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Abstract

This paper presents a novel algorithmic approach to
music performance analysis. Previous attempts to use
algorithmic tools in this field focused typically on tempo
and dynamics alone. We base our analysis on ten
different performance categories (such as bowing, vibrato
and durations). We adapt phylogenetic analysis tools to
resolve the inherent inconsistencies between these cate-
gories, and describe the relationships between perfor-
mances. Taking samples from 29 different performances
of two pieces from Bach’s sonatas for solo violin, we
construct a ‘phylogenetic’ tree, representing the relation-
ship between those performances. The tree supports
several interesting relations previously conjectured by the
musicology community, such as the importance of date
of birth and recording period in determining interpreta-
tive style. Our work also highlights some unexpected
inter-connections between performers, and challenges
previous assumptions regarding the significance of
educational background and affiliation to the historically
informed performance (HIP) style.

1. Introduction

The 120 years of recorded musical data provide a broad
platform for studying interpretation profiles and their
mutual influences. And yet, the analysis of sound
recordings is a relatively new area in musicology. In its
early stages, the examination of performance styles
was mainly done manually, through meticulous aural
scrutiny. However, a few precursors to the application of
technology in the field of music analysis (and ethno-
musicology in particular) could be traced to the seminal

works of Carl E. Seashore and Milton Franklin
Metfessel, who used phonophotography as well as the
tonoscope (Williams, 1931; Seashore, 1938). Further-
more, as early as the 1950s, several researchers (most
prominently Charles Seeger) used the melograph—a
pitch analysis tool, which underwent a process of
evolution over the years—for similar purposes (Seeger,
1951; Dahlback, 1958; Cohen & Katz, 1968; Cohen,
1969; List, 1974; Moore, 1974). Nowadays, the practice
of recording analysis is aided occasionally by various
software tools for determining specific categories, such as
beat extraction and spectral analysis.1

Recording analysis has thus far led to a number of
interesting findings, of which the major one is the
identification of evident differences in performance styles
manifested over the years. Analysing recordings made by
any one performer over a large span of time or examining
recordings made of the same repertoire throughout the
120 years of recordings has shown a huge shift in
approach regarding tone production, tempo, articulation
and the like (Philip, 1992, 2004; Leech-Wilkinson,
2009a). Another finding is the clear distinction observed
by musicologists between the ‘mainstream’ performance
approach, and the relatively new ‘historically informed
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1The amount of performance practice studies is wide, and only
a few will be presented here. Such, for example, are studies
made of interpretation approaches to piano compositions

(Repp, 1992; Rink, 2001; Musgrave & Sherman, 2003), string
quartet (Turner, 2004), symphonic repertoire (Bowen, 1996),
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An extended list of studies made on the subject can be
additionally found in Bowen (2005).
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performance’ (HIP) performance style. The use of period
instruments as opposed to their ‘modern’ equivalent or
the manner of execution of certain rhythmic elements
are but a few examples of the substantial difference in
interpretation between the two schools (Haskell, 1988;
Kenyon, 1988; Taruskin, 1995; Lawson & Stowell, 1999;
Butt, 2002; Rink, 2002; Fabian, 2003; Golomb, 2005;
Ornoy 2006, 2007).

Furthermore, a widespread conception is that newer
performances are less idiosyncratic in nature, compared
to older ones. The reason for this is assumed to be the
rise of the recording industry and the canonization
of certain recordings made by authoritative figures,
which are believed to have promoted a certain degree of
unity and standardization in performance (Dart, 1954;
Dreyfus, 1983; Philip, 1992, 2004; Katz, 2004). In
contrast, recent studies challenging such assumptions
have focused on identification of performers’ individual,
distinctive characteristics and idiosyncratic expression
(Cook, Clarke, Leech-Wilkinson, & Rink, 2009; Fabian
& Ornoy, 2009; Leech-Wilkinson, 2009a).

From an algorithmic point of view, several attempts
have been made to comparatively analyse and classify
performances (Beran & Mazzola, 1999; Madsen &
Widmar, 2006; Sapp, 2007, 2008; Molina-Solana, Lluı́s
Arcos, & Gomez, 2008; Almansa & Delicado, 2009).
These efforts focused mainly on just two performance
aspects (dynamics and tempo), and commonly utilized
statistical and signal-processing approaches in order to
compare performances to one another. It should be
noted that the dynamics aspect alone is potentially
problematic, as it is heavily dependent on recording
technique and equipment, as well as manual intervention
by the recording technician—more so than other
performance aspects (Trapani & Richter, 1985; Nannes-
tad, 2004; Trezise, 2009).

In this work, we propose a novel algorithmic
approach to comparative musical recording analysis.
We study 29 performances of two of Bach’s sonatas for
violin solo (specifically, the opening segments of the first
movements of sonatas BWV 1001 and BWV 1005; see
Figures 1 and 2). Applying phylogenetic reconstruction
tools, we build an unrooted tree, whose 29 leaves
correspond to the performances.

We consider eleven categories, such as vibrato, tempo,
and chord types (see expanded method section for the
full list of categories). Each performance is encoded as a
87-dimensional vector by sampling these 10 categories
from predetermined, synchronous segments. These seg-
ments span 15 bars (*75 s on average) from two specific
movements, chosen for their highly expressive and
informative characteristics. The different categories are
essentially incomparable and inconsistent, and therefore
do not induce a single, uniform distance measure. To
analyse them, we partition the vectors’ coordinates by
categories, and construct quartets (Strimmer & von

Haeseler, 1996; Chor, 1998), based on each category,
and a choice of ‘quartets parameters’. A phylogenetic
quartet is a topological arrangement of four items
partitioning them into two disjoint pairs. Quartets are
useful in cases in which the ‘larger picture’ may not be
immediately deduced from the raw data, but on smaller
scales, local relations may be discerned more reliably (see
Figure 3).

In our work, we retain only the quartets which are
identified as highly reliable and combine the resulting
quartet set into a tree, using a quartet max-cut heuristic
(Snir & Rao, 2006). Different sets of quartets, corre-
sponding to different choices of parameters, give rise to
different trees, which are eventually combined into one
final tree, using consensus (Adams, 1972). The con-
sensus tree is then analysed to examine proximity
relations between leaves, and how they relate to specific
criteria, such as recording dates, performers’ dates of
birth, performers’ music schools, and affiliation with the
‘HIP’ style. We note that these categories are based
upon observations discussed earlier in the literature
(Philip, 1992, 2004; Rink, 2002; Fabian, 2003; Katz
2004; Golomb, 2005; Ornoy, 2008; Leech-Wilkinson,
2009a).

1.1 Analysis criteria

Attempts to define performance ‘style’ and to explain its
change over the years have been associated with a
plethora of causes. Such causes include common
aesthetic standards, performers’ mutual influences, or
shared biographical identities (Dart, 1954; Dreyfus, 1983;

Fig. 1. Adagio (bars 1–9) from J.S. Bach’s g minor Sonata (no.

1) for Solo Violin, BWV 1001. (J.S. Bach: Sechs Sonaten Und
Partiten Fuer Violin solo, Urtext, based on Bach’s autograph
score.)

216 Elad Liebman et al.



Philip, 1992, 2004; Weiss, 1992; Day, 2000; Katz, 2004,
2006; Lisboa, Williamon, Zicari, & Einholzer, 2005;
Hellaby, 2009).2

The clear existence of changing yet well-defined
conventional trends points to the importance of the
recording date in the shaping of performance interpreta-
tion prototypes. As such, one may anticipate confor-
mance between the date of recording and the grouping in
the tree. That said, we note that performers of the second
half of the twentieth century have been traditionally
regarded as portraying a unified, homogenous style of
performance, whereas individuality and a variety in
syntax and style is viewed as dominating recordings of
earlier periods. According to this concept, one would
expect to find newer recordings clustered together even
more so than older ones (Dart, 1954; Dreyfus, 1983;
Philip, 1992, 2004; Katz, 2004).

Furthermore, since recording dates do not necessarily
match birth dates, performers’ age might serve as an
essential factor in absorbing the influence of the
recording industry on prevalent norms of practice. The

invention of magnetic tape in the mid-1940s brought
about an unprecedented circulation of commercial
recordings. Assuming that performers’ average periods
of study encompass at least 20 years, it is clear that the
earlier a performer was born, the more likely he is to
have been educated in an era when general norms of
practice might not have been influenced by recordings.
On the other hand, the later a performer was born, the
more likely he is to have been exposed to recordings
throughout his period of study. As mentioned, homo-
geneity and influential prototypes of interpretations are
traditionally acknowledged as predominating younger
generation performers more so than their predecessors.
One would therefore expect to find the youngsters
clustered together, portraying more of a unified style.

