# CS378: Natural Language Processing

# Lecture 16: Neural Network (Sequence) Continued

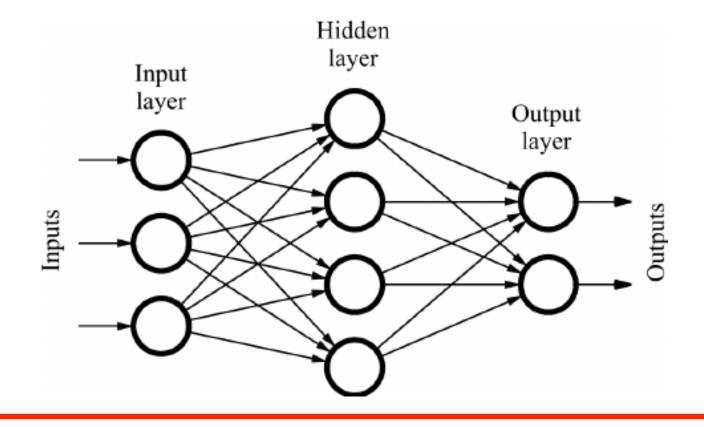


Slides from Greg Durrett, Yoav Artzi, Yejin Choi, Princeton NLP

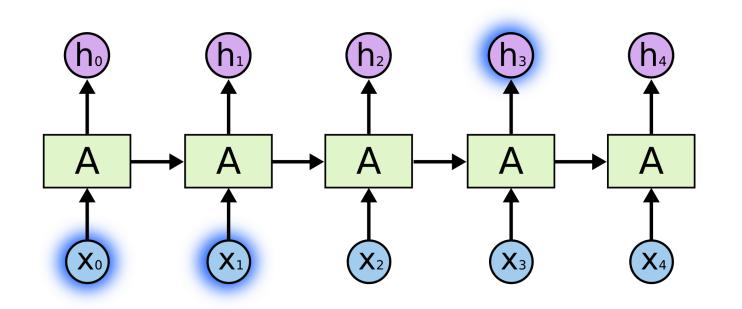


### Neural Networks in NLP

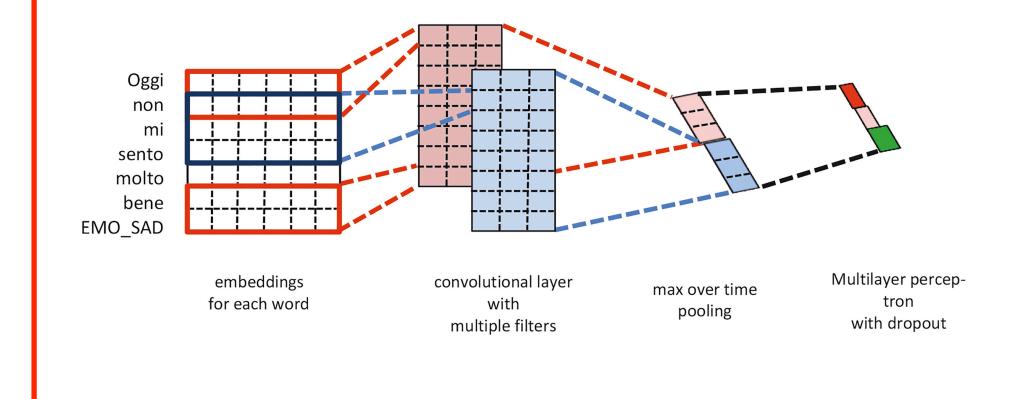
