting α lets us estimate means, variances.

• Scale so the excess moments are O(1): μ_i are $\pm O(1)$.

- Scale so the excess moments are O(1): μ_i are $\pm O(1)$.
- Getting the \widetilde{p}_i to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.

- Scale so the excess moments are O(1): μ_i are $\pm O(1)$.
- Getting the \widetilde{p}_i to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^2 , then M_i has variance $O(\sigma^{2i})$.

- Scale so the excess moments are O(1): μ_i are $\pm O(1)$.
- Getting the \widetilde{p}_i to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^2 , then M_i has variance $O(\sigma^{2i})$.
- Thus $O(\sigma^{12}/\epsilon^2)$ samples to learn the μ_i to $\pm \epsilon$.

- Scale so the excess moments are O(1): μ_i are $\pm O(1)$.
- Getting the \widetilde{p}_i to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^2 , then M_i has variance $O(\sigma^{2i})$.
- Thus $O(\sigma^{12}/\epsilon^2)$ samples to learn the μ_i to $\pm \epsilon$.
 - If components are $\Omega(1)$ standard deviations apart, $O(1/\epsilon^2)$ samples suffice.

- Scale so the excess moments are O(1): μ_i are $\pm O(1)$.
- Getting the \widetilde{p}_i to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^2 , then M_i has variance $O(\sigma^{2i})$.
- Thus $O(\sigma^{12}/\epsilon^2)$ samples to learn the μ_i to $\pm \epsilon$.
 - If components are $\Omega(1)$ standard deviations apart, $O(1/\epsilon^2)$ samples suffice.
 - ▶ In general, $O(1/\epsilon^{12})$ samples suffice to get $\epsilon \sigma$ accuracy.

Outline

Algorithm in One Dimension

2 Lower Bound

Algorithm in d Dimensions

• The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

Constant means and variances.

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N(0, \sigma^2)$ to each mixture for growing σ .

- The algorithm takes $O(\epsilon^{-12})$ samples because it uses six moments
 - ▶ Necessary to get sixth moment to $\pm (\epsilon \sigma)^6$.
- Let F, F' be any two mixtures with five matching moments:

- Constant means and variances.
- ▶ Add $N(0, \sigma^2)$ to each mixture for growing σ .
- Claim: $\Omega(\sigma^{12})$ samples necessary to distinguish the distributions.

• Two mixtures F, F' with $F \approx F'$.

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.
- Improve using squared Hellinger distance.

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.
- Improve using squared Hellinger distance.

•
$$H^2(P,Q) := \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^2 dx$$

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.
- Improve using squared Hellinger distance.
 - $H^2(P,Q) := \frac{1}{2} \int (\sqrt{p(x)} \sqrt{q(x)})^2 dx$
 - ► H² is subadditive on product measures:

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.
- Improve using squared Hellinger distance.
 - $H^2(P,Q) := \frac{1}{2} \int (\sqrt{p(x)} \sqrt{q(x)})^2 dx$
 - ► H² is subadditive on product measures:

*
$$H^2((x_1,\ldots,x_m),(x'_1,\ldots,x'_m)) \leq mH^2(x,x').$$

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.
- Improve using squared Hellinger distance.
 - $H^2(P,Q) := \frac{1}{2} \int (\sqrt{p(x)} \sqrt{q(x)})^2 dx$
 - ► H² is subadditive on product measures:
 - * $H^2((x_1,\ldots,x_m),(x'_1,\ldots,x'_m)) \leq mH^2(x,x').$
 - ▶ Sample complexity is $\Omega(1/H^2(F, F'))$

- Two mixtures F, F' with $F \approx F'$.
- Have $TV(F, F') \approx 1/\sigma^6$.
- Shows $\Omega(\sigma^6)$ samples, $O(\sigma^{12})$ samples.
- Improve using squared Hellinger distance.
 - $H^2(P,Q) := \frac{1}{2} \int (\sqrt{p(x)} \sqrt{q(x)})^2 dx$
 - H² is subadditive on product measures:

*
$$H^2((x_1,\ldots,x_m),(x'_1,\ldots,x'_m)) \leq mH^2(x,x').$$

- Sample complexity is $\Omega(1/H^2(F, F'))$
- ▶ $H^2 \lesssim TV \lesssim H$, but often $H \approx TV$.