Performers’ schools serve as yet another biographical
element, with ‘school’ traditionally relating to the
geographic location of a music conservatory or to a
particularly authoritative teacher. Nineteenth century
violin school classifications include, among others, the
‘French’ school (Baillot, Rode, Kreutzer), ‘Franco-
Belgian’ (Bériot, Vieuxtemps, Wieniawski, Ysaýe) or
‘German’ (Spohr, David).3 Yet such divisions seem
artificial and unrelated to the existing state of affairs
vis-à-vis modern violin playing, as the typical course of
study for twentieth-century performers involves many
different teachers throughout their years of training. As
illustrated in several studies, taking into consideration
the variety of master classes, courses and other related
studies characteristic of a modern player’s educational
résumé, the significance given to one’s ‘school’ should be
considered with great caution (Boyden, 1980; Ornoy,

Fig. 3. A phylogenetic quartet example. For each set of four
items, there are three possible quartet topologies. In this case,

the four items (A,B,C,D) are partitioned by the quartet to (A,B)
versus (C,D). The two other possible topologies for this set of
items would be (A,C) versus (B,D) and (A,D) versus (B,C).

Fig. 2. Adagio (bars 1–12) from J.S. Bach’s C Major Sonata (no. 3) for Solo Violin, BWV 1005. (J.S. Bach: Sechs Sonaten Und

Partiten Fuer Violin solo, Urtext, based on Bach’s autograph score.)

2For a comprehensive discussion of the subject see Leech-

Wilkinson (2009a).

3See Schwarz (1977) for a review of the migration and
influences of prominent Russian violinists on the ‘American’
school, Halász (1995) for a discussion of the Hungarian school,
Lauer (1997) for the Franco-Belgian school, and Lankovsky

(2009) for the Moscow violin school.
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2008; Fabian & Ornoy, 2009; Leech-Wilkinson, 2009a).
That is not to say, however, that some significance
should not be given to direct relations, such as violinists
who have studied under the same teacher or who have
been analysed together with their pupils. In such cases, to
a certain degree, one could expect to find congruence
to the location in the tree.

The term ‘historically informed performers’ (HIP) is
commonly used to describe the large group of musicians
who perform early music repertoire in the ‘authentic’
manner in which it was historically written and
performed. They are commonly distinguished from their
‘mainstream’ colleagues, i.e. performers who apply
‘modern’ performance practices, which seem incompa-
tible with the goals of the HIP movement. Previous
studies have discussed the homogeneity in the execution
of central musical parameters found among HIP, such as
similar manners of rhythmic interpretation, tempo
choices or performance elements influencing sound
production (Taruskin, 1995; Fabian, 2003; Golomb,
2005; Ornoy, 2006). One could thus expect that HIP
performers be clustered together, indicating congruence
in most parameters. It should be noted that in the context
of this work, violinists belonging to the HIP category are
those who have used period instruments during record-
ing. Instances where other features of ‘stylistic awareness’
were presented (such as the use of a curved bow or
special rhythmic execution) were excluded from such
classification.4

The four analysis criteria described above have been
discussed quite extensively in the professional literature.
This has motivated us to examine them with respect to
our algorithmic analysis as well. We emphasize that our
analysis does not make any prior assumptions or
hypotheses regarding these criteria.

2. Methods summary

In this section, we describe the input data and explain the
pre-processing and analysis phases. A more in-depth and
technical overview of the methods employed at each
stage can be found in Appendix C.

2.1 Data

We have based our analysis on 29 different recordings of
Bach’s sonatas and partitas for solo violin. Segments of

two specific movements (BVW 1001 Adagio and BVW
1005 Adagio) were selected for data analysis. For each
performance, measurements belonging to 10 distinct
categories were examined. In each category, a number
of features were extracted.

The 10 categories are:

. Bowing—the marking of bow changes (determined by
auditory means). Each measurement represents
whether bow direction was changed, partially chan-
ged (by the use of Portato/Louré, i.e. slight audible
separation of slurred notes without changing the bow
direction) or unchanged at ten diachronic points in
the sampled section of BVW 1001 (Gm adagio).
These points were chosen after meticulously studying
the recordings, so that at each such point, at least one
performer had indeed changed bow direction.

. Chord ratio—the ratio between the lowest and the
highest notes in the sampled chords (measured with
the Sonic Visualiser software package, see Section 2.2
for a detailed explanation of this category).

. Double stop/arpeggio—represents whether the chord
is an arpeggio or a double stop (one measurement
was taken for each chord in the analysis range,
determined by auditory means).

. Count of double stops in C adagio—double stop
frequency.

. Vibrato—split into three ‘sub-features’: depth, speed
and onset (measured with the Sonic Visualiser soft-
ware package).

. Duration per bar (mid-phrase durations)—measured
with the Sonic Visualiser software package. These
measurements were taken from the sampled segment
of BVW 1005 (C adagio), since each bar in this
segment is meaningful in terms of phrasing.

. Tempo changes—the difference between adjacent
duration measurements, which were collected for
the previous category. This measure is converted to a
discrete scale of three values—faster, slower and
unchanged.

. Total duration—overall performance duration (mea-
sured with the Sonic Visualiser software package).

. Dotting ratio—ratio between adjacent long and short
notes (measured with the Sonic Visualiser software
package, based on the first bar of the CM Adagio
movement).

. Standard deviation of the tempo changes—the stan-
dard deviation of the tempo changes measurements.
This feature is useful in quantifying the tempo
variance of a given performer.

As discussed in Section 1, we preferred not to incorpo-
rate dynamics-related data into our analysis, as it is too
heavily dependent on recording equipment and techni-
que, as well as on manual intervention by the recording
studio technician.

4Addressing the wide issue concerning ‘historically informed
performances’ is beyond the scope of this paper. However, it

should be mentioned that this categorization was based on
previous studies which have pointed to the eminence of period
instruments among performers connected with the HIP agenda
(see Boyden, 1980; Haskell, 1988; Kenyon, 1988; Fabian, 2000,

2003; Ornoy, 2006; Haynes, 2007).
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2.2 Musicological considerations

We faced a practical challenge in analysing the frequent
triple and quadruple-stops contained in the analysed
movements, as there are many possible ways to execute
them. The different ways of breaking the chord—which are
directly linked to idiomatic preferences, technical limita-
tions, or to the chord’s function in the overall musical
context—often involve rhythmic alterations of its inner-
notes. Two categories serve for comparison of interpreta-
tion: ‘double stop/arpeggio’, which distinguishes between
arpeggios and chord-breaking, and ‘chord ratio’, which
examines whether the highest note of the chord is more
dominant than the lowest note (the duration of both notes
was measured). These categories provide meaningful data
regarding both the melodic and the polyphonic aspects of
the interpretation (Boyden, 1965; Efrati, 1979; Lester,
1999; Katz, 2003).

Since bow change serves as an idiomatic parameter,
which at present is not amenable to computerized
software analysis, it was obtained through meticulous
repeated aural scrutiny of the relevant recordings.
Measurements were made by both the first and second
author (the latter being a professional violinist) during
several listening sessions.

2.3 Computational considerations

2.3.1 Processing—quartets and phylogenetic trees

The combined data was first normalized and then
examined. Initially, a unified distance measure was
calculated, based on the 89-long vectors representing all
categories. By applying the Buneman (1971) tree criteria
on the unified distance measure, we discovered that it has
a highly incongruent nature—the resulting tree was
completely unresolved (a star). More evidence for the
implausibility of naı̈vely combining the categories into a
single unified measure was obtained using clustering. To
analyse the data, it was clustered repeatedly, each time
according to a different category, using the k-means
algorithm (MacQueen, 1967). Since the output of the
k-means algorithm is dependent both on the parameter k
and on a random initialization stage, the clusters were
determined several times, using different k values (k¼ 2,
3, 4). The different partitions induced by the various
categories were then compared and found to be highly
inconsistent. For these reasons, classic distance based
approaches (such as neighbour joining and standard
clustering) were deemed inapplicable. We thus decided to
adopt a quartet based approach (Strimmer & von
Haesler, 1996; Chor, 1998; Ben-Dor, Chor, Graur,
Ophir, & Pelleg, 1998; Jiang, Kearney, & Li, 2000).

Our quartet-based scheme is as follows: initially, we
work with each category separately, choosing those

quartet topologies, which have clear support. To
determine support, a voting scheme is used—for each
possible 4-tuple (a subset of four out of the 29
performances), each category votes for a specific
topology mapping the relations between these four
performances, or abstains if it supports no such
topology. After this stage, quartet topologies with
insufficient support (defined by number of supporting
categories as well as the number of opposing categories)
are filtered out, leaving us with a relatively small list of
quartet topologies which are deemed reliable. This list
is dependent on several predetermined parameters
(defining category support and reliability). Therefore,
the process is repeated many times for different
parameter configurations. For each such list of quartet
topologies (determined by a specific set of parameters),
an unrooted phylogenetic tree is constructed, using Snir
and Rao’s (2006) ‘quartets max-cut’ heuristic. The
problem of building a tree from quartets is computa-
tionally intractable, thus a heuristic is called for (Steel,
1992).

