CS378: Natural Language Processing

Lecture 11: Word Embeddings

Eunsol Choi

Representation of Words

Traditional approaches build one-hot feature vectors.

```
truck = [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
austin = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
```

- The dimension of the vector: the size of the vocabulary!
- More over, no generalization....

Distributional Semantics

"tejuino"

Context 1: A bottle of ____ is on the table.

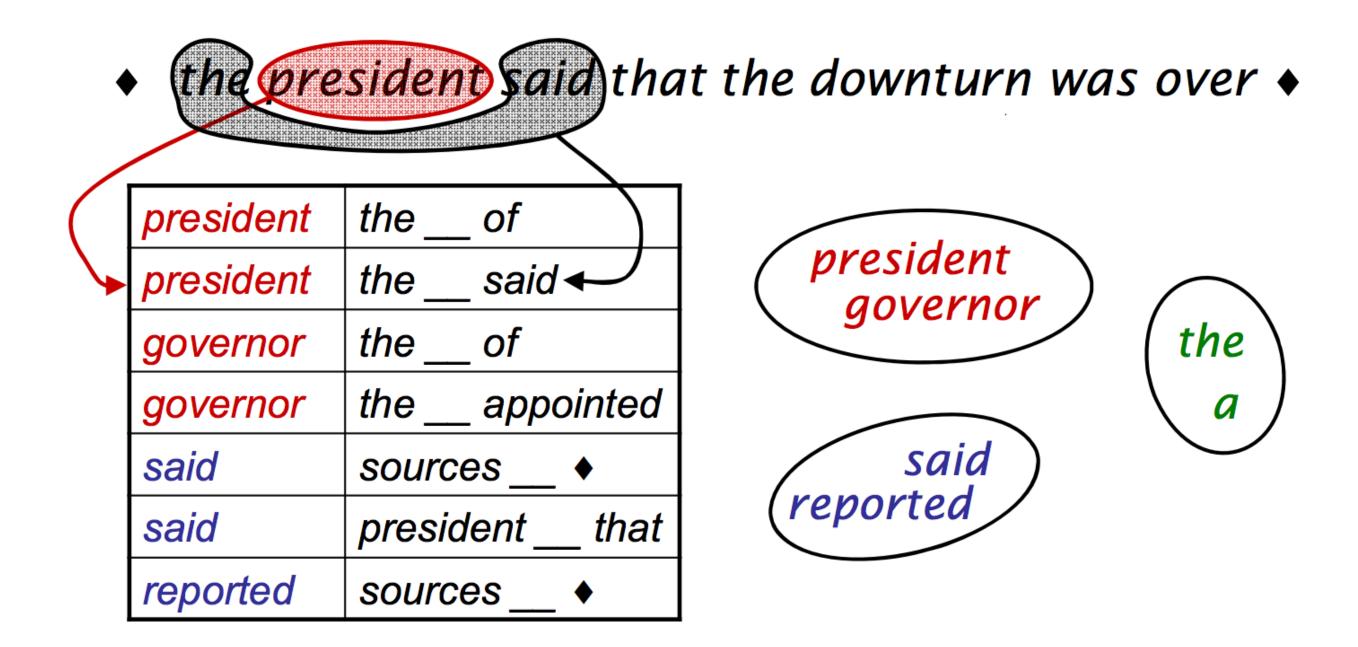
Context 2: Everybody likes ____.

Context 3: Don't have ____ before you drive.

Context 4: We make ____ out of corn.

Distributional Semantics

"You shall know a word by the company it keeps" Firth (1957)