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$
$$= 1 - \underset{x \sim p}{\mathbb{E}} [\sqrt{1 + \Delta(x)}]$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [\sqrt{1 + \Delta(x)}]$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [1 + \Delta(x)/2 - O(\Delta^{2}(x))]$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [\sqrt{1 + \Delta(x)}]$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [1 + \Delta(x)/2 - O(\Delta^{2}(x))]$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [\sqrt{1 + \Delta(x)}]$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [1 + \underbrace{\Delta(x)}/2 - O(\Delta^{2}(x))]$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [\sqrt{1 + \Delta(x)}]$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [1 + \underbrace{\Delta(x)}/2 - O(\Delta^{2}(x))]$$

$$\lesssim \underset{x \sim p}{\mathbb{E}} [\Delta^{2}(x)]$$

Definition

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx$$

• If $q(x) = (1 + \Delta(x))p(x)$ for some small Δ , then [Pollard '00]

$$H^{2}(p,q) = 1 - \int \sqrt{1 + \Delta(x)} p(x) dx$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [\sqrt{1 + \Delta(x)}]$$

$$= 1 - \underset{x \sim p}{\mathbb{E}} [1 + \underbrace{\Delta(x)}/2 - O(\Delta^{2}(x))]$$

$$\lesssim \underset{x \sim p}{\mathbb{E}} [\Delta^{2}(x)]$$

• Compare to $TV(p,q) = \frac{1}{2} \mathbb{E}_{x \sim p}[|\Delta(x)|]$

Lemma

Let F, F' be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G' = F + N(0, \sigma^2), F' + N(0, \sigma^2)$,

$$H^2(G,G')\lesssim 1/\sigma^{2k+2}$$
.

Lemma

Let F, F' be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G' = F + N(0, \sigma^2), F' + N(0, \sigma^2)$,

$$H^2(G, G') \lesssim 1/\sigma^{2k+2}$$
.

• Power series expansion of $\mathbb{E}[\Delta^2] = \mathbb{E}\left[\left(\frac{G'(x) - G(x)}{G(x)}\right)^2\right]$.

Lemma

Let F, F' be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G' = F + N(0, \sigma^2), F' + N(0, \sigma^2)$,

$$H^2(G, G') \lesssim 1/\sigma^{2k+2}$$
.

- Power series expansion of $\mathbb{E}[\Delta^2] = \mathbb{E}\left[\left(\frac{G'(x) G(x)}{G(x)}\right)^2\right]$.
- Matching moments make the first k terms zero.

Lemma

Let F, F' be two subgaussian distributions with k matching moments and constant parameters. Then for G, $G' = F + N(0, \sigma^2)$, $F' + N(0, \sigma^2)$,

$$H^2(G, G') \lesssim 1/\sigma^{2k+2}$$
.

- Power series expansion of $\mathbb{E}[\Delta^2] = \mathbb{E}\left[\left(\frac{G'(x) G(x)}{G(x)}\right)^2\right]$.
- Matching moments make the first k terms zero.
- Leaves $(1/\sigma^{k+1})^2$ as largest remaining term.

• Add $N(0, \sigma^2)$ to two mixtures with five matching moments.

For

$$G=rac{1}{2}N(-1,1+\sigma^2)+rac{1}{2}N(1,2+\sigma^2)$$
 $G'pprox 0.297N(-1.226,0.610+\sigma^2)+0.703N(0.517,2.396+\sigma^2)$ have $H^2(G,G')\lesssim 1/\sigma^{12}$.

• Add $N(0, \sigma^2)$ to two mixtures with five matching moments.

For

$$G = \frac{1}{2}N(-1, 1 + \sigma^2) + \frac{1}{2}N(1, 2 + \sigma^2)$$

$$G' \approx 0.297N(-1.226, 0.610 + \sigma^2) + 0.703N(0.517, 2.396 + \sigma^2)$$
have $H^2(G, G') \le 1/\sigma^{12}$.

• Therefore distinguishing *G* from *G'* takes $\Omega(\sigma^{12})$ samples.

• Add $N(0, \sigma^2)$ to two mixtures with five matching moments.

For

$$G = \frac{1}{2}N(-1, 1 + \sigma^2) + \frac{1}{2}N(1, 2 + \sigma^2)$$

$$G' \approx 0.297N(-1.226, 0.610 + \sigma^2) + 0.703N(0.517, 2.396 + \sigma^2)$$
have $H^2(G, G') \le 1/\sigma^{12}$.

- Therefore distinguishing *G* from *G'* takes $\Omega(\sigma^{12})$ samples.
- Cannot learn either means to $\pm \epsilon \sigma$ or variance to $\pm \epsilon^2 \sigma^2$ with $o(1/\epsilon^{12})$ samples.

Trivial based on the Hellinger distance bound.

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all *d* coordinates.

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all *d* coordinates.
- Solution must solve all d instances.

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O(\epsilon^{12})$.

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all *d* coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O(\epsilon^{12})$.
- Therefore $\Omega(\epsilon^{-12} \log(d/\delta))$ samples are necessary to succeed with probability 1 $-\delta$:

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all *d* coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O(\epsilon^{12})$.
- Therefore $\Omega(\epsilon^{-12} \log(d/\delta))$ samples are necessary to succeed with probability 1δ :
 - \blacktriangleright Each set of ϵ^{-12} samples has a constant chance of giving no information about each coordinate.