Subsequently, each tree is given a score, based on its
rate of accordance with the list of quartet topologies
from which it was constructed, as well as the size of this
‘support list’ and the number of splits the resultant tree
contains (we give preference to trees which are based
on a large number of quartet topologies, and trees
which are resolved enough to display meaningful
information).

2.3.2 Processing—consensus trees, final tree selection

Having scored all the trees created by the various quartet
topology lists (essentially covering the parameter space),
a list of majority-vote consensus trees (Margush and
McMorris, 1981) is constructed—for the 20, 40, 60, 80
and 100 highest scoring trees (out of the list of mean-
ingful trees we described earlier).

The five resultant consensus trees are quite similar, as
can be seen in the Table 1, presenting the pairwise
distances between the trees according to the Robinson–
Foulds metric (Robinson & Foulds, 1980). In this
sense, we can say that the resultant consensus trees are
stable.

In order to compare the various consensus trees, we
devised two ‘tree quality’ measures, used to determine
which tree is most reliable. The selected tree was
cons_80Trees (the tree constructed via consensus over
the 80 highest scoring trees). The second best tree was
cons_20Trees (the tree constructed via consensus over
the 20 highest scoring trees). We note that cons_80Trees
obtained better results than cons_20Trees for approxi-
mately 60% of the quartet lists considering the first
quality measure, and approximately 80% considering the
second quality measure, thus indicating the resultant tree
is consistently superior to the ‘competing’ option.
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2.4 Correlating the distance and the categories

We attempted to discern which performance categories
were most influential in the tree construction process.
Each category is represented by a vector whose length
varies between 1 (for the total duration category, for
instance) and 30 (for the double stop versus arpeggio
category). For each pair of performances, the Euclidean
distance between the vectors of each category was
computed. For each of our 10 categories, we proceeded
to compute the Pearson correlation between the Eu-
clidean pairwise distances among performances induced
by this category, and the tree distances between these
performances. Overall, this is the Pearson correlation
between two vectors of length

�
29
2

�
¼ 406 each. We also

computed this correlation for the distance induced by all
the categories naı̈vely concatenated. There are 10
categories, plus the ‘combined’ one, so overall, 11
correlations were computed. All correlation results were
strictly positive. Three of the eleven resulting values were
in the range ½0:04; 0:1Þ. Four of these values were in the
range ½0:1; 0:2Þ. Two correlation values were in the range
½0:2; 0:3Þ, and the top two correlation values were 0.4 and
0.42. These correlations correspond to the count of
double stops in the first movement, and the dotting ratio,
respectively. This means that these two categories are
the most correlated to the resulting tree, in terms of
pairwise distances. Interestingly, the correlation of the
distance induced by the ‘combined’ (concatenated)
category is only 0.12. This may serve as further evidence
for the non-metric nature of the data, explaining
why naı̈ve neighbour joining failed to produce an
informative tree.

2.5 Validation

The inhomogeneous nature of the data makes validation
a non-trivial task, as the validation criteria themselves
are not clear a priori. Still, we would expect a
considerable correlation between the raw input data
and the resultant tree. For this purpose, we used the
entire list of supported quartets (i.e. all the quartets
generated by each of the ten categories, with respect to at
least one of the thresholds), and devised a simple
measure of pair support/opposition—how strongly is

the entire ‘mass’ of supported quartets (for all categories)
‘in favour of’ placing a given pair of performances
together versus putting them apart. It should be noted
that a lack of strong enough support in favour of placing
two performances together does not necessarily entail
that the data supports placing them apart—the input
data may be undecided for specific pairs. The votes were
summed to constitute an opposition score and a support
score (the two scores were calculated separately for the
reason listed above). In addition, the actual distances in
the resultant tree were calculated. Then, the Pearson
correlation between the tree distances (for each pair of
performances,

�
29
2

�
¼ 406) and the rates of support/

opposition described above was calculated (two correla-
tion scores, separately). The correlation between the
pairwise performance tree distances and the opposition
score is þ0:557, whereas the correlation between the
pairwise performance distances and the support score is
70.556. The proximity between the positive and negative
correlation values should not come as a surprise, as the
correlation between support and opposition was calcu-
lated to be 70.92 (and not –1, due to the ‘indifferent’
categories).

This illustrates that the tree distances arewell correlated
to the input. On the other hand, it also suggests that the
final result is highly sensitive to many other factors not
accounted for by our measure (such as the mutual
information among quartets voting for a given pair, or
against it). Therefore support and opposition do not
fully determine the final positions observed in the tree.

3. Results

In this section we describe the resulting tree, and analyse
its correspondence to four criteria that are commonly
used in music-performance studies for recording analysis.
In addition, we show that inconsistencies in the data
make standard clustering analysis problematic.

Our analysis yields the unrooted phylogenetic tree
depicted in Figure 4. The resultant tree has 29 leaves (the
performances), contains 27 splits, and its diameter is
13 edges long. All splits in the tree are binary. Of the 29
performances, three pairs are by the same performer.
Of these, the two performances by Heifetz (from 1935

Table 1. Robinson–Foulds distances of the five resulting trees (the maximal distance score in our case is 2 * 28¼ 56).

Cons_20Trees Cons_40Trees Cons_60Trees Cons_80Trees Cons_100Trees

Cons_20Trees 0 – – – –
Cons_40Trees 8 0 – – –
Cons_60Trees 8 0 0 – –

Cons_80Trees 14 6 6 0 –
Cons_100Trees 10 2 2 4 0
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and 1952) are siblings in the tree. The two performances
by Kuijken (from 1983 and 1999) are fairly close to one
another (both placed in a subtree of seven leaves),
whereas the two performances by Milstein are relatively
far apart—the smallest subtree containing both perfor-
mances has 19 leaves).

In terms of hierarchical clustering, there are six
discernable clusters (subtrees with relatively small
distances between performers) induced by the resultant
tree. These subtrees are marked and numbered in
Figure 4. The first three clusters constitute a larger,
‘upper’ subtree, and the last three clusters constitute a
‘lower’ subtree accordingly.

As mentioned, we applied a number of standard
criteria to examine this tree. For two of the criteria
examined, the date of birth of the performer and the
recording date, the level of agreement with the tree
topology is good. For the criteria of ‘main stream’ versus
‘HIP’ performance style, there is only reasonable though
less distinct agreement. For the performers’ school
criteria there is an overall disagreement with the tree,
even though it does seem to play some minor part on
local scales.

There is a fairly good correspondence between the
date of birth and the location in the tree. In particular,
there are two distinct subtrees well characterized by age.
The first (bottom) subtree contains 13 performers

(14 recordings), 10 of whom were born before 1930.
Only two out of the 14 performances of those born
before 1930 were placed outside this subtree—one
performance (out of two) by Milstein, born 1903, and
one by Telmanyi. The average date of birth for
performers in this subtree is approximately 1918. The
second (top) subtree contains 14 performers (15 record-
ings), 13 of which were born after 1941, and seven of
which born after 1952. Only two performers born after
1952, Szenthelyi (born 1952), and Ehnes (born 1976),
were placed outside this subtree. The average year of
birth for this subtree is 1945.

We use conditional probabilities to quantify more
accurately the extent of accordance between the date of
birth and the placement in the tree. The probability to be
born after 1941 given that the performance had been
placed in the upper (‘young’) subtree is 0.866, whereas
the conditional probability to be born prior to 1941
under the same assumption is 0.133. Similarly, the
probability to be placed in the ‘young’ subtree
given that the performer was born after 1941 is 0.812,
whereas the probability to be placed in the opposite
subtree given the same assumption is only 0.188 (see
Table 2).

A more refined resolution is difficult to obtain, as the
tree does not globally betray the exact location of a
specific performance according to the performer’s date of
birth. This is understandable as age alone cannot be
expected to determine a performer’s expressive signature,
and taking into account the huge variance of birth and
recording dates in the tree.

However, on average, there is a strong correlation
between tree distances and differences in dates of birth.
We have partitioned the

�
29
2

�
¼ 406 age differences to

nine bins: those pairs whose performers’ dates of birth
are at most 5 years apart, those whose dates of birth are
between 5 and 15 years apart, and so forth, up to the last
bin, which represents pairs of performances whose
performers’ dates of birth are 75 years apart or more.
For each such bin, we calculate the corresponding
distances in the tree, and calculate the average tree
distances within this bin. Then, we computed the Pearson
correlation between the average tree distance within the
bins and the average dates of birth difference within the
bins and found it to be 0.697. So indeed, the more distant
two performers are in terms of eras of activity, the more
distant they are likely to be in the resultant tree.
Additional evidence to this relation is obtained if we
examine it from the opposite direction: examining the
tree distances, partitioned similarly into four bins (whose
centres are roughly 3, 6, 9, and 12). The correlation
between the average tree distance within these bins and
the average date of birth difference is 0.947. Figures 5
and 6 display these relations graphically.