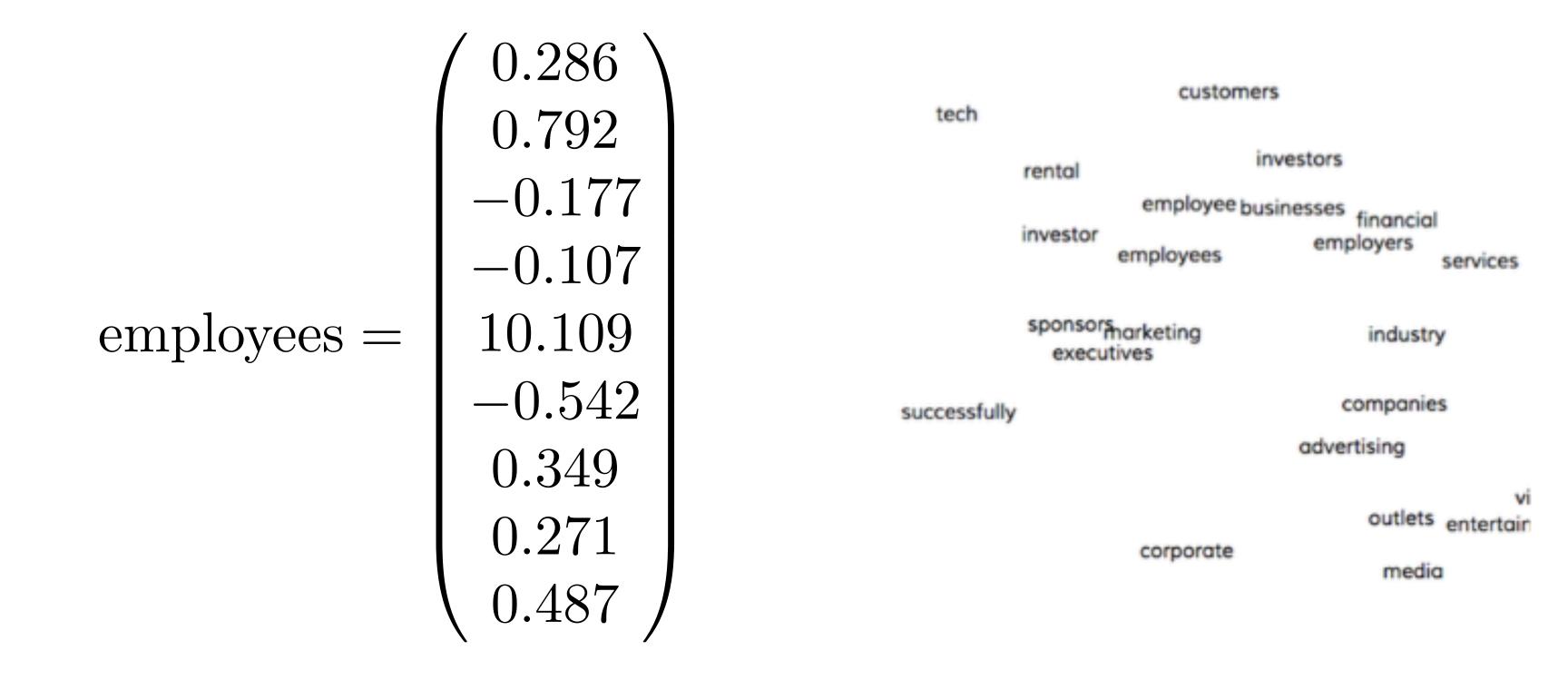


[Finch and Chater 92, Shuetze 93, many others]

slide credit: Dan Klein

Goal of Word Embeddings

- Learn a continuous, dense vector for each word type.
- Always the same vector, regardless of in which context the word appears



Earlier Approach: Discrete Word Clusters

Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster)

100110

The cats are under the table.

Word ids

$$W_1, W_2, W_3, W_4, W_5, W_6$$

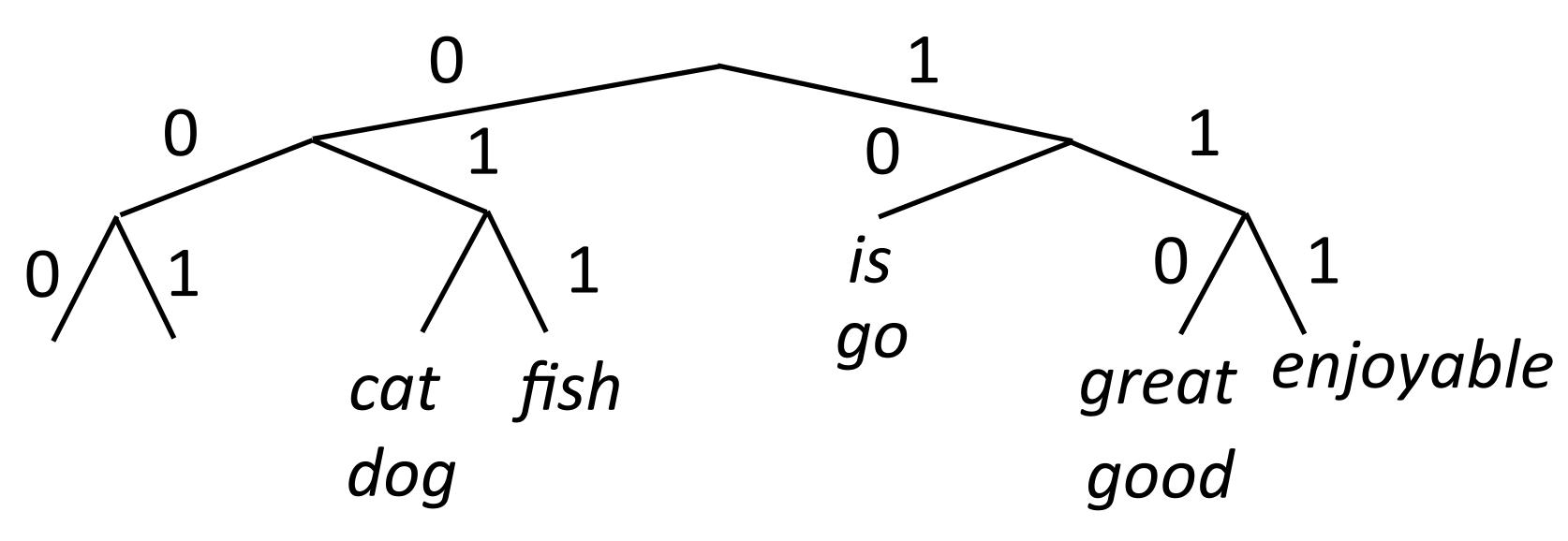
10011110

Goal is to maximize

$$P(w_i|w_{i-1}) = P(c_i|c_{i-1})P(w_i|c_i)$$

Cluster ids $C_1, C_2, C_3, C_4, C_5, C_6$

1001110



1000001101000 newspaperman stewardess 100000110100101 toxicologist 1000001101011010 000001101011011 womanizer mailman 00000110110000 bookkeeper troubleshooter 10000011011000110 10000011011000111 1000001101100100 1000001101100101 1000001101100110 10110111001001010111100 Microsoft Tractebel 1011011100100101100110 Synopsys 10110111001001011100111 WordPerfect 1011011100100101101000

Brown et al. (1992)

