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The Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

100 Tyf Piano, 440 Hz

Displacement of Air Concert A
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The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Oil Exploration
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Computing the Discrete Fourier Transform

@ How to compute X = Fx?
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Computing the Discrete Fourier Transform

@ How to compute X = Fx?
@ Naive multiplication: O(n?).
@ Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

@ By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]
@ Can we do much better?

When can we compute the Fourier
Transform in sublinear time? J
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Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)
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Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)

Sparsity is common:

Audio Video Medical Radar Oil Exploration
Imaging

Eric Price (MIT) Sparse Recovery and Fourier Sampling 5/37



Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)

Sparsity is common:

Goal of this work: a sparse Fourier transform
Faster Fourier Transform on sparse data. J
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Talk Qutline

0 Sparse Fourier Transform
@ Overview

@ Technical Details
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Talk Qutline

0 Sparse Fourier Transform
@ Overview
@ Technical Details

9 Beyond: Sparse Recovery / Compressive Sensing
@ Overview
@ Adaptivity
@ Conclusion
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My Contributions

Goal: Compute the Fourier transform X = Fx when X is k-sparse.

@ Theory:

» The fastest algorithm for Fourier transforms of sparse data.
» The only algorithms faster than FFT for all kK = o(n).
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My Contributions

Goal: Compute the Fourier transform X = Fx when X is k-sparse.

@ Theory:
» The fastest algorithm for Fourier transforms of sparse data.
» The only algorithms faster than FFT for all kK = o(n).

@ Practice:

» Implementation is faster than FFTW for a wide range of inputs.
» Orders of magnitude faster than previous sparse Fourier transforms.
» Useful in multiple applications.
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Applications of ideas
http://groups.csail.mit.edu/netmit/sFFT/workshop.html

GPS Synchronization

< CDMA codg
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o GPS [HAKI]: 2x faster
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Applications of ideas
http://groups.csail.mit.edu/netmit/sFFT/workshop.html

Occupancy from 2GHz to 3GHz (10 ms FFT window)
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@ GPS [HAKI]: 2x faster
@ Spectrum sensing [HSAHK]: 6 x lower sampling rate
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Applications of ideas
http://groups.csail.mit.edu/netmit/sFFT/workshop.html

@ GPS [HAKI]: 2x faster
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@ Spectrum sensing [HSAHK]: 6 x lower sampling rate
@ Dense FFT over clusters [TPKP]: 2x faster
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Applications of ideas
http://groups.csail.mit.edu/netmit/sFFT/workshop.html

@ GPS [HAKI]: 2x faster

@ Spectrum sensing [HSAHK]: 6 x lower sampling rate
@ Dense FFT over clusters [TPKP]: 2x faster

o ...
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Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

Eric Price (MIT) Sparse Recovery and Fourier Sampling 11/37



Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

@ Adapted to complexes [Mansour ‘92, GGIMS02, AGS03, GMSO05,
Iwen 10, Akavia '10]

Eric Price (MIT) Sparse Recovery and Fourier Sampling 11/37



Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

@ Adapted to complexes [Mansour ‘92, GGIMS02, AGS03, GMSO05,
Iwen 10, Akavia '10]

» All take at least k log* n time.
» Only better than FFT if k < n/log® n.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 11/37



Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

@ Adapted to complexes [Mansour ‘92, GGIMS02, AGS03, GMSO05,
Iwen 10, Akavia '10]

» All take at least k log* n time.
» Only better than FFT if k < n/log® n.

@ Our results [HIKP12a, HIKP12b]

Eric Price (MIT) Sparse Recovery and Fourier Sampling 11/37



Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

@ Adapted to complexes [Mansour ‘92, GGIMS02, AGS03, GMSO05,
Iwen 10, Akavia '10]
» All take at least k log* n time.
» Only better than FFT if k < n/log® n. ‘

@ Our results [HIKP12a, HIKP12b]
» Exactly k-sparse: O(klog n)
* Optimal if FFT is optimal.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 11/37



Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

@ Adapted to complexes [Mansour ‘92, GGIMS02, AGS03, GMSO05,
Iwen 10, Akavia '10]

» All take at least k log* n time.
» Only better than FFT if k < n/log® n.

