Traffic-Aware Channel Assignment in Wireless LANs

Eric Rozner\(^1\), Yogita Mehta\(^1\), Aditya Akella\(^2\), Lili Qiu\(^1\)

\(^1\)The University of Texas at Austin \quad \(^2\)The University of Wisconsin-Madison

1. Introduction

Motivation
- WLAN densities and traffic are increasing
- Channel assignment significantly affects wireless performance
- Essential to develop automated channel assignments as topologies become more complex

Open issues
- What is the best performance metric to optimize when allocating 802.11 channels in a WLAN?
- To what extent is the quality of channel assignments improved by incorporating observed traffic demands?

2. Related Work

Campus/Enterprise WLANs
- RF Site Surveys, AP-centric approaches, client-centric approaches

Chaotic networks
- Dynamic channel assignment with power control

Multi-hop mesh networks
- Frequency hopping (SSCH) or multi-radio approaches

Limitations of existing work
- Existing approaches minimize the number of mutually interfering APs or minimize a specified noise criterion. Which (if any) is the correct metric?
- Existing approaches do not incorporate traffic demands. Adapting to demands could provide better performance, similar to the benefits of traffic engineering in ISP networks.

3. Traffic-Agnostic Metrics

- Maximize channel separation of APs
 - If Distance\((i,j) < \text{Interference_Range}\): Separation\((i,j) = \min(l \cdot \text{Chan}_i, \cdot \text{Chan}_j, 5)\)
 - Else: Separation\((i,j) = 5\)
- Minimize noise at all APs (AP Noise)
- Minimize noise at all clients (Client Noise)
- Minimize noise at APs & clients (Total Noise)
 - Noise calculation: Friis free space model with loss factor of 3.5
- Maximize the throughput over all clients (Client Throughput)
 - Assumes constant and symmetric traffic demands

4. Traffic-Aware Metrics

- **Traffic-aware channel separation**

 \[
 \text{Maximize } \sum_{i \in \text{AP}} \text{Demand}_i \sum_{j \in \text{AP}} \text{Separation}_{i,j}
 \]

- **Traffic-aware noise**
 - Scale the received signal strength (noise) from a node by its demand

- **Traffic-aware client throughput**
 - Use a network simulator, or other flow throughput models, to analyze aggregate system throughput of a channel assignment given current traffic demands

5. Evaluation Methodology

- **Dataset:** Dartmouth College traces (Feb. 1, 2004)
 - 5 minute intervals, traces include SNMP statistics and number of active clients
 - AP locations known; clients placed randomly within 30 meters of their AP
 - CDF graphs in sections 6 and 7 focus on “ResBldg94”

- **Simulation setup**
 - For each interval:
 - Use simulated annealing (30 iterations) to search the space of channel assignments for each metric and then analyze the resultant channel assignment with ns2.29
 - Traffic demands scaled, per interval, to increase network utilization
 - Focus on intervals with \(\geq 50\% \) simultaneously active APs
 - Constant-rate UDP traffic between clients and APs (aggregate system throughput used to quantify results)
 - Utilizes an oracle to predict traffic demands

6. Conventional Metrics

- The correct metric can improve performance by up to 60% in the traffic-agnostic case

7. Traffic-Awareness

- Traffic-aware approaches can nearly double the median performance of conventional methods

8. Traffic-Awareness in Practice

- Traffic demand prediction algorithms (below) are necessary since the oracle is impractical
 - Exponentially-Weighted Average of Demand (EWMA):
 \[
 \text{APDem_Pred}(t) = w \cdot \text{APDem_Actual}(t-1) + (1-w) \cdot \text{APDem_Pred}(t-1)
 \]
 - Optimal for the previous interval (PREV)
 - Optimal over the peak demand in the last N time windows (PEAK_N)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Relative Difference from Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWMA ((w = 0.9))</td>
<td>9.6%</td>
</tr>
<tr>
<td>PREV</td>
<td>7.6%</td>
</tr>
<tr>
<td>PEAK_4</td>
<td>11.6%</td>
</tr>
</tbody>
</table>

- Traffic-aware channel assignment based on predicted demands seems promising

9. Conclusion and Future Work

- **Contributions**
 - Identify the importance of optimization metrics for channel assignment
 - Develop traffic-aware channel assignment

- **Future Work**
 - Further explore prediction algorithms
 - Take advantage of partially overlapping channels
 - Develop a complete system and gain operational experience