• • •

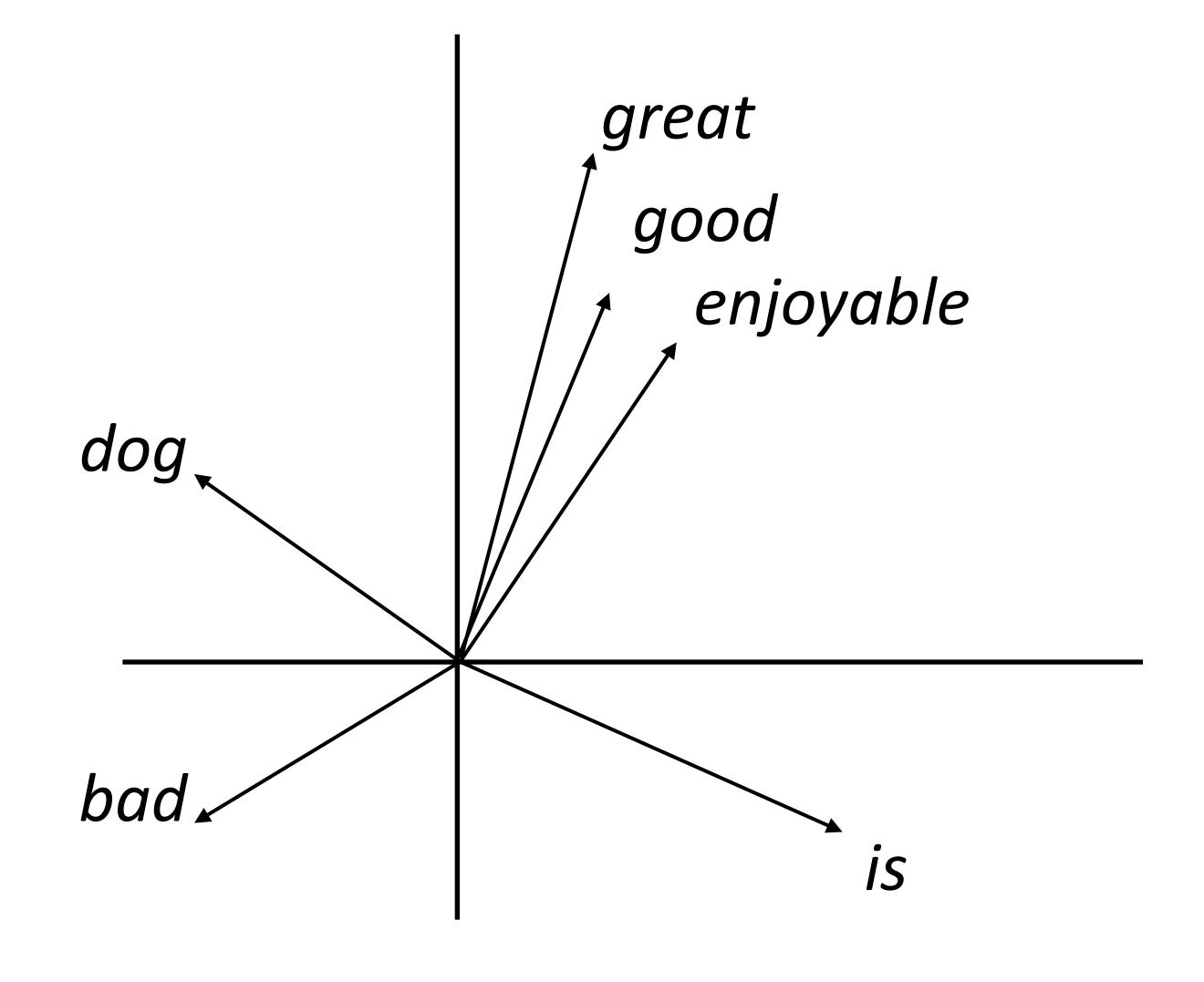
Word Embeddings

the movie was great

>

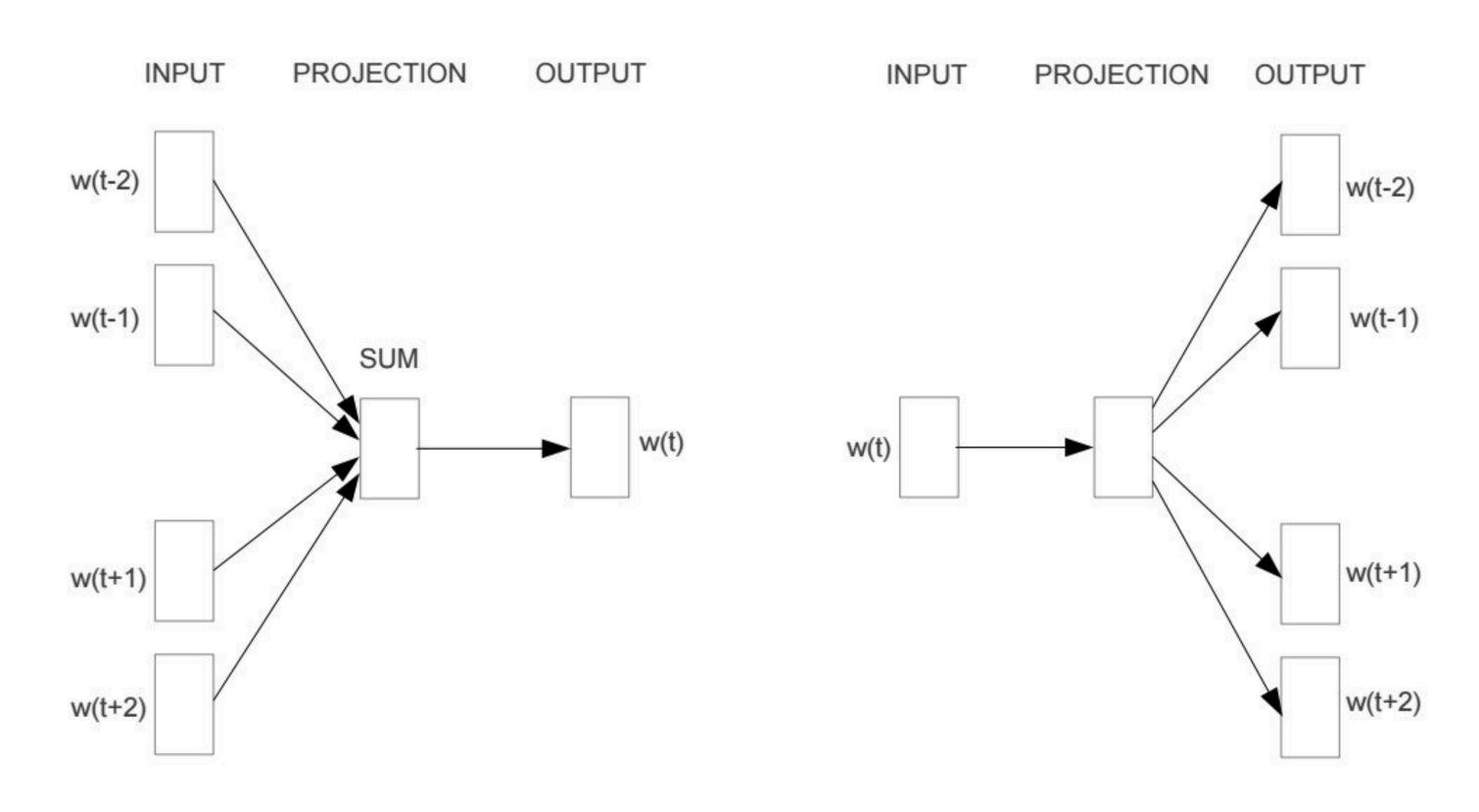
the movie was good

- Goal: come up with a way to produce these embeddings
- For each word, "medium" dimensional vector (50-300 dims) representing it



word2vec / GloVe (Global Vectors)

word2vec



Continuous Bag of Words (CBOW)