@ Our results [HIKP12a, HIKP12b]
» Exactly k-sparse: O(klog n)
* Optimal if FFT is optimal.
» Approximately k-sparse: O(klog(n/k)log n)

[result—X|2 < (1+€) min_ Xk — X2
k-sparse X (k)

Eric Price (MIT) Sparse Recovery and Fourier Sampling 11/37



Theoretical Results

For a signal of size n with k large frequencies

@ First on Boolean cube [GL89, KM92, L93]

@ Adapted to complexes [Mansour ‘92, GGIMS02, AGS03, GMSO05,
Iwen 10, Akavia '10]
» All take at least k log* n time.
» Only better than FFT if k < n/log® n.

@ Our results [HIKP12a, HIKP12b]
» Exactly k-sparse: O(klog n)
* Optimal if FFT is optimal.
» Approximately k-sparse: O(klog(n/k)log n)

HI’eSU't—/)?Hz <(1+¢€) minA Hj(\(k) —/)?Hg
k-sparse Xk

» Better than FFT for any k = o(n)
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Discrete Fourier Transform (DFT) Definition

@ Given x € C", compute Fourier transform X:

~ 1

) —If _ aTi/n
Xi = — w ix; for w=e
= 2w

J
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) —If _ aTi/n
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)

(where T is the circle constant 6.283...)
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Discrete Fourier Transform (DFT) Definition

@ Given x € C", compute Fourier transform X:

1 p .
T —Ij __ ATi/n
x_—E wlx for w=¢e

i ”/- g

X=Fx for Fj=w/n

@ Inverse transform almost identical:
Xj = Z (UU/)?]
J

» w— w ', scale
@ Lots of nice properties
» Convolution +— Multiplication

(where T is the circle constant 6.283...)

Eric Price (MIT) Sparse Recovery and Fourier Sampling 12/37



Algorithm

Simpler case: X is exactly k-sparse.
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Algorithm

Simpler case: X is exactly k-sparse. h ’

Theorem
We can compute x in O(k log n) expected time. J

Still kind of hard.

Simplest case: X is exactly 1-sparse.

Lemma
We can compute a 1-sparse X in O(1) time. J
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Algorithm for k =1

Lemma a
We can compute a 1-sparse X in O(1) time.J

o [aifi=t
=1 0 otherwise t
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Algorithm for k =1

Lemma a
We can compute a 1-sparse X in O(1) time.J %
5 a ifi=t
"~ 0 otherwise t
@ Then x = (a, aw!, aw?!, awd!, ..., aw(n—11),
Xo=a X1 = aw!
@ Xi/xg=w! = t. [ |

@ (Related to OFDM, Prony’s method, matrix pencil.)
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@ Reduce general kto k = 1.

S - m’ A
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into

O(k) buckets.

S - m’ A
\ —

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

15/37



Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into

O(k) buckets.

S - m’ A
\ —

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

15/37



Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into

O(k) buckets.

S - m’ A
\ —

Eric Price (MIT)

Sparse Recovery and Fourier Sampling

15/37



Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.

S - m’ A
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.
@ “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

S - “’ \
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

@ Random permutation

m’ A
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

@ Random permutation

m’ A
\ —

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37




Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

—
mx

@ Random permutation

Eric Price (MIT) Sparse Recovery and Fourier Sampling 15/37



Algorithm for general k

@ Reduce general kto k = 1.

@ “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

@ Most frequencies alone in bucket.

@ Random permutation H
o i G R

Recovers most of X:

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Overall outline

x)

Partial k-sparse recovery
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Lemma (Partial sparse recovery)

In O(k log n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Overall outline
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Lemma (Partial sparse recovery)
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How can you isolate frequencies?

Time Frequency

n-dimensional DFT:
O(nlog n)
X — X

n-dimensional DFT of first
k terms: O(nlog n)
X - rect — X x sinc.

first k terms: O(Blog B)
alias(x - rect) —
subsample(X * sinc).