The analysis for recording dates yields fairly similar
results. Out of the 29 recordings examined in this work,

Fig. 4. The resultant tree. The numbers refer to subtree

numbering in the text.
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11 are dated prior to 1971. 10 out of these 11 recordings
are placed on the lower (or ‘senior’) subtree discussed
earlier (containing 14 recordings all in all). The average
recording date for the ‘senior’ subtree is approximately
1965. Out of the 18 recordings done after 1971, 14 were
placed in the ‘young’ subtree (consisting of 15 recordings
overall). Fourteen out of 15 performances in the ‘young’
subtree were recorded after 1975, and the average
recording date for this subtree is approximately 1990.
The conditional probability of being placed in the ‘young’
subtree given that the recording was made after 1971 is
0.778, whereas the probability of being placed in the
‘senior’ subtree given the same assumption is 0.222.
Similarly, the probability of being recorded after 1971
given that the recording was placed in the ‘young’ subtree
is 0.933, whereas the probability to be recorded prior to
1971 given the same assumption is only 0.067 (see Table 3).

We note that, as expected, the date of birth and the
recording date are highly correlated (a Pearson correla-
tion of þ0:87 was found), which easily explains why the
tree behaves similarly under both measures.

As explained regarding the date of birth criterion,
achieving a finer predictive resolution is unlikely, but
again, there is a strong correlation between the difference
in recording dates and the average tree distance. If we
partition the pairwise recording date differences to bins
whose centres are roughly 0, 10, . . ., 70, the Pearson
correlation between the average recording date difference
and the average tree distance is 0.73. In the other
direction, the correlation between the average tree
distances (partitioned to bins whose centres are roughly
3, 6, 9, and 12) and the average recording date difference
is 0.643 (notice this correlation is weaker than that
observed for dates of birth). Figures 7 and 8 display these
relations graphically.

Figure 9 depicts the resulting performance tree with an
emphasis on the HIP performances (underlined). There
are eight such performances, all of which are placed with
relative proximity across the upper subtree (eight out of
the 15 performances in the upper, ‘young’ subtree are
considered HIP). All in all the agreement of the tree with
this category is only moderate.

Figure 10 depicts the performers’ alleged affiliation to
musical schools (roughly divided into five categories)
based on their primary teachers (see Appendix B and
Ornoy (2008) for a comprehensive overview of perfor-
mers’ schools). Note that many performers are associated
with two schools. These labels are not localized in the
tree structure—namely, there is no discernable agreement
between the location of a performance in the tree and its
association to musical schools. However, it should be
noted that if we examine this category on small, local
scales, such as pairs of sibling performances in the tree,
many of them do share a school affiliation. Out of the
eight sibling pairs in the tree (in addition to the two
Heifetz performances which were also paired) five have
common schools (namely Szigeti and Vegh, Kuijken and
Wallfisch, Zehetmair and Kremer, Brooks and Gahler,
and Hugget and Telmanyi). If we consider ‘cousin’–
‘uncle’ relations as well, 4 out of 14 such relations are
also supported by their school affiliation (namely Tetzlaff
and Van Dael, Suk and Szerying, Enescu and Menuhin,
and Grumiaux and Enesco).

Table 4 represents a summary of the results, according
to the four criteria described.

3.1 Clustering analysis

An attempt was made to analyse how the performances
relate to one another, based on single categories and
category pairs. A clustering approach was utilized, using
the k-means algorithm (MacQueen, 1967). It was
conclusively revealed that the various performances do

Table 2. List of performances, sorted by performer’s date of

birth, with affiliation to ‘elder’/‘junior’ major subtree and
specific subtree. Partition is by year of birth (before/after 1930).

Performer’s
name

Date
of

birth
Recording

date

Found
in ‘Elder’

(bottom) vs.
‘Junior’

(top) subtree

Association
to specific
subtree

Enescu 1881 1948 Elder 6

Szigeti 1892 1931 Elder 4
Telmányi 1892 1954 Junior 3
Heifetz 1901 1935 Elder 5

Heifetz 1901 1952 Elder 5
Milstein 1903 1954 Elder 4
Milstein 1903 1975 Junior 2

Végh 1905 1971 Elder 4
Menuhin 1916 1957 Elder 6
Szeryng 1918 1968 Elder 6

Ricci 1918 1981 Elder 6
Grumiaux 1921 1960–1961 Elder 6
Suk 1929 1971 Elder 6
Gahler 1941 1998 Junior 2

Luca 1943 1977 Junior 3
Kuijken 1944 1983 Junior 1
Kuijken 1944 2001 Junior 1

Perlman 1945 1986 Elder 4
van Dael 1946 1996 Junior 1
Kremer 1947 2005 Junior 1

Szenthelyi 1952 2002 Elder 6
Wallfisch 1952 1997 Junior 1
Hugget 1953 1995 Junior 3
Mintz 1957 1984 Junior 2

B.Brooks 1959 2003 Junior 2
Zehetmair 1961 1983 Junior 1
Tetzlaff 1966 1994 Junior 1

Podger 1968 1999 Junior 3
Ehnes 1976 1999–2000 Elder 6

222 Elad Liebman et al.



Fig. 5. Age difference versus average distance in the tree (per nine bins).

Fig. 6. Distance in the tree versus average age difference (per four bins).
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not cluster well when examined as a whole—within single
categories, there is no clear partition to clusters, and
clusters generated by different categories are incompatible.
Indeed, it was evident that the various categories are in
complete disagreement regarding the division to clusters.
This observation is in agreement with the non-metric, non-
homogenous nature of the performances. We created two-
dimensional plots of the data, each plot according to a
different pair of categories. For each such plot, each axis
represents a different feature category (for multivariate
categories the primary dimension produced by principal
components analysis was taken). These plots allow us to
examine how well clusters induced by one category hold
when examined by a different category. An example of this
form of visual display is given in Figures 11 and 12.

This form of visual display reveals not only how the
data is clustered according to each category alone, but
also the level of agreement between two specific

categories with respect to their clustering partition. If
the two categories generally agree on the clustering
partition, two-dimensional clusters should appear. If
the two categories disagree, the data should appear
well partitioned according to one axis, but poorly
partitioned according to the other. This is illustrated
quite well in Figures 11 and 12, which depict the
clustering result with respect to the dotting ratio
category and the overall duration category. In Figure
11, the data is clustered according to the total duration,
whereas in Figure 12, the data is clustered according to the
dotting ratio. It is apparent that the two clustering
divisions are in poor agreement—while the data is clearly
well divided according to one category, it is completely
undivided according to the other. It is also evident that the
division to clusters, even in each category alone, is quite
arbitrary, on a global scale. For instance, while Kuijken,
Wallfisch, Zehetmair, and Van Dael are relatively close
together, they are quite distant from Podger, Hugget,
Luca, and Brooks, in at least one of the categories. It is
worth noting that while globally the categories are
incompatible, some local proximity relations do make
sense (such as the relative proximity between the two
Heifetz performances).

Clustering analysis of other category pairs yielded
similar insights (see Appendix D for two more examples).

4. Summary and discussion

4.1 Computational aspects

There are several fundamental problems one must reckon
with when initiating a work of this nature. Which
musical categories (i.e. performance aspects) should be
taken into account, and which should be ignored? How
should the chosen categories be encoded, and how can
they be combined meaningfully so that their relations are
revealed? Our chosen categories are accepted as sig-
nificant ones in musicological literature (Brown, 1997;
Fabian, 2003; Katz, 2003, 2006; Philip, 2004; Fabian &
Ornoy 2009; to name a few), even though other choices
might make sense as well. A problem of a different nature
is that most categories cannot at the moment be retrieved
by fully automatic means.

Once each category is sampled and encoded, it is
desirable to combine all categories’ encodings into one
vector, which induces one metric. However, it turns out
that these categories are incompatible, and such unification
does not seem possible. Therefore, a naı̈ve approach (such
as calculating a single distance metric based on the vector
of all the encoded categories in its entirety, and utilizing
some classic type of neighbour joining to construct a
phylogenetic tree) is bound to produce unreliable results.
This led us to work separately on different category
groups. Quartets from each category were generated and

Table 3. List of performances, sorted by recording date, with

affiliation to ‘elder’/‘junior’ major subtree and specific subtree.
Partition is by year of recording (before/after 1971).

Performer’s
name

Date
of

birth
Recording

date

Found
in ‘Elder’

(bottom) vs.
‘Junior’ (top)

subtree

Association
to specific
subtree

Szigeti 1892 1931 Elder 4

Heifetz 1901 1935 Elder 5
Enescu 1881 1948 Elder 6
Heifetz 1901 1952 Elder 5

Telmányi 1892 1954 Junior 3
Milstein 1903 1954 Elder 4
Menuhin 1916 1957 Elder 6

Grumiaux 1921 1960–1961 Elder 6
Szeryng 1918 1968 Elder 6
Végh 1905 1971 Elder 4

Suk 1929 1971 Elder 6
Milstein 1903 1975 Junior 2
Luca 1943 1977 Junior 3
Ricci 1918 1981 Elder 6

Kuijken 1944 1983 Junior 1
Zehetmair 1961 1983 Junior 1
Mintz 1957 1984 Junior 2

Perlman 1945 1986 Elder 4
Tetzlaff 1966 1994 Junior 1
Hugget 1953 1995 Junior 3

van Dael 1946 1996 Junior 1
Wallfisch 1952 1997 Junior 1
Gahler 1941 1998 Junior 2
Podger 1968 1999 Junior 3

Ehnes 1976 1999–2000 Elder 6
Kuijken 1944 2001 Junior 1
Szenthelyi 1952 2002 Elder 6

B.Brooks 1959 2003 Junior 2
Kremer 1947 2005 Junior 1
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Fig. 8. Average distance in the tree versus average recording date difference (per four bins).