Skip-grams

Continuous Bag-of-Words

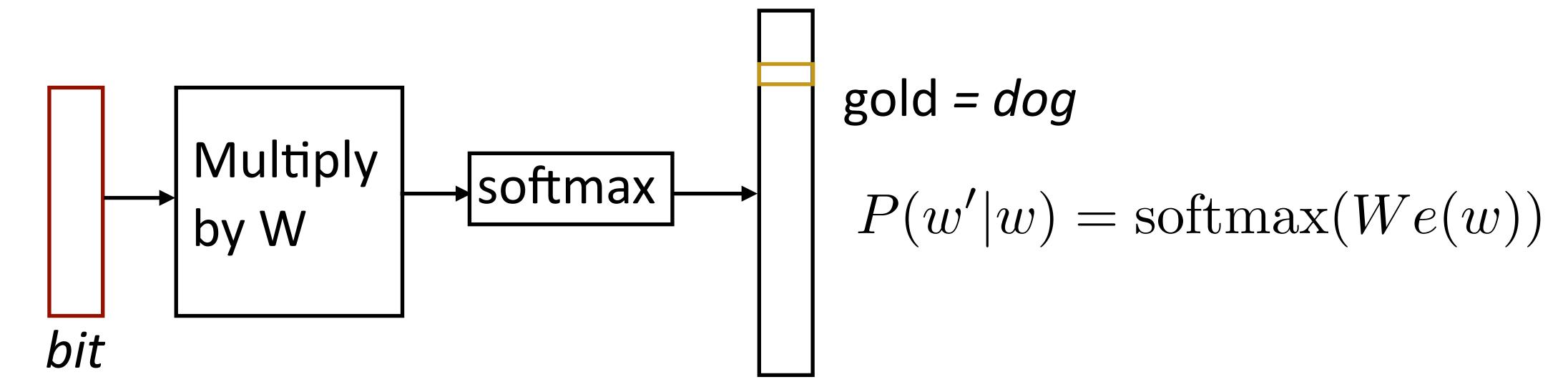
Predict word from context the dog bit the man d-dimensional word embeddings W_{-1}, W, W_{+1} dog gold label = bit, no manual labeling Multiply softmax by W required! size d size |V| x d the $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1})))$

Parameters: d x |V| (one d-length context vector per word),
 |V| x d output parameters (W)

Mikolov et al. (2013)

Skip-Gram

Predict one word of context from word



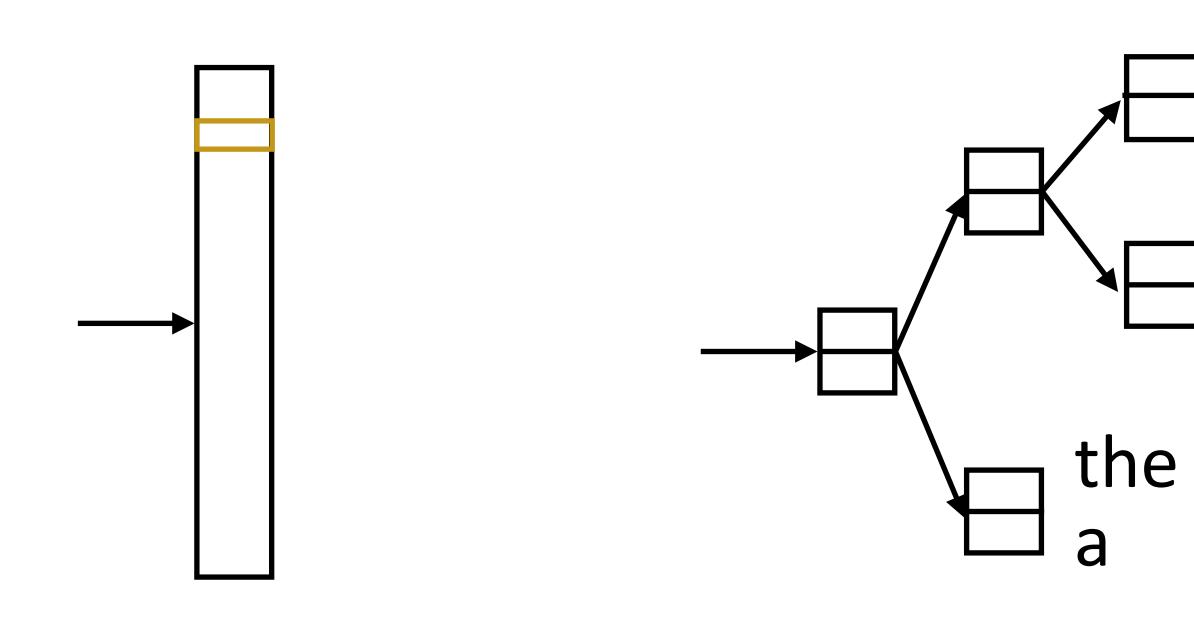
- Another training example: bit -> the
- Parameters: d x |V| word vector, |V| x d output parameters (W) (also usable as vectors!)