AJWJ\N[\%JL k-dimensional DFT of
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The issue

We want to isolate frequencies.

The sinc filter “leaks”.

Contamination from other buckets.

We introduce a better filter:

(Gaussian / prolate spheroidal sequence) convolved with rectangle.

Eric Price (MIT)
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Algorithm for exactly sparse signals

Original signal z Goal 2
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Algorithm for exactly sparse signals
Computed F-z Filtered signal Fxz

I
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Algorithm for exactly sparse signals

F.x aliased to k terms Computed samples of Fxz
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Algorithm for exactly sparse signals
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Algorithm for exactly sparse signals

F.x aliased to k terms Knowledge about 2

Lemma

If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.
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Algorithm for exactly sparse signals

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.
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@ Time-shift x by one and repeat: b’ = X;w'.
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Algorithm for exactly sparse signals

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

@ Time-shift x by one and repeat: b’ = X;w'.
@ Divide to get b’/b = w! = can compute t.
» Just like our 1-sparse recovery algorithm, x; /xo = w!.

@ Gives partial sparse recovery: X’ such that X — X’ is k/2-sparse.

X e

@ Repeatk — k/2 - k/4 — - --
@ O(klog n) time sparse Fourier transform. n
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Algorithm for approximately sparse signals
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Algorithm for approximately sparse signals

@ What changes with noise?
@ |dentical architecture:

Partial sparse recovery

@ Just requires robust 1-sparse recovery.
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Algorithm for approximately sparse signals: k = 1
Lemma
Suppose X is approximately 1-sparse:

Xt/ |1 X2 = 90%.

Then we can recover it with O(log n) samples and O(Iog2 n) time.
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Then we can recover it with O(log n) samples and O(log® n) time.
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NI

@ With exact sparsity: log n bits in a single measurement.
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Then we can recover it with O(log n) samples and O(log® n) time.

LN X1/Xo = w! + noise

=
N

J

@ With exact sparsity: log n bits in a single measurement.
@ With noise: only constant number of useful bits.
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@ With noise: only constant number of useful bits.
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Algorithm for approximately sparse signals: k = 1
Lemma
Suppose X is approximately 1-sparse:

Xt/ |1 X2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
K\ Xe,/Xo = W%l + noise

@ With exact sparsity: log n bits in a single measurement.

@ With noise: only constant number of useful bits.

@ Choose ©(log n) time shifts ¢ to recover i.

@ Error correcting code with efficient recovery — Lemma. [ |
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Algorithm for approximately sparse signals: general k

Lemma

If X is approximately 1-sparse, we can recover it with O(log n) samples
and O(log? n) time.
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Lemma

If X is approximately 1-sparse, we can recover it with O(log n) samples
and O(log? n) time.

</
m )

Reduce k-sparse to 1-sparse on buckets of size n/k, with log n
overhead per sample.
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Algorithm for approximately sparse signals: general k
Lemma

If X is approximately 1-sparse, we can recover it with O(log n) samples
and O(log? n) time.

</
m )

Reduce k-sparse to 1-sparse on buckets of size n/k, with log n
overhead per sample.
Theorem

If X is approximately k-sparse, we can recover it in
O(klog(n/k)log n) time.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 23/37



Empirical performance
@ Compare to

» FFTW, the “Fastest Fourier Transform in the West”
» AAFFT, the [GMSO05] sparse Fourier transform.
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» FFTW, the “Fastest Fourier Transform in the West”
» AAFFT, the [GMSO05] sparse Fourier transform.
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@ Faster than FFTW for wide range of values.
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Recap of Sparse Fourier Transform

@ Theory:

» The fastest algorithm for Fourier transforms of sparse data.
» The only algorithms faster than FFT for all kK = o(n).
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Recap of Sparse Fourier Transform

@ Theory:
» The fastest algorithm for Fourier transforms of sparse data.
» The only algorithms faster than FFT for all kK = o(n).