Fig. 7. Recording date difference versus average distance in the tree (per eight bins).
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then filtered, based on the ratio between their edge lengths,
retaining only quartets that are reliable.

For every set of four ‘species’ (performances), all
quartets w.r.t. the different categories went through a
‘voting’ phase—each category provided a vote for a
quartet topology supported by it (a category could
‘abstain’ if no quartet topology was convincingly
satisfied by it). After this phase, the four said species
are either represented by one final quartet topology or by
no quartet at all (if the voting phase could not produce a
convincing ‘winner’). The set of surviving topologies is
given as input to a ‘tree from quartets’ heuristic (Snir &
Rao, 2006), and a tree is produced. Trees resulting from
different parameters are then reconciled, using a tree
consensus algorithm.

We note that in principle, one may represent the relations
between performances not as a tree, but rather as a network
(Huson & Bryant, 2005). Such an approach has interesting
ramifications, which, we believe, should be explored further,
but are out of the scope of the current work.

4.2 Musicological aspects

From a musicological perspective, this study leads to
several interesting conclusions. First among our findings
is the evident amalgamation of similar birth dates. As
mentioned in the introduction, it is premised on the
supposition that performers’ age serves as an essential
factor in absorbing the influence of the recording
industry on conventional practices, as the overwhelming
increase of commercial LPs from the mid-1940s onwards
clearly acted upon newer generations of performers more
so than upon their older peers. The high level of
agreement with the tree topology found here clearlyFig. 10. Affiliation to performance schools in the tree.

Fig. 9. Marking of HIP affiliated performances in the tree.

Table 4. Summary of analysis by categories.

Category Findings

Support

by tree

Division between
‘HIP’ and

mainstream
performers

‘Mainstream’ & HIP
performances are located

in the same upper subtree
(consisting of 15
performances)

Moderate

Division by age Clear division to a ‘senior’

subtree and a ‘youngster’
subtree

Very good

Division by

recording date

Similar division between

‘old’ and ‘contemporary’
recordings

Very good

Division by

schools

No apparent clustering of

performers according to
school affiliation, on an
overall level. Some local

effect may be observed

Low
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supports such a premise: findings indicate that the
average date of birth for the ‘older’ group sub-tree is
1923, and detect a parallel sub-group of ‘youngsters’ in
the opposite pole, whose average year of birth is 1947.5

Our results question the claim that older generation
performers, who were less exposed to recordings by other
performers during their period of training, would display
more idiosyncratic characteristics in their performances.

Fig. 12. Overall duration versus dotting ratio categories. Clustering according to the dotting ratio category (three clusters).

Fig. 11. Overall duration versus dotting ratio categories. Clustering according to the overall duration category (three clusters).

5It should be noted that the ‘younger’ subtree is highly

correlated with the ‘historically-informed’ subtree. This should

not come as a surprise, as the first recording on period

instrument of Bach’s solo violin set was made by Luca in 1977.
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Our tree does not support such a hypothesis, as older
generation recordings are quite clearly clustered together
regardless of their schools, implying general similarities
in performance style rather than idiosyncrasies.

A different hypothesis asserts that recording date has
a strong correlation to the performance style. As noted,
recording dates do not match birth dates (but are
obviously correlated with them—a Pearson correlation
of þ0.87 was found). When examining the date of
recordings for the performances in our tree, our analysis
has indeed revealed a rather strong accordance between
the date of recording and the grouping in the tree. This
correlation, however, is not as strong as that observed for
the date of birth, which potentially may serve to illustrate
the primacy of interpretive traits shaped early in one’s
artistic development over norms of practice emerging
after his formative years. This finding corresponds to
similar observations stating the importance of birth date,
rather than recording date, on performers’ individual
style throughout the years.6

We note that previous analyses of different recordings
made by the same artist do suggest stylistic change over
the course of time.7 This observation has partial support
in our tree, as our input includes three pairs of recordings
by the same performer from different years (recordings
by Heifetz, Milstein, and Kuijken). While the two Heifetz
recordings are placed as siblings (insinuating consistency
in the manner of execution between his 1935 and 1952
recordings), the two recordings made by Milstein and
Kuijken are placed farther apart from each other.
And indeed, one may notice variation when comparing
their categories—for instance, the vibrato and overall
tempo, the dotting ratio, as well as the chord type and
the tempo variance, are quite different in Milstein’s two
performances.8

Obviously, while performers’ early interpretive im-
print is of extreme significance, artists may still adapt
to changing aesthetics and influences over the years.
One should also note that performers might be subjected
to changing physical limitations as they age, and that
such limitations reflect directly on various technical
categories in their performances such as vibrato, intona-
tion or sound production.9

Our phylogenetic tree displays no overall affinities
regarding traditional partitions into performance
schools. As mentioned in the introduction, such
classification should be regarded as highly artificial
and even irrelevant, as the typical course of study for
twentieth-century performers involves many different
teachers throughout their years of training. The
standard route taken by most violinists analysed in
our work involved several major teachers from
different backgrounds (this can be seen in Table 5 in
Appendix B). It should be noted, however, that on
small, local scales (such as the relation between siblings
or between ‘uncle’ and ‘nephew’ performances) the
school affiliation criterion does seem to hold some
degree of influence. This fact is interesting, as it may
lead us to the conclusion that while there are
no common unifying qualities that define one perfor-
mance school as opposed to another, in certain
contexts performance schools may yet play some part.

As presented earlier (see introduction), several musi-
cological studies discuss the homogeneity in the execu-
tion of central musical parameters found among HIP.
This observation, while not directly contended by our
tree, is questioned herewith: while HIP performances are
all grouped in the same, ‘youngster’ subtree, they are not
clustered as closely together as one might expect.
Interestingly, three performances located in this subtree,
which are not explicitly classified as ‘historically-
informed’, may be linked to other aspects of ‘stylistic
awareness’. Both Telmanyi and Gähler are exponents of
the curved bow tradition,10 while Milstein’s 1975
recording has been found in a recent study to be highly
influenced by certain aspects of HIP performance
practice (see Fabian & Ornoy, 2009).

6In his discussion of changing performance styles throughout
the years, Wilkinson notes that ‘. . . on the whole most recorded

musicians for whom we have a lifetime’s output seem to have
developed a personal style early in their career and to have
stuck with it fairly closely for the rest of their lives’ (see Leech-

Wikinson, 2009b, p. 250).
7For studies examining stylistic change of performance patterns
traced among twentieth-century prominent composers see
Lebrecht (1990) (addressing Mahler’s recordings), Cook

(2003) (on Stravinsky), and Park (2009) (on Prokofiev). For
studies pointing to performers’ individual change of style over
the course of time see Katz (2003) (examining multiple

recordings made of the same piece by Kreisler, Menuhin and
others), Leech-Wilkinson (2009a) (on Arleen Auger, Fischer-
Dieskau, Kreisler, and others), and Fabian and Ornoy (2009)

(on Heifetz and Miltstein).
8As earlier presented, such observations (except, perhaps, the
manner of vibrato execution), agree with previous findings,
which have used these two recordings to detect Milstein’s style

change over the years. See Fabian and Ornoy (2009).

9Addressing Joachim’s apparent poor use of vibrato displayed

in his recordings, Styra Avins has pointed to the artists’ old age
as being ‘a particularly severe enemy of vibrato’. See Avins
(2003, p. 28).
10The ‘Vega’ (also ‘Bach’) bow has a round shape and an easily
maneuvered mechanism of hair tautness that enables the
simultaneous projection of a multiple-stop chord. Its use,

presented by its supporters as the one used by Bach and as best
suited for his violin music, has never gained real popularity
amongst violinists save a few (see Schweitzer, 1950; Boyden,
1965; Spivakovsky, 1967; Schroeder, 1970; Haylock, 2000;

Sartorius, 2008).
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All in all, it seems that no single category may be
decisively sensitive to HIP or non-HIP performance
style: It seems that over the years the influence of HIP
performance aspects has grown, affecting the attitudes of
performers not formally associated with the HIP agenda
(such as Tetzlaff or Zehetmair as an example). This
may explain why HIP performances are not clustered
together but appear scattered across the ‘young’ subtree.
More interestingly, the rather recent performance of
Kremer (recorded in 2005) may indicate how widespread
and pervasive the HIP approach has become, influencing
not only young up and coming performers, but also
acclaimed senior performers who were educated in an era
and school much different in approach.