#### Feed-forward NNs



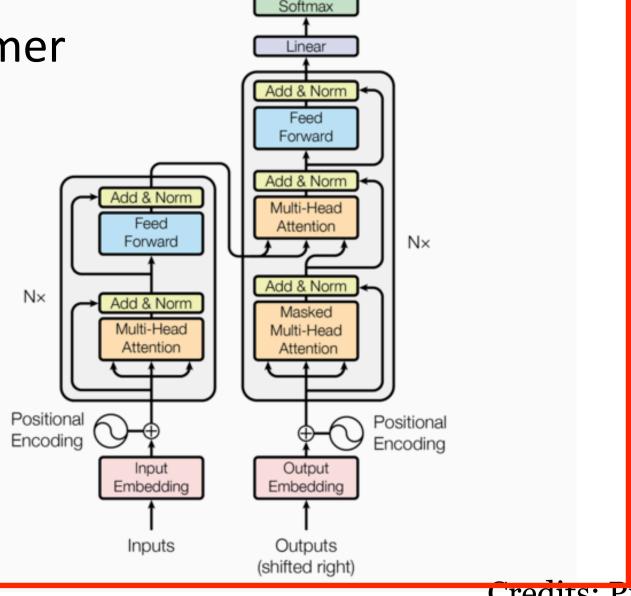
#### Recurrent NNs



#### **Convolutional NNs**



#### Transformer

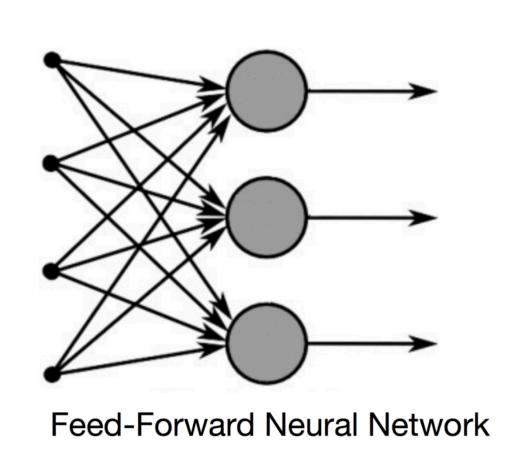


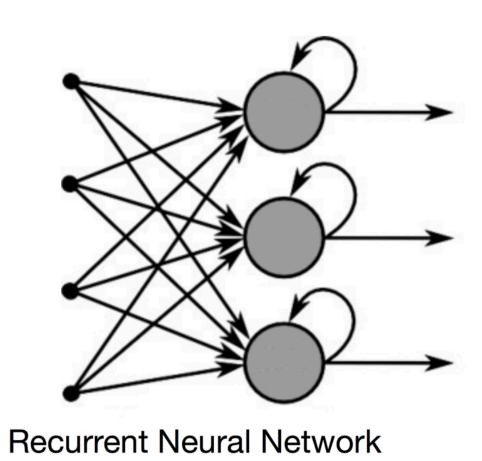
Probabilities

Always coupled with word embeddings...