@ Practice:

» Implementation is faster than FFTW for a wide range of inputs.
» Orders of magnitude faster than previous sparse Fourier transforms.
» Useful in multiple applications.
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Talk Qutline

9 Beyond: Sparse Recovery / Compressive Sensing
@ Overview
@ Adaptivity
@ Conclusion
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Sparse Recovery / Compressive Sensing

Robustly recover sparse x from linear measurements y = Ax.
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Sparse Recovery / Compressive Sensing

Robustly recover sparse x from linear measurements y = Ax.

1000 2000

Sparse Fourier MRI

Faa
Streaming Algorithms Genetic Testing
Alx+A) =Ax+ AA
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My Contributions

@ Sparse Fourier: minimize time complexity [HIKP12b, HIKP12a]
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Adaptive Sparse Recovery Model

@ Unknown approximately k-sparse vector x € R”.
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Adaptive Sparse Recovery Model

@ Unknown approximately k-sparse vector x € R”.
@ Choose v € R", observe y = (v, x).

@ Choose another v and repeat as needed.

@ Output x’ satisfying

X' —=xll2<(1+€) min |Ix—xq2
k-sparse X

@ Nonadaptively: O(k log(n/k)) measurements necessary and
sufficient. [Candes-Romberg-Tao ‘06, DIPW ’'10]
@ Natural question: does adaptivity help?
» Studied in [MSWO08, JXC08, CHNR08, AWZ08, HCN09, ACD11, ...]

@ First asymptotic improvement: O(k loglog(n/k)) measurements.
[IPW ’11]
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Outline of Algorithm
Theorem

Adaptive k-sparse recovery is possible with O(kloglog(n/k))
measurements.
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Outline of Algorithm

Theorem

Adaptive k-sparse recovery is possible with O(kloglog(n/k))
measurements.

_ m‘ \
—/

Suffices to solve for k = 1:

Lemma

Adaptive 1-sparse recovery is possible with O(loglog n)
measurements.
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Outline of Algorithm

Adaptive 1-sparse recovery is possible with O(loglog n)

Lemma
measurements. }
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1-sparse recovery: non-adaptive lower bound
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1-sparse recovery: non-adaptive lower bound

Lemma

Adaptive 1-sparse recovery is possible with O(loglog n)
measurements.

@ Non-adaptive lower bound: why is this hard?
@ Hard case: x is random e; plus Gaussian noise w with ||w|z ~ 1.

@ Robust recovery must locate /.

@ Observations (v, x) = v;+ (v, w) = Vv; + ”\‘}'{'fz, forz~ N(0,1).
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1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0, 1)
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1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0, 1)
RIS
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1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0, 1)

BRI
R
3K

@ Shannon 1948: information capacity
1
I(i,{v,x)) < > log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

ianal2 2
SNR — E[signal“]  E[v{]

Elnoise®]  |v|3/n

Eric Price (MIT) Sparse Recovery and Fourier Sampling 33/37



1-sparse recovery: non-adaptive lower bound
@ Observe (v, x) = v; + %z, where z ~ N(0, 1)

IS
‘3‘:‘:‘0
0200
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@ Shannon 1948: information capacity
1
I(i,{v,x)) < > log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

a2 2
snR - Elsignal®l E[v?]

Elnoise®]  |v|3/n

@ Finding i needs Q(log n) non-adaptive measurements.
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1-sparse recovery: changes in adaptive setting

@ Information capacity
I(i, (v, x)) < %Iogﬁ + SNR).

where SNR denotes the “signal-to-noise ratio,”

E[v?]

SNR = .
IvII3/n

Eric Price (MIT) Sparse Recovery and Fourier Sampling 34/37



1-sparse recovery: changes in adaptive setting

@ Information capacity
I(i, (v, x)) < %Iogﬁ + SNR).

where SNR denotes the “signal-to-noise ratio,”

E[v?]