Mikolov et al. (2013)

Hierarchical Softmax

$$P(w|w_{-1}, w_{+1}) = \operatorname{softmax}(W(c(w_{-1}) + c(w_{+1})))$$
 $P(w'|w) = \operatorname{softmax}(We(w))$

Matmul + softmax over |V| is very slow to compute for CBOW and SG



Binary
 classifiers to decide
 which branch to take

log(|V|) binary decisions

Skip-Gram with Negative Sampling

 Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

(bit, the) => +1
$$(bit, cat) => -1 \\ (bit, a) => -1 \\ (bit, a) => -1 \\ (bit, fish) => -1$$

$$P(y=1|w,c) = \frac{e^{w\cdot c}}{e^{w\cdot c}+1}$$
 words in similar contexts select for similar c vectors

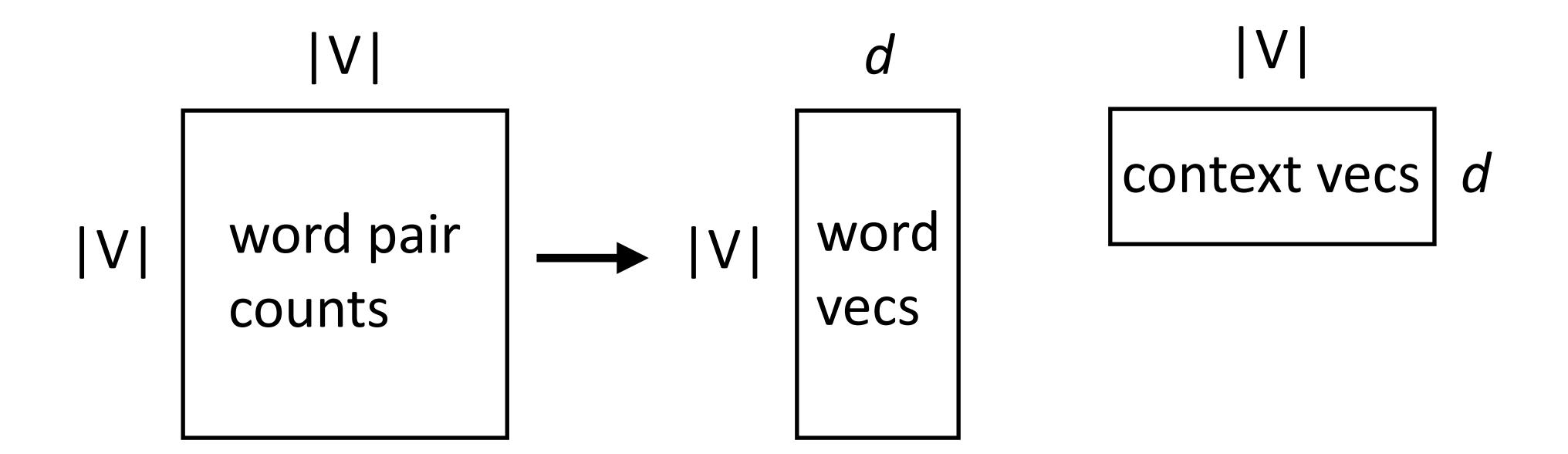
► d x |V| vectors, d x |V| context vectors (same # of params as before)

Objective =
$$\log P(y = 1 \mid w, c) + \frac{1}{k} \sum_{i=1}^{k} \log P(y = 0 \mid w, c_i)$$
 sampled

Mikolov et al. (2013)

Connections with Matrix Factorization

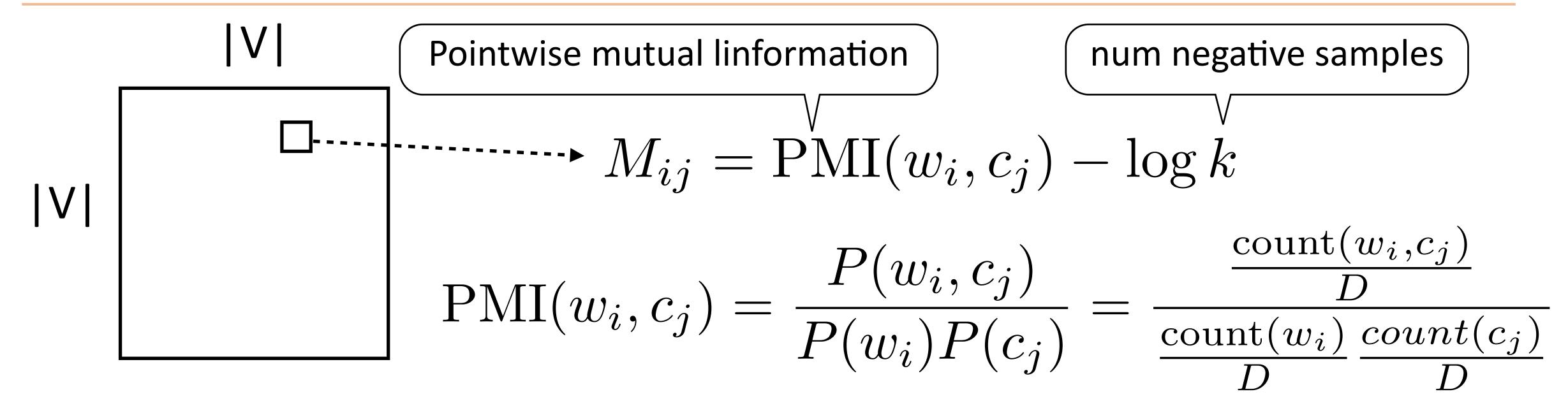
 Skip-gram model looks at word-word co-occurrences and produces two types of vectors



Looks almost like a matrix factorization... can we interpret it this way?