Some results displayed in the tree are unexpected. For
instance, the pairing of Suk and Ehnes is quite surprising,
as these two performers clearly come from vastly
different backgrounds. The pairing of Hugget and
Telmanyi is also somewhat peculiar, as, putting shared
school affiliations aside, they also come from distinctly
separate backgrounds. Another surprising element is the
pairings one would expect, which are not present, such as
the pairing of Mintz and Perlman, who belong to the
same generation and have a rather similar upbringing.
Observing our validation metric for these three pairs
indicates that they are problematic in the sense that most
performance analysis categories we used are ‘indifferent’
to them (seven in the case of Mintz and Perlman, eight in
the case of Suk and Ehnes, and nine in the case of Hugget
and Telmanyi). A category that is ‘indifferent’ to a
certain pair is basically undecided regarding how each
performance in the pair should be placed with respect to
the other. This means the final position of these pairs is
harder to explain compared to other, more obvious pairs.
It would appear that the quartet reconciliation methods
we employed may indeed be sensitive to such cases of
poorly resolved pairwise relationships. Naturally, a pair
most categories are indifferent to may be paired together
or apart merely due to the constraints imposed by
completely different performances alone.

On the other hand, re-examining the pairwise dis-
tances induced by each category does shed light on the
unexpected proximity of both Suk and Ehnes, whose
performances are, judging by the raw data, surprisingly
similar (considering the bowing, the chord ratio and the
double stop versus arppegio categories, to name a few).
To substantiate this observation, we calculated the
Pearson correlation of the two ‘combined’ raw input
vectors (all 87 measurements) for Ehnes’ and Suk’s
respective performances, which is 0.63. In order to put
this in context, all the pairwise correlations between raw
input vectors were calculated (

�
29
2

�
¼ 406 pair correla-

tions all in all). The average correlation is 0.07, with the
maximal value being 0.94 and the minimal value being
70.55. The correlation between the Suk and Ehnes
performances is the fifth best correlation of the 406

calculated. We note that among the top five best
correlations, there are two sibling pairs in the tree (the
two Heifetz performances, ranking first with a correla-
tion of 0.94, and the Suk and Ehnes performances), and
two pairs of performances in relatively close proximity
(the two Kuijken performances, ranking third with a
correlation of 0.66, and the performances by Telmany
and Gahler, ranked second with a correlation of 0.89).
Only one pair of these five is placed relatively far apart in
the tree—the performances by Kremer and Suk, ranked
fourth with a correlation of 0.65. It is important to note
that raw correlation gives more weight to categories with
a higher number of measurements (e.g. the double stop
versus arpeggio category, which consists of 30 measure-
ments out of the 87 taken). This observation explains, for
instance, why the correlation between Telmanyi and
Gahler is so high (as both use a historic Vega bow). Our
method compensates for this over-representation, as each
category has the same weight in the final tree construc-
tion, regardless of its number of measurements.

Similarly, while the performances by Perlman and
Mintz are not that far off, they are not particularly close
either, judging by most categories (the correlation
between the raw input vectors for these two perfor-
mances is 0.36, which is not particularly strong). All in
all, it seems that while this is an issue which requires
further attention, the results can be justified even when
considering such problematic pairings.

To conclude, the findings presented in our work
illustrate a compound picture regarding the proximity
relations among performances. Several background
factors were found to be influential in shaping an artist’s
approach to performance. It would appear, however,
that an attempt to predict generic classifications of
performance styles based solely on shared biographical
identities holds little promise: the clustering of perfor-
mances by performers of different backgrounds high-
lights joint idiosyncratic peculiarities, which seem to
overshadow general categorizations. Each performance
is an amalgamation of myriad features, primarily based
on performers’ complex weighing and balancing of the
various performance factors at their disposal. Empirical
studies aiming to attribute interpretation profiles to
‘objective’ means such as biographical background or
teacher–student influences may prove quite limited. The
performance elements examined in this work are not
exhaustive: various idiomatic features (such as specific
fingering or different bowing techniques, to name a few)
are almost impossible to obtain reliably from audio
recordings. To these, one should add the numerous
factors related to the creative dimension of the recording
process itself: performance features mediated and ma-
nipulated by producers and engineers (such as dynamics),
limitations and restrictions connected to recording
technologies (bearing in mind the untrustworthiness of
commercial transfers or even original discs with regard to
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timbre analysis), performers’ psychological state, in, as
well as outside, the studio, or even our listening habits
as researchers (for a comprehensive discussion of the
subject see Cook et al., 2009).

What this work seems to suggest is a new way of
understanding the complex interactive process among
performers. An algorithmic approach to musical perfor-
mance analysis provides tools that might shed future
light on fundamental aspects of musical performance,
such as the very concept of style and its developments,
the origin and nature of performance conventions or the
ever-lasting mutual relations between originality, idio-
syncrasy and particularization to uniformity and general
trends. As such, it provides a new outlook on the history
of music performance, thus proving valuable in advan-
cing our understanding of musical performances. To the
best of our knowledge, this is the first work taking into
account such a large variety of performance aspects,
and attempting to amalgamate them into a single, unified
view by applying computational means. We expect that
additional efforts along these lines will refine and
improve on our approach.
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investigations. In L. Vikárius & V. Lampert (Eds.),
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Appendix A: Quartets

A quartet is an unrooted subtree with four leaves. For
every choice of four leaves there are three quartet
topologies on these leaves. Given a set of quartets over
leaves, finding a tree that is consistent with as many of
them as possible is a hard computational task (Steel,
1992). There are efficient heuristics, such as quartet
puzzling, quartets max-cut and many others (see
Strimmer & von Haeseler, 1996; Ben-Dor et al., 1998;
Jiang et al., 2000; Snir & Rao, 2006; to mention a few),
which produce a tree that typically exhibits a good
agreement with the input quartets. Such a heuristic—the
Rao-Snir quartet max cut—is employed in our trees
construction.

Figure 13 depicts a concrete example of an (unknown)
tree with five leaves, 1 through 5. Out of the five possible
quartets ð

�
5
4

�
¼ 5), we are given four quartets topologies,

which in this case are inconsistent due to possibly corrupt
data (no tree is compatible with all of them). The
heuristic we apply reconstructs a tree compatible with
three of these four quartet topologies, displayed in
Figure 14.
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Appendix B: Performance schools

Table 5 and Figure 15 contain concentrated data
regarding the educational background and performance
school affiliation of all performers discussed in this
paper.

Appendix C: Methods (extended version)

In this appendix we fully describe, in a greater level of
technical detail, the data collection and processing
phases, and the quartet based approach we used for

constructing the phylogenetic trees. Musicological con-
siderations, correlation results and the validation process
are not discussed in this appendix, as they were already
fully reviewed in Section 2.

Data

29 performances of Bach’s sonatas and partitas for solo
violin were collected. Segments of two specific move-
ments (BVW 1001 Adagio and BVW 1005 Adagio) were
selected for data analysis. For each performance,
measurements belonging to 10 distinct categories were
examined. In each category, a number of features were
extracted (between 1 and 30 per category), adding up to
an 87-dimensional measurements vector per perfor-
mance. The 10 categories are:

Table 5. Concentrated information regarding the performance

school of each of the performers.

Performer’s
name

Performers’ school affiliation

Szigeti Hubay’s pupil (‘Hungarian school’)

Heifetz Auer’s pupil (‘Russian school’-St. Petersburg)
Enescu Hellmesberger’s pupil (‘Viennese school’),

Marsick’s pupil (‘Parisian school’)

Telmányi Hubay’s pupil (‘Hungarian school’)
Milstein Stoliarsky’s pupil (‘Russian school’-Odessa),

Auer’s pupil (‘Russian school’-St. Petersburg)

Menuhin Enescu’s pupil (‘Viennese school’), Persinger’s
pupil (‘Franco-Belgian school’ þ ‘American
school’)

Grumiaux Enescu’s pupil (‘Parisian school’ þ ‘Vienna

school’)
Szeryng Flesch’s pupil (‘German school’), Frenkel’s pupil

(‘Russian school’-St. Petersburg)

Suk (Sevcik)/Kocian pupil (‘Czech school’)
Végh Hubai’s pupil (‘Hungarian school’)
Luca Rostal’s pupil (‘German school’), Galamian’s

pupil (‘American school’), affiliated with ‘HIP
school’

Ricci Persinger’s pupil (‘Franco-Belgian
school’ þ ‘American school’)

Zehetmair Rostal’s pupil (‘German school’), Milstein’s pupil
(‘Russian school’-Odessa)

Kuijken Raskin’s pupil (‘Franco-Belgian school’),

affiliated with ‘HIP school’
Mintz Feher’s pupil (‘Hungarian school’), Stern’s pupil

(‘American school’)

Perlman Galamian’s DeLay’s pupil (‘American
school’)