SNR = .
IvII3/n

@ If i is independent of v, this is O(1).
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1-sparse recovery: changes in adaptive setting

@ Information capacity
I(i, (v, x)) < %Iog(1 + SNR).

where SNR denotes the “signal-to-noise ratio,”

E[v?]

SNR = .
Ivl3/n

@ If i is independent of v, this is O(1).
@ As we learn about i, we can increase the SNR.
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1-sparse recovery: idea

X=€e+w
Signal l [ Candidate set
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SNR =2 I(i, {v, x)) < log SNR = 1
(v, x) =vi+(v,w)
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1-sparse recovery: idea

X=e+w

Signal l [ Candidate set
oObits
1hit l
2 bits | I |
v wﬂ
SNR = 24

I(i, (v, x)) < log SNR =

(v, x) =vi+(v,w)
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1-sparse recovery: idea
X=€e+w
Signal l [ Candidate set

0 bits
1bit |

2 bits | | |

4 bits | I |
\ VA

SNR = 28 (i, (v, x)) < log SNR = 8

(v, x) =vi+(v,w)
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1-sparse recovery: idea

X=e+w
Signal l [ Candidate set

0 bits

1bit l
2 bits | I |

4 bits | I l

8 bits | [ l

v %

SNR = 216 I(i, (v, x)) < log SNR = 16
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1-sparse recovery

Lemma (IPW11)
Adaptive 1-sparse recovery takes O(loglog n) measurements. J
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1-sparse recovery

Lemma (IPW11, PW13)
Adaptive 1-sparse recovery takes ©(loglog n) measurements. J
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1-sparse recovery

Lemma (IPW11, PW13)
Adaptive 1-sparse recovery takes ©(loglog n) measurements.
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1-sparse recovery

Lemma (IPW11, PW13)
Adaptive 1-sparse recovery takes ©(loglog n) measurements. J

,masa funct|on of n (SNR 10db k=1)

— Gaussmn measurements L1 minimization
«—— Adaptive measurements

,masa functioq of SNR (n=81‘92,k=1)

~— Gaussian measurements, L1 minimization
«— Adaptive measurements
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Gives O(kloglog(n/k)) k-sparse recovery via general framework.

Eric Price (MIT) Sparse Recovery and Fourier Sampling 36/37



Summary

@ Sparse Fourier transform

» Fastest algorithm for Fourier transforms on sparse data
» Already has applications with substantial improvements
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Summary

@ Sparse Fourier transform

» Fastest algorithm for Fourier transforms on sparse data
» Already has applications with substantial improvements

@ Broader sparse recovery theory

Sparse Fourier: minimize time complexity [HIKP12]

MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]
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Summary

@ Sparse Fourier transform

» Fastest algorithm for Fourier transforms on sparse data

» Already has applications with substantial improvements
@ Broader sparse recovery theory
Sparse Fourier: minimize time complexity [HIKP12]
MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]
@ Lower bounds

» Based on Gaussian channel capacity: tight bounds, extensible to

adaptive settings.
» Based on communication complexity: extends to {; setting.
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Summary

@ Sparse Fourier transform

» Fastest algorithm for Fourier transforms on sparse data

» Already has applications with substantial improvements
@ Broader sparse recovery theory
Sparse Fourier: minimize time complexity [HIKP12]
MRI: minimize Fourier sample complexity [GHIKPS13, IKP14]
Camera: use Earth-Mover Distance metric [IP11, GIP10, GIPR11]
Streaming: improved analysis of Count-Sketch [MP14, PW11, P11]
Genetic testing: first asymptotic gain using adaptivity [IPW11, PW13]
@ Lower bounds

» Based on Gaussian channel capacity: tight bounds, extensible to

adaptive settings.
» Based on communication complexity: extends to {; setting.
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The Future

@ Make sparse Fourier applicable to more problems
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The Future

@ Make sparse Fourier applicable to more problems
» Better sample complexity
» Incorporate stronger notions of structure

@ Tight constants in compressive sensing

» Analogous to channel capacity in coding theory.
» Lower bound techniques, from information theory, should be strong
enough.
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