Levy et al. (2014)

Skip-Gram as Matrix Factorization



Skip-gram objective exactly corresponds to factoring this matrix:

- If we sample negative examples from the uniform distribution over words
- ...and it's a weighted factorization problem (weighted by word freq)

Levy et al. (2014)

GloVe (Global Vectors)

 Also operates on counts matrix, weighted regression on the log co-occurrence matrix word pair counts

• Objective =
$$\sum_{i,j} f(\operatorname{count}(w_i, c_j)) \left(w_i^{\top} c_j + a_i + b_j - \log \operatorname{count}(w_i, c_j) \right)^2$$

Constant in the dataset size (just need counts), quadratic in voc size

Pennington et al. (2014)

fastText: Sub-word Embeddings

Same as SGNS, but break words down into n-grams with n = 3 to 6

where:

3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere>,

5-grams: <wher, where, here>,

6-grams: <where, where>

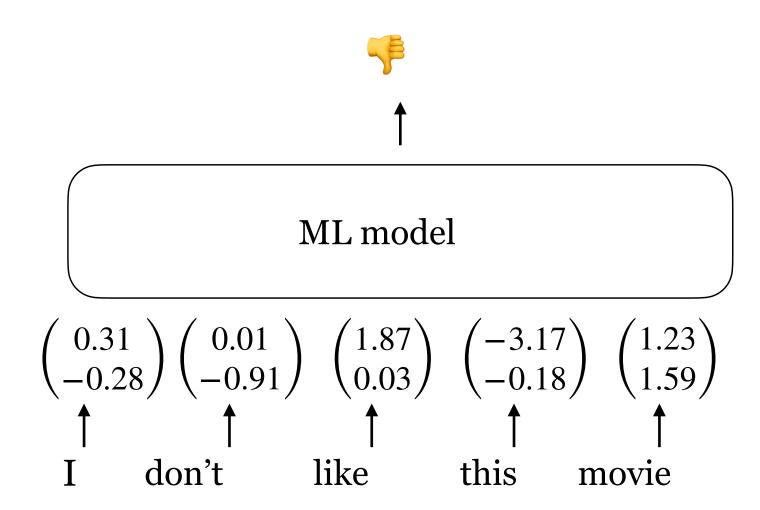
Problem Replace $w \cdot c$ in skip-gram computation with $\left(\sum_{g \in \operatorname{ngrams}} w_g \cdot c\right)$

Advantages?

Evaluating Word Embeddings

Extrinsinc vs. Intrinsic

Plug the vectors into some endtask model, see which does well! Evaluate on some intermediate subtasks (in the coming slides..)

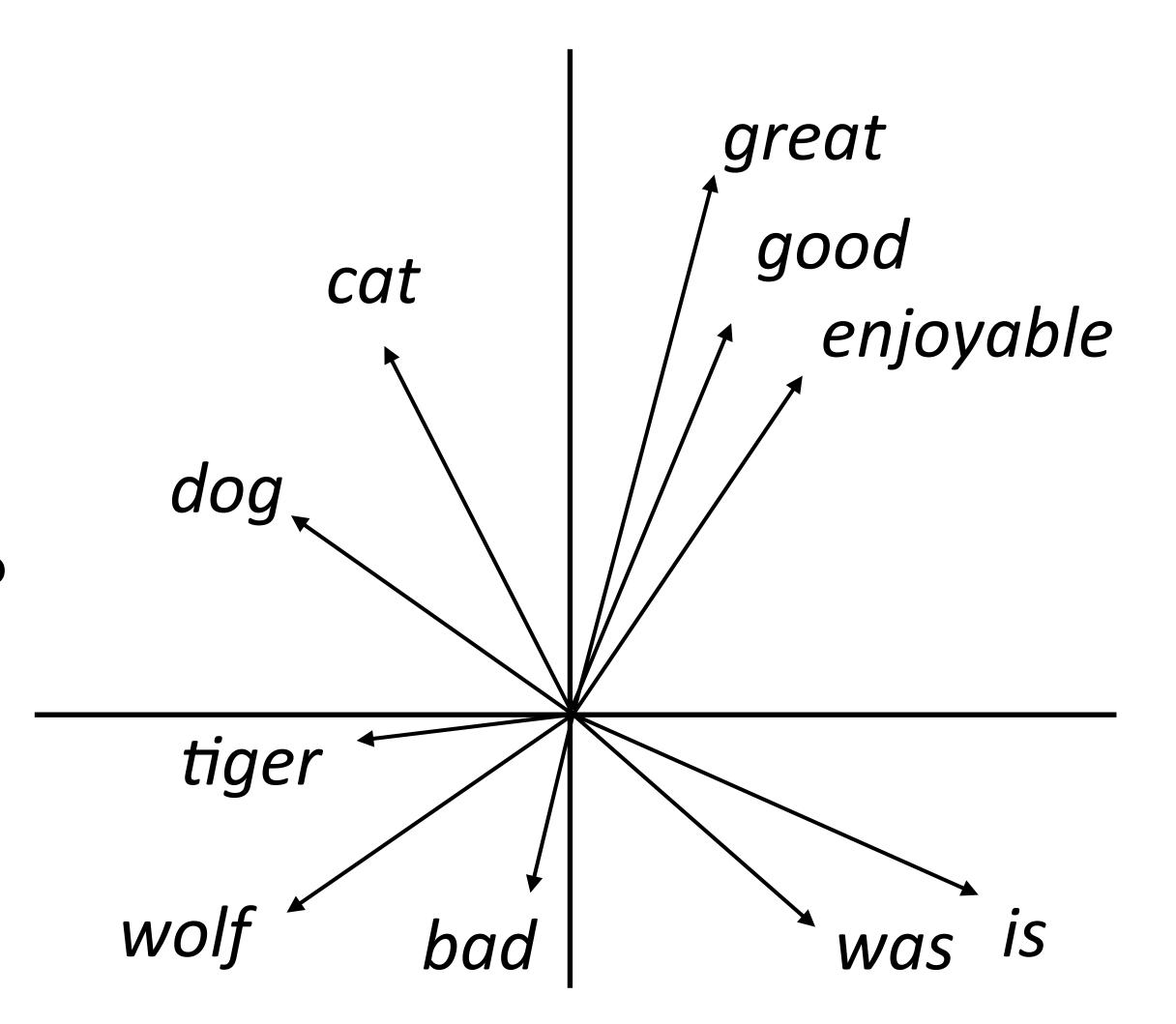


Evaluating Word Embeddings

- What properties of language should word embeddings capture?
- (1) Similarity: similar words are close to each other
- (2) Analogy:

good is to best as smart is to ???

Paris is to France as Tokyo is to ???



Similarity

Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.
	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex
PPMI	.755	.697	.745	.686	.462	.393
SVD	.793	.691	.778	.666	.514	.432
SGNS	.793	.685	.774	.693	.470	.438
GloVe	.725	.604	.729	.632	.403	.398

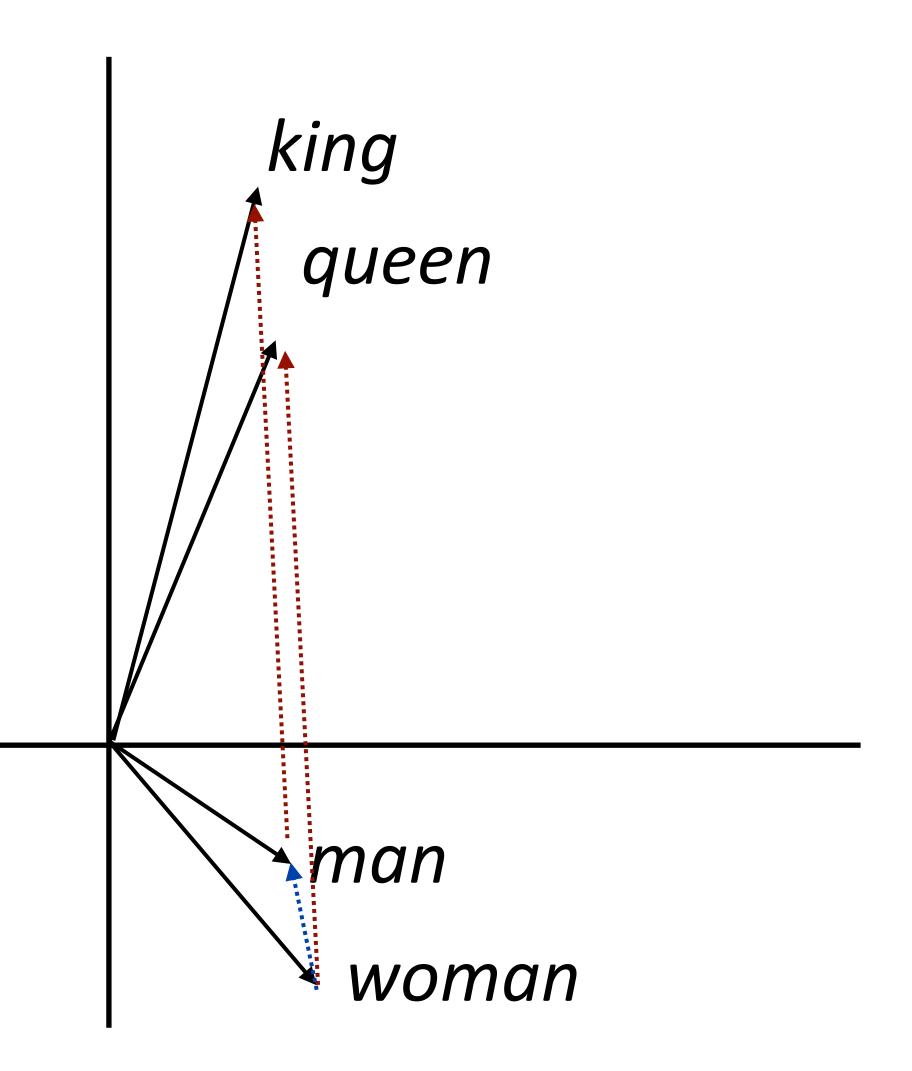
- SVD = singular value decomposition on PMI matrix
- GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't matter in practice

Analogies

```
(king - man) + woman = queen
```

king + (woman - man) = queen

- Why would this be?
- woman man captures the difference in the contexts that these occur in
- Often used to evaluate word embeddings



What can go wrong with word embeddings?

- What's wrong with learning a word's "meaning" from its usage?
- What data are we learning from?
- What are we going to learn from this data?

What do we mean by bias?

Identify she - he axis in word vector space, project words onto this axis

Extreme *she* occupations

-1	1 1
	homemaker
	пошенакег

- 4. librarian
- 7. nanny
- 10. housekeeper

- 2. nurse
- 5. socialite
- 8. bookkeeper
 - 11. interior designer
- 3. receptionist
- 6. hairdresser
- 9. stylist
- 12. guidance counselor

Extreme he occupations

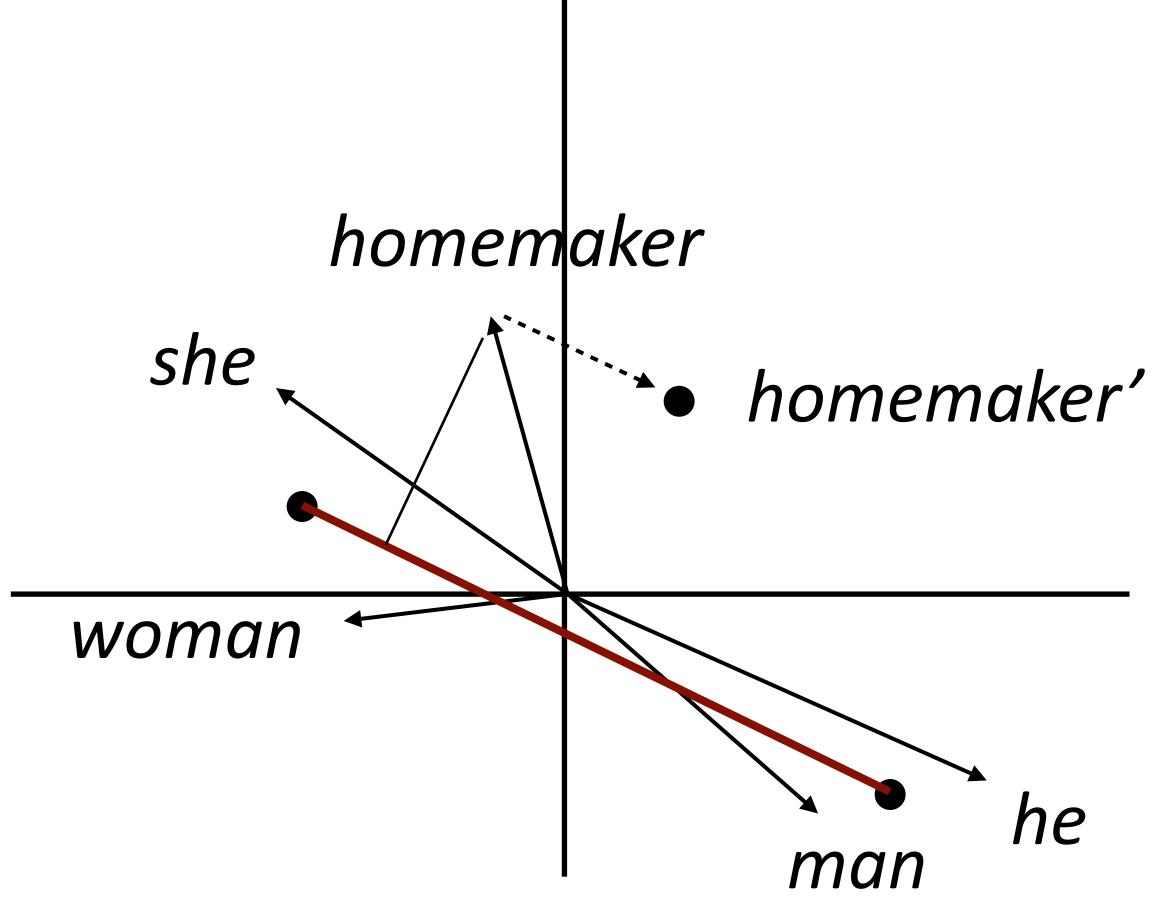
- 1. maestro
- 4. philosopher
- 7. financier 8. warrior
- 10. magician

- 2. skipper
- 5. captain
- 11. figher pilot
- 3. protege
- 6. architect
- 9. broadcaster
- 12. boss

Debiasing

Identify gender subspace with gendered words

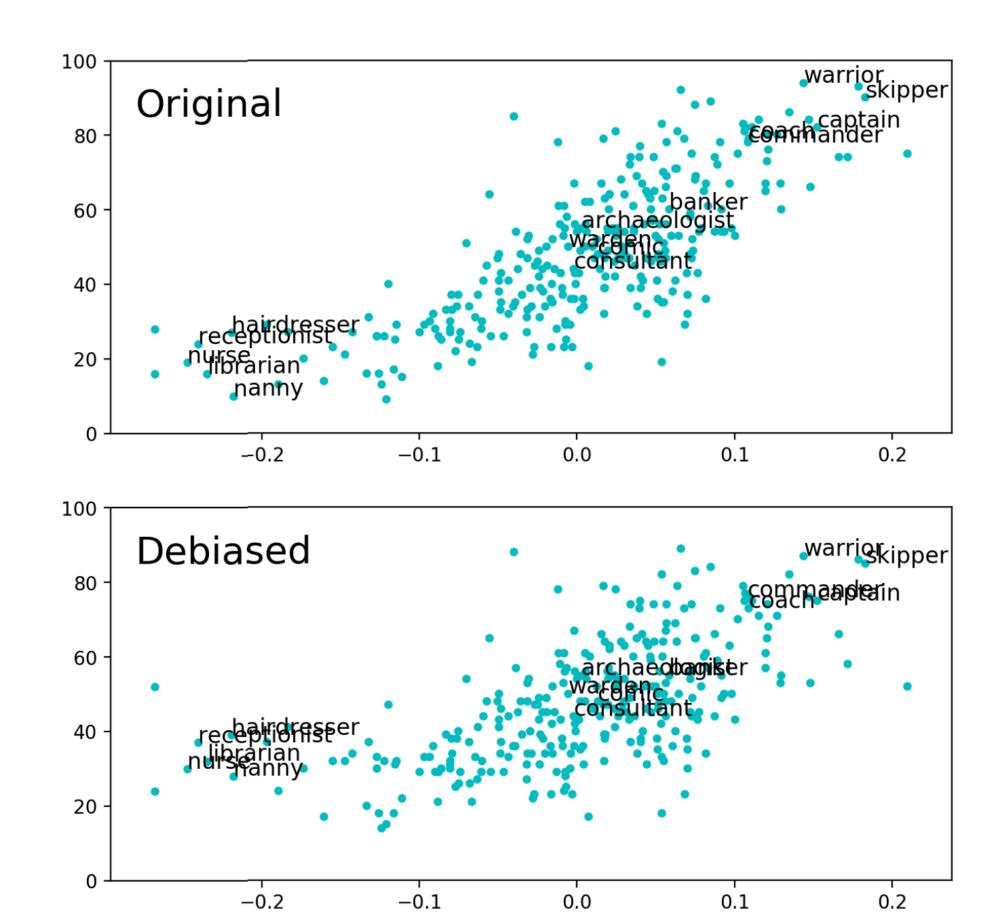
- Project words onto this subspace
- Subtract those projections from the original word



Bolukbasi et al. (2016)

Hardness of Debiasing

- Not that effective...and the male and female words are still clustered together
- Bias pervades the word embedding space and isn't just a local property of a few words



(a) The plots for HARD-DEBIASED embedding, before (top) and after (bottom) debiasing.

Gonen and Goldberg (2019)

Trained Word Embeddings

- word2vec: https://code.google.com/archive/p/word2vec/
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

Using Word Embeddings

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize using pretained word vectors (e.g., GloVe), keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using pretained word vectors (e.g., GloVe), finetune
 - Works best for some tasks

Preview: Context-dependent Embeddings

How to handle different word senses? One vector for balls

they dance at balls they hit the balls

 Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

Context-sensitive word embeddings: depend on rest of the sentence

Huge improvements across nearly all NLP tasks over static word embeddings

Peters et al. (2018)

Compositional Semantics

What if we want embedding representations for whole sentences?

 Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level

Is there a way we can compose vectors to make sentence representations?

Summary

Lots of pretrained embeddings work well in practice, they capture some desirable properties

Even better: context-sensitive word embeddings (ELMo)

Next time: Language Models!