Tetzlaf Levin’s pupil (‘American school’), Haiberg’s pupil

(‘German school’)
Hugget Kuijken’s pupil (‘Franco-Belgian school’),

Parikian’s pupil (‘Hungarian school’), affiliated
with ‘HIP school’

van Dael Goldberg’s pupil (‘German school’), affiliated
with ‘HIP school’

Wallfisch Grinke’s pupil (‘Franco-Belgian school’ þ ‘English

school’), affiliated with ‘HIP school’
Gahler Schroeder’s pupil, Brero’s pupil (‘German

school’)

Podger Comberti’s pupil (affiliated with ‘HIP school’)
Ehnes (Galamian)/Chaplin’s pupil (‘American School’)
Szenthelyi Kovacs’s pupil (‘Hungarian school’)
B. Brooks Goldberg’s pupil (‘German school’)

Kremer Oistrach’s pupil (‘Russian school’-Moscow)

Fig. 14. Tree resolved from input quartets. Explanation:

suppose we have some abstract original tree of structure
((1,2), (3), (4,5)) (see Figure 13). We are not provided with this
tree, but with some quartets which purportedly originate from
it. The input data is corrupt, however, so in reality we obtained

three ‘true’ quartets and one ‘false’ quartet: (1,2—3,4) (1,2—
3,5) (2,3—4,5) (1,4—3,5). We have no means of knowing which
of the quartets is false, but we may immediately notice that in

this specific case, no tree can satisfy all our input quartets. The
best we could hope for is a tree which satisfies three out of the
four input quartets. This may not necessarily be the original

tree: for instance, in this case, the tree ((1,2), 4, (3,5)) satisfies
three out of four quartets (the same as the original one).

Fig. 13. Original tree.
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. Bowing—the marking of bow changes. Ten features
(determined by auditory means). Each feature repre-
sents whether bow direction was changed, partially
changed or unchanged at ten diachronic points in the
sampled section of BVW 1001 (Gm adagio). These
points were chosen after meticulously studying the
recordings, so that at each such point, at least one
performer had indeed changed bow direction. Direc-
tion change, partial direction change and no change
were encoded by the numerical values ½1; 0:5; 0�,
respectively.

. Chord ratio—the ratio between the lowest and the
highest notes in the sampled chords. Fourteen
features (measured with the Sonic Visualiser software
package, see the Musical Considerations subsection
for a detailed explanation of this category).

. Double stop/arpeggio—represents whether the chord
is an arpeggio or a double stop—a vector of 30
measurements (one measurement for each chord in
the analysis range, determined by auditory means).
For each chord in the sequence, performers who
utilized a Vega bow scored 2 (no breaking), perfor-
mers who utilized a double stop scored 1 (‘half-
break’), and performers who opted for an arpeggio
scored 0 (complete break).

. Count of double stops in C adagio—one feature
(double stop frequency).

. Vibrato—split into three ‘sub-features’: depth, speed
and onset. Nine features (3� 3 measurements of
depth, speed and onset for three sample notes.
measured with the Sonic Visualiser software pack-
age).

. Duration per bar—11 features (11 bars) (measured with
the Sonic Visualiser software package). These mea-
surements were taken from the sampled segment of
BVW1005 (C adagio), since each bar in this segment is
meaningful in terms of phrasing.

. Tempo changes—10 features (10 ¼ 11� 1)—the
difference between adjacent duration measurements
(the differences are based on the duration measure-
ments, which were collected for the previous
category). This measure is converted to a ½�1; 0; 1�
scale:
� ð�1Þ if bar j is more than 10% slower than bar
ðj� 1Þ

� ðþ1Þ if bar j is more than 10% faster than bar
ðj� 1Þ

� 0 otherwise (i.e., no significant change).
The choice of 10% as a threshold was essentially
empirical. Smaller changes could easily be explained
as marginal and unintentional performance incon-
sistencies (which do not reflect interpretive considera-
tions), and furthermore, are less discernable from
measurement noise.

Fig. 15. Division to performance schools and educational background of performers.
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. Total duration—one feature (measured with the Sonic
Visualiser software package).

. Dotting ratio—ratio between adjacent long and short
notes (measured with the Sonic Visualiser software
package, based on the first bar of the CM Adagio
movement).

. Standard deviation of the tempo changes—the stan-
dard deviation of the tempo changes vector (of length
10)—one feature. This feature is useful in quantifying
the tempo variance of a given performer.

Standard deviation of tempo changes versus skewness of

tempo changes

Our tempo changes criteria represents the trend between
adjacent tempo measurements (quantized to three levels,
implying some tolerance to noise). Therefore, the
standard deviation of this criterion doesn’t directly
correspond to the variance in performance tempo,
but rather the variability of tempo trends in a given
performance. Another possible measure for tempo
variability, which has been used in music performance
analysis (Leech-Wilkinson, 2010), is the skewness. The
skewness of a random variable X is defined as follows:

skewness ¼ E
x� m
s

� �3� �
;

where E is the expectation operator, m is the mean and s
is the standard deviation.

The difference between the two measures is that the
skewness is not sensitive to the actual frequency of
tempo changes. For example, if we consider the series
½þ1; �1;þ1;�1�, representing sequential accelerations
and decelerations of tempo, the skewness will be 0, same
as for the series ½0; 0; 0; 0�. Our measure, on the other
hand, would assign the value 1 to the first, and 0 to the
second.

Normalization

Having collected the data, each entry in each category was
normalized separately so its average value (over the 29
performances) would be 1. This action, beyond being
common practice, is also crucial for information-theoretic
reasons, as it aptly quantifies the ‘surprise’, or weight, of
certain actions compared to others. Let us assume we have
a one-dimensional binary vector representing whether a
performer did or did not apply a certain technique at some
point in time. If 9 out of 10 performers applied this
measure, than after normalization the weight of this action
would be 1=0:9 ¼ 1:111 . . . If, however, only 1
performer out of the 10 applied this measure, then
after normalization the weight of this action would be
1=0:1 ¼ 10. This makes sense, because an action taken by
most performers is less surprising than an action taken

by only a few, and should therefore contribute less to
distance considerations.

Processing—quartet construction

The combined data was first examined, and a unified
Euclidean distance matrix was calculated. By applying the
Buneman (1971) tree criteria on the unified distance matrix,
we discovered that it has a highly incongruent nature—the
resulting tree was completely unresolved—a star. For this
reason, classic distance based approaches (such as neigh-
bour joining and k-means clustering) were deemed inapplic-
able. We thus decided to adopt a quartet based approach
(Ben-Dor et al., 1998; Chor, 1998; Jiang et al., 2000).

Initially, we work with each category separately, choos-
ing those quartet topologies, which have a clear support.
For every possible quartet (

�
29
4

�
¼ 23; 751 possibilities)

each category provided a ‘vote’ for the strongest possible
topology supported by the pairwise Euclidean distances
inducted in that category. For every four items, a; b; c; d,
there are three possible topologies—ða; bjc; dÞ, ða; cjb; dÞ,
and ða; djb; cÞ. For a given topology, e.g. ða; bjc; dÞ, we
say it is consistent with the distances between the items if
the sums of the ‘diagonals’ are approximately equal (i.e.
dða; cÞ þ dðb; dÞ ffi ða; dÞ þ dðb; cÞ, and the sum of the
distances along the ‘non-diagonal’ ðdða; bÞ þ dðc; dÞÞ is
considerably smaller than the ‘diagonal’ sums.

Processing—tree construction

At this stage, each category ‘votes’ for a certain topology
if the two diagonal sums are close enough to one another
and distant enough from the non-diagonal sum.
Let sum1 ¼ dða; bÞ þ dðc; dÞ, sum2 ¼ dða; cÞ þ dðb; dÞ,
sum3 ¼ dða; dÞ þ dðb; cÞ, and assuming (WLOG) they
are sorted so that sum1 � sum2 � sum3. The decision
whether a quartet is supported or not is based on two
predetermined thresholds: parameter1, representing the
minimal requirement for the ratio between sum1 and
sum2 (which should be considerably smaller than 1), and
parameter2, representing how much the ratio between
sum2 and sum3 may deviate from 1 (should be close to 1).

Formally the requirements can be simply stated as:

sum1 � parameter1 � sum2

sum3 � ð1þ parameter2Þ � sum2:

If no topology satisfies the predetermined thresholds for
a given quartet, the category ‘abstains’ w.r.t. these four
performances (i.e. prefers no topology).

After the voting process is complete, we retain only
the quartet topologies which have substantial support
from the data. These would be quartets with a high
enough number of supporting categories for the ‘win-
ning’ topology (higher than a predefined threshold,
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which we shall refer to as parameter3), and with a high
enough ratio of supporting versus opposing categories
(a support rate higher than a predefined threshold, which
we shall define as parameter4). Since the resultant list of
quartet topologies is dependent on the four predeter-
mined parameters we just described (parameters 1 to 4), a
vast set of possible parameter configurations was tried.
This resulted in 2100 lists of quartet topologies, one per
each set of possible parameters.