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all *d* coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O(\epsilon^{12})$.
- Therefore $\Omega(\epsilon^{-12} \log(d/\delta))$ samples are necessary to succeed with probability 1δ :
 - \blacktriangleright Each set of ϵ^{-12} samples has a constant chance of giving no information about each coordinate.
 - ▶ With $o(\epsilon^{-12} \log d)$ samples, some coordinate will be independent of all the samples.

Outline

Algorithm in One Dimension

2 Lower Bound

Algorithm in d Dimensions

• Want to learn average male/female height, weight, shoe size, ...

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:
 - ▶ Does μ_i go with μ_j or μ'_j ?

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:
 - ▶ Does μ_i go with μ_j or μ'_i ?
 - ▶ Project onto a random direction $e_i \sin \theta + e_j \cos \theta$.

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:
 - ▶ Does μ_i go with μ_j or μ'_i ?
 - ▶ Project onto a random direction $e_i \sin \theta + e_j \cos \theta$.
 - (μ_i, μ_j) usually has a significantly different projection from (μ_i, μ_j') .

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:
 - ▶ Does μ_i go with μ_j or μ'_i ?
 - ▶ Project onto a random direction $e_i \sin \theta + e_j \cos \theta$.
 - (μ_i, μ_j) usually has a significantly different projection from (μ_i, μ'_j) .
- Thus we can piece them together by solving the $O(d^2)$ one dimensional problems.

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:
 - ▶ Does μ_i go with μ_j or μ'_i ?
 - ▶ Project onto a random direction $e_i \sin \theta + e_i \cos \theta$.
 - (μ_i, μ_j) usually has a significantly different projection from (μ_i, μ'_j) .
- Thus we can piece them together by solving the $O(d^2)$ one dimensional problems.
- For covariances: reduce to d = 4, so $O(d^4)$ one dimensional problems.

- Want to learn average male/female height, weight, shoe size, ...
 - (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider d = 2:
 - ▶ Does μ_i go with μ_j or μ'_i ?
 - ▶ Project onto a random direction $e_i \sin \theta + e_j \cos \theta$.
 - (μ_i, μ_j) usually has a significantly different projection from (μ_i, μ'_j) .
- Thus we can piece them together by solving the $O(d^2)$ one dimensional problems.
- For covariances: reduce to d = 4, so $O(d^4)$ one dimensional problems.
- Only loss is $\log(1/\delta) \rightarrow \log(d/\delta)$:
 - $\Theta(1/\epsilon^{12}\log(d/\delta))$ samples

Our result:

▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.

Our result:

- ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
- ▶ If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.

- Our result:
 - ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
 - ▶ If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to *k* > 2?

- Our result:
 - ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
 - ▶ If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to k > 2?
 - ▶ Lower bound extends, at least to $\Omega(\epsilon^{-6k-2})$.

- Our result:
 - ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
 - ▶ If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to k > 2?
 - ▶ Lower bound extends, at least to $\Omega(\epsilon^{-6k-2})$.
 - ▶ Do we really care about finding an $O(\epsilon^{-22})$ algorithm?

Our result:

- ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
- If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to k > 2?
 - ▶ Lower bound extends, at least to $\Omega(\epsilon^{-6k-2})$.
 - ▶ Do we really care about finding an $O(\epsilon^{-22})$ algorithm?
 - Solving the system of equations gets nasty.

Our result:

- ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
- ▶ If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to k > 2?
 - Lower bound extends, at least to $\Omega(\epsilon^{-6k-2})$.
 - ▶ Do we really care about finding an $O(\epsilon^{-22})$ algorithm?
 - Solving the system of equations gets nasty.
 - [Next talk: Ge-Huang-Kakade avoid this for smoothed instances]

- Our result:
 - ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
 - If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to k > 2?
 - Lower bound extends, at least to $\Omega(\epsilon^{-6k-2})$.
 - ▶ Do we really care about finding an $O(\epsilon^{-22})$ algorithm?
 - Solving the system of equations gets nasty.
 - ► [Next talk: Ge-Huang-Kakade avoid this for *smoothed* instances]
- Automated way of figuring out whether solution to system of polynomial equations is robust?

- Our result:
 - ▶ $\Theta(\epsilon^{-12} \log d)$ samples necessary and sufficient to estimate μ_i to $\pm \epsilon \sigma$, σ_i^2 to $\pm \epsilon^2 \sigma^2$.
 - ▶ If the means have $\alpha\sigma$ separation, just $O(\epsilon^{-2}\alpha^{-12})$ for $\epsilon\alpha\sigma$ accuracy.
- Extend to k > 2?
 - Lower bound extends, at least to $\Omega(\epsilon^{-6k-2})$.
 - ▶ Do we really care about finding an $O(\epsilon^{-22})$ algorithm?
 - Solving the system of equations gets nasty.
 - ► [Next talk: Ge-Huang-Kakade avoid this for *smoothed* instances]
- Automated way of figuring out whether solution to system of polynomial equations is robust?
- TV estimation in d dimensions with d/ϵ^c rather than d^{30}/ϵ^c ?