## Recap: RNNs





Maps from dense input sequence to dense hidden state representation sequence

$$\mathbf{x}_1, \dots, \mathbf{x}_n \to h_1, \dots, h_n$$

Simple definition of R:  $R(h_{i-1}, x_i) = \tanh(Wx_i + Vh_{i-1} + b)$ 



## Recap: RNNs

 Maps from dense input sequence to dense hidden state representation sequence

$$\mathbf{x}_1, \dots, \mathbf{x}_n \to h_1, \dots, h_n$$

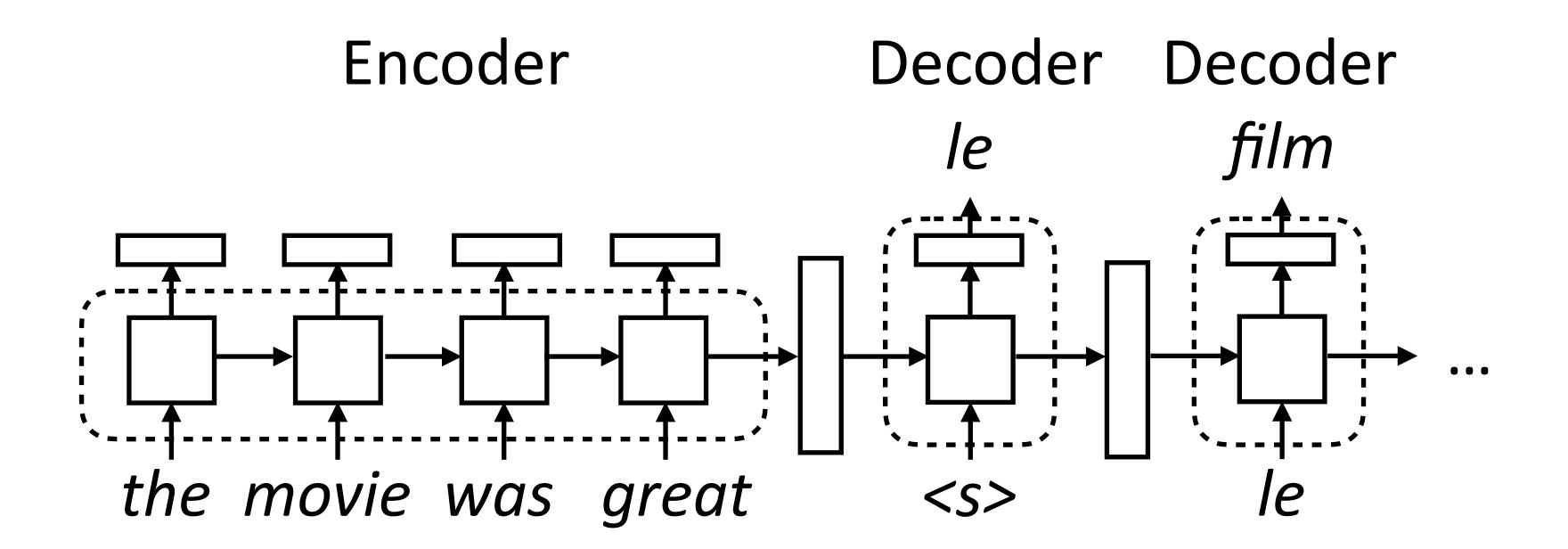
- $S = \mathbb{R}^{d_{hid}}$  hidden state space  $(h_1, h_2 \dots)$
- $\Sigma = \mathbb{R}^{d_{in}}$  input state space  $(x_1, x_2, \dots)$
- $s_0 \in S$  initial state vector  $(h_0)$
- ullet  $R: \mathbb{R}^{d_{in}} imes \mathbb{R}^{d_{hid}} o \mathbb{R}^{d_{hid}}$  transition function

- For all  $i \in \{1, ..., n\}$ ,
  - $h_i = R(h_{i-1}, \mathbf{x}_i)$
  - Simple definition of R:  $R(h_{i-1}, x_i) = \tanh(Wx_i + Vh_{i-1} + b)$
  - R is parameterized, where the parameters are shared across all steps.

$$h_4 = R(h_3, \mathbf{x}_4) = \dots = R(R(R(R(h_0, \mathbf{x}_1), \mathbf{x}_2), \mathbf{x}_3), \mathbf{x}_4)$$



## Recap: Seq2Seq Models



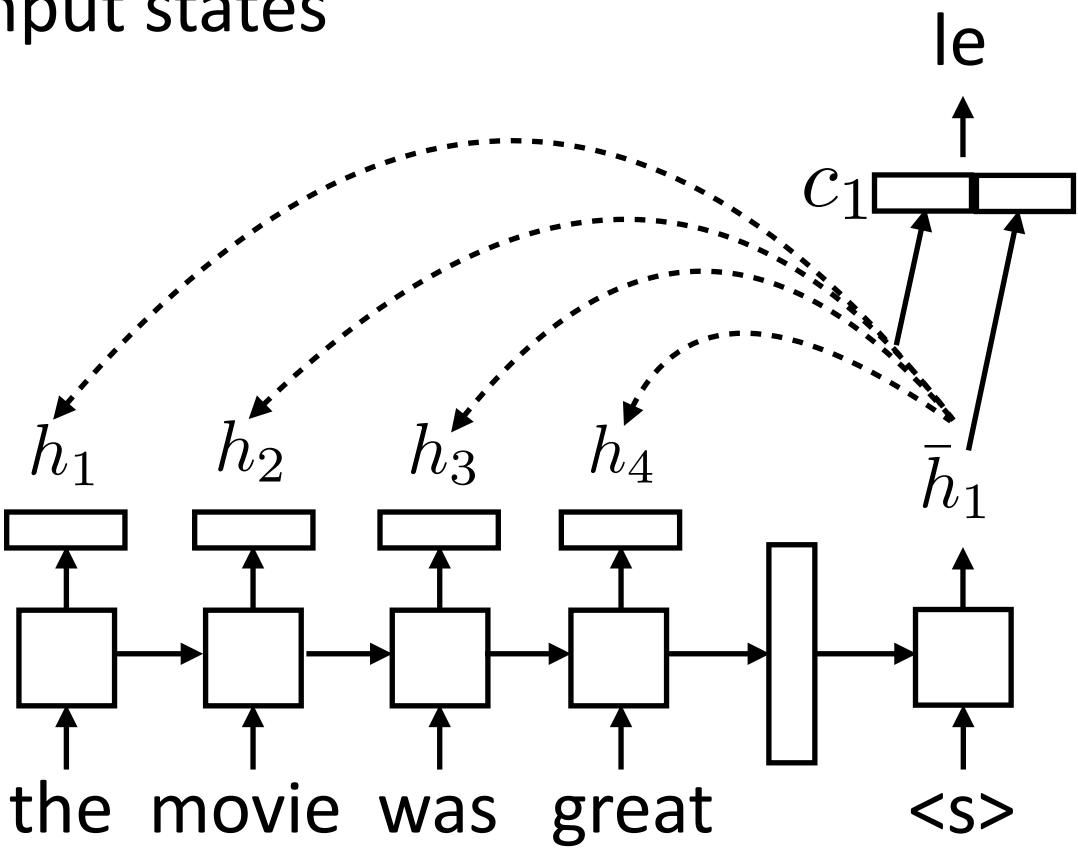
- Encoder: a RNN encoding a sequence of tokens, produces a vector.
- Decoder: separate RNN module (different parameters).
  - Takes two inputs: hidden state and previous token.
  - Outputs token and a new hidden state.



## Recap: Attention

 For each decoder state, compute weighted sum of input states

No attn: $P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W\bar{h}_i)$ 



$$P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$

$$c_i = \sum_{j} \alpha_{ij} h_j$$

Weighted sum of input hidden states (vector)

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

Attention weight for input  $x_j$  at decoding  $y_i$ 

$$e_{ij} = f(\bar{h}_i, h_j)$$

Some function
f (next slide)



### Limitations of RNN

- You have to process input sequentially (has to process  $x_{t-1}, x_{t-2}, \dots, x_1$ ) to process  $x_t$
- Does it have to be this way?



# Neural Network for Sequence

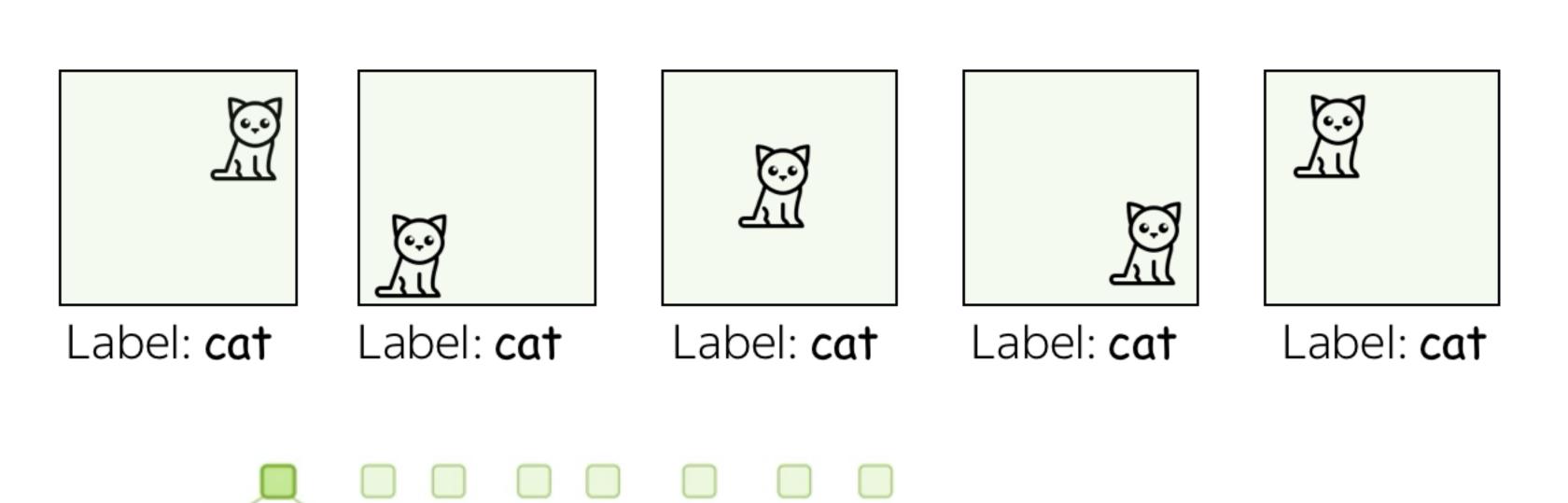
- Recurrent Neural Network (RNN)
  - LSTM, GRU
- Encoder-Decoder model
  - Output is also a variable length sequence
  - Attention mechanism
- Variants of Neural Network
  - Convolutional Neural Network
  - Transformer

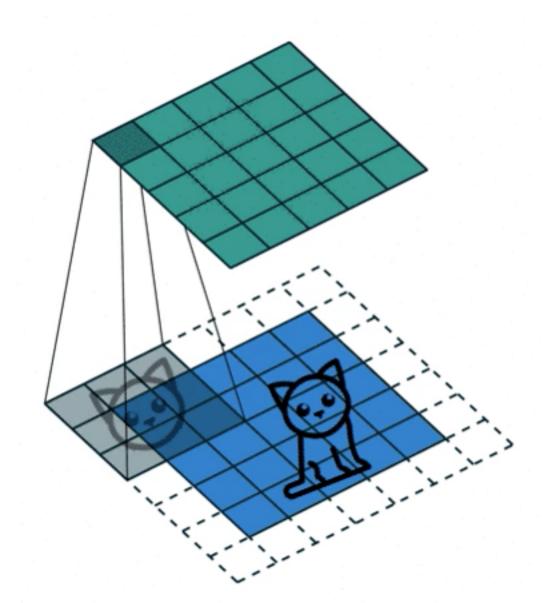


## Convolutional Neural Network

- Computer vision neural network architecture
- Scan the input piece-by-piece
- Can handle input of different sizes with few parameters

I like the cat on a mat <eos> <pad>



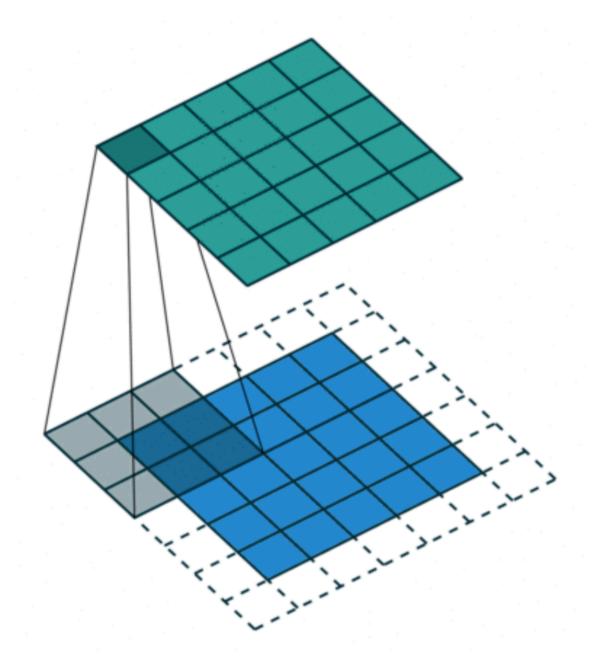




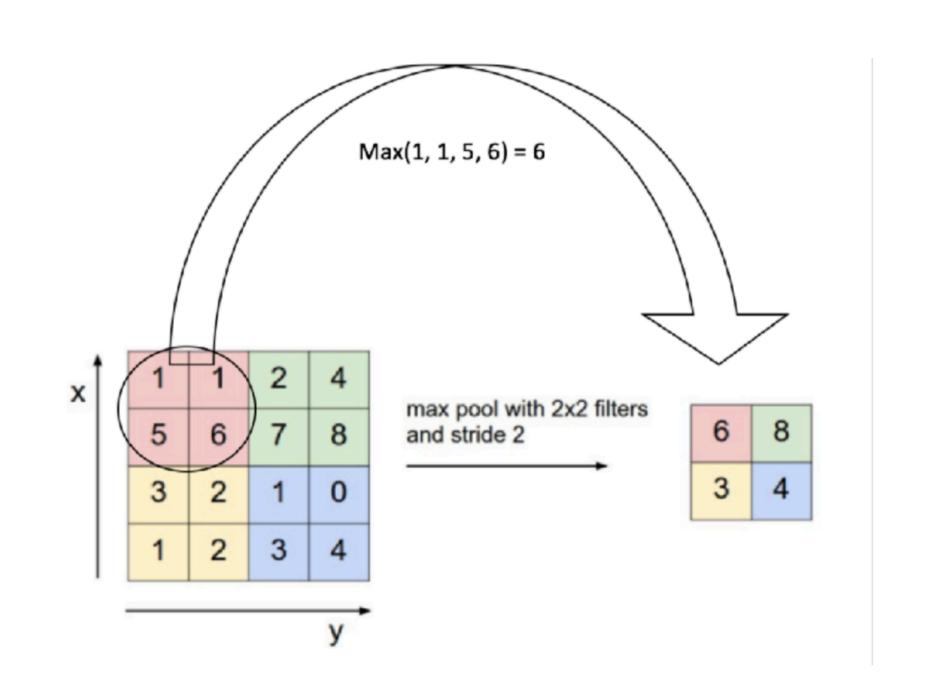
### Convolutional Neural Network (CNN)

Two main operations:

Convolution (parametrized)



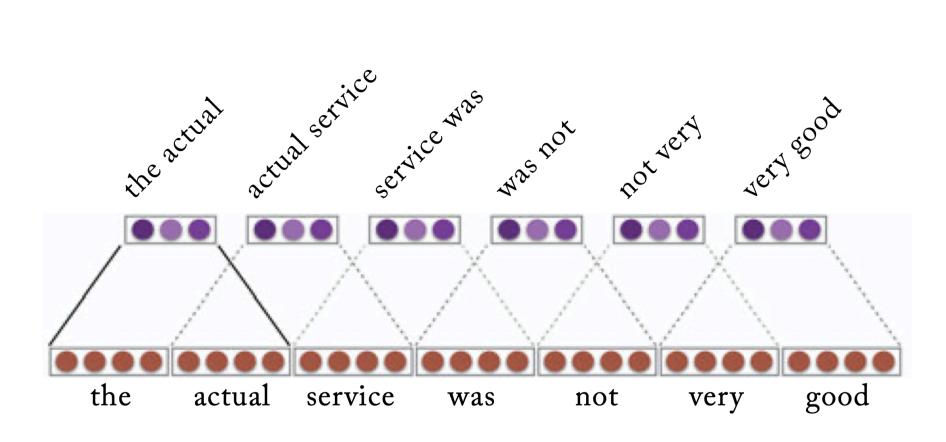
Pooling (non-parametrized)