An unrooted phylogenetic tree was constructed for
each list of quartet topologies, using Snir and Rao’s (2006)
‘quartets max-cut’ heuristic (the problem of building a tree
from quartets is computationally intractable, thus a
heuristic is called for) (Steel, 1992). Subsequently, each
tree is given a score, based on its rate of accordance with
the list of quartet topologies from which it was
constructed. In addition, the size of this ‘support list’
was also considered, as well as the number of splits the
resultant tree contains (we give preference to trees which
are based on a large number of quartet topologies, and
trees which are resolved enough to display meaningful
information). Different scoring functions (using
these inputs as their arguments) were attempted. Even-
tually, after removing all the trees constructed by lists with
less than 2500 quartets, and trees with less than 15 splits,
we remained with 224 ‘meaningful’ trees. These 224 trees
were sorted by the following scoring function:

Tree score ¼ 2 � ðagreement rateÞ þ splits rate

þ support rate

with

agreement rate ¼ fraction of quartets topologies in

the support list satisfied by the tree

splits rate ¼ ðnumber of splits in the treeÞ
ðmax possible number of splitsÞ

support rate ¼ size of support list

max number of quartet topologies

(max possible number of splits¼ 28 and Max number of
quartet topologies¼ 23,751).

Processing—consensus trees

A list of consensus trees (majority vote, see Margush and
McMorris, 1981) was constructed—for the 20, 40, 60,
80 and 100 highest scoring trees (out of the list of 224
meaningful trees we described earlier). The topologies of
the five resultant consensus trees were in relatively high
proximity with one another, as can be seen in Table 6,
presenting the pairwise distance between the trees
(according to the Robinson–Foulds metric). In this
sense, we can say that the resultant consensus trees are
‘stable’.

In order to compare the various consensus trees, we
devised two ‘tree quality’ measures. The first is to take
the aforementioned 224 quartet lists, which gave rise to
the meaningful trees, and calculate the average
agreement rate between these lists and the consensus
tree. A second measure is to use this set of quartet lists
to calculate the average extent of support (calculated
as number of supporting quartets � ðnum of opposing
quartetsþ eÞ) for siblings in the tree. That is, to
calculate the average rate of support for all sibling
pairs with respect to each quartet list, and then
calculate the overall average of this measure. The logic
behind this measure is that ideally, if the data is
consistent, and two performances which are indeed
‘true siblings’ are paired together, no quartet topology
should place these two performances on opposite sides,
and thus the support rate for this pair should be
extremely high (basically it is number of quartets in list
� ð0þ eÞ) across all lists. Since the different categories
are not consistent, we cannot expect such support, and in
fact we often encounter striking inconsistencies (for
almost all pairs of performances, at least one category is
in favour of placing the two performances together, and
one is in favour of placing the performances apart).
Generally speaking, the more distant a pair of perfor-
mances is, the lower their rate of support should be (and
indeed a strong correlation between these two factors
was found, as discussed in the validation section). The
total score for the consensus trees was simply the product
of the two measures described above. The scores for the
five consensus trees constructed are presented in Table 7.

In addition to these five consensus trees, we also
calculated our scores with respect to 10 randomly

Table 6. Robinson–Foulds distances of the five resulting trees (the maximal distance score in our case is 2 * 28¼ 56).

Cons_20Trees Cons_40Trees Cons_60Trees Cons_80Trees Cons_100Trees

Cons_20Trees 0 – – – –
Cons_40Trees 8 0 – – –
Cons_60Trees 8 0 0 – –

Cons_80Trees 14 6 6 0 –
Cons_100Trees 10 2 2 4 0
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generated trees (randomly selected binary tree topol-
ogy, and randomly placed leaves). Furthermore, we
calculated our scores for the star tree on these 29
performances at the leaves. For random binary trees
we would expect 1/3 of the quartets to be satisfied, on
average. In addition, we would expect the support
ratio for siblings to be low, because the neighbourhood
relations are independent of the data. Indeed our
results fit these expectations. For the star tree, the
quartet agreement rate is by definition 0, and we would
expect the sibling support to be (1/3)/(2/3)¼ 0.5, which
is indeed observed (the outcome is not exactly 0.5 since
as previously mentioned, in our calculations we add

e ¼ 10�4 to the opposition count to avoid the possibility
of division by zero). The selected tree was cons_80Trees

(the tree constructed via consensus over the 80 highest
scoring trees out of the 224 meaningful ones). The second
best tree was cons_20Trees (the tree constructed over the
20 highest scoring trees). We note that cons_80Trees
obtained better results than cons_20Trees for *60% of
the quartet lists considering the first measure, and*80%
considering the second measure, thus indicating the
resultant tree is consistently superior to the ‘competing’
option.

Appendix D: Additional clustering analysis
examples

The following figures display the clustering results for the
double stop versus arpeggio and the chord ratio categories.
These analyses were made twice—with Gaehler and
Telmanyi (Figures 16 and 17), who are clear outliers for
obvious reasons (both performers use the non-standard
Vega bow), and without them (Figures 18 and 19). We
note that removing outliers affects both the clustering
results and the principal components used for the
visualization of multivariate categories.

We observe that the clustering divisions made by
each category are very different, and that no obvious
clusters may be discerned. However, the proximity
relations revealed in some of the cases are quite telling
(for instance, Kuijken83, Brooks, Luca, Mintz84
and Wallfisch are well grouped, and so are the
performances Kuijken99, Milstein75, Podger, Teztlaff
and Hugget).

Table 7. Scores for the five consensus trees, 10 random trees,

and the star tree (last two rows calculated as ‘sanity checks’).

Consensus

tree

Average
agreement

rate

Support ratio

for siblings

Total

score

cons_20Trees 0.839856853 2.908976416 2.443123777
cons_40Trees 0.844628076 2.457206168 2.075425318
cons_60Trees 0.844628076 2.457206168 2.075425318

cons_80Trees 0.844234085 2.995664472 2.529042054

cons_100Trees 0.845905116 2.457206168 2.078563269
avg over 10 0.31 0.067 0.021

random trees
star tree 0 0.4995 0

Fig. 16. Double stop/arpeggio versus chord ratio, clustering according to double stop/arpeggio.
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The following figures present the clustering results
using the bowing and the mid-phrase durations cate-
gories. Again, we repeat the process twice—with a clear
outlier performance—Enesco (Figures 20 and 21), and
without it (Figures 22 and 23).

Once again, no clear clustering results could be
discerned. We note that it is hard to draw clear

conclusions from the bowing category alone, as it is
relatively homogenous. One may also observe that the
two Heifetz performances are similarly distinct in terms
of bowing, as are the performances by Menuhin and
Wallfisch (perhaps surprisingly). The mid-phrase dura-
tions category is even harder to analyse in terms of
proximity relations, although it may be noted that the

Fig. 17. Double stop/arpeggio versus chord ratio, clustering according to chord ratio.

Fig. 18. Double stop/arpeggio versus chord ratio, clustering according to double stop/arpeggio (without Telmanyi or Gahler).
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performances by Vegh, Hugget, Tetzlaff, and Szigeti are
fairly well grouped by that category.

All in all, considering the clustering results, it is
clear that not only each category implies wholly
different categories. No category alone is enough to
make general meaningful observations regarding the

complex relations between the 29 performances ana-
lysed. For this reason, our quartet based voting
mechanism was devised, meant to reconcile the
inherent differences between categories and allow for
more reliable observations regarding the interconnec-
tions between the performances.

Fig. 19. Double stop/arpeggio versus chord ratio, clustering according to chord ratio (without Telmanyi or Gahler).

Fig. 20. Mid-phrase durations versus bowing, clustering according to mid-phrase durations (with Enesco).
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Fig. 21. Mid-phrase durations versus bowing, clustering according to bowing (with Enesco).

Fig. 22. Mid-phrase durations versus bowing, clustering according to mid-phrase durations (without Enesco).
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Fig. 23. Mid-phrase durations versus bowing, clustering according to mid-phrase durations (without Enesco).
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Appendix E: List of performances

Table 8 details performers’ names, date of birth and date
of recording.

Table 8. Performers’ names, date of birth and date of recording.

Performer’s name Date of Birth Recording date

Enescu 1881 1948
Szigeti 1892 1931

Telmányi 1892 1954
Heifetz 1901 1935
Heifetz 1901 1952

Milstein 1903 1954
Milstein 1903 1975
Végh 1905 1971
Menuhin 1916 1957

Szeryng 1918 1968
Ricci 1918 1981
Grumiaux 1921 1960–1961

Suk 1929 1971
Gahler 1941 1998
Luca 1943 1977

Kuijken 1944 1983
Kuijken 1944 2001
Perlman 1945 1986
van Dael 1946 1996

Kremer 1947 2005
Szenthelyi 1952 2002
Wallfisch 1952 1997

Hugget 1953 1995
Mintz 1957 1984
B. Brooks 1959 2003

Zehetmair 1961 1983
Tetzlaff 1966 1994
Podger 1968 1999

Ehnes 1976 1999–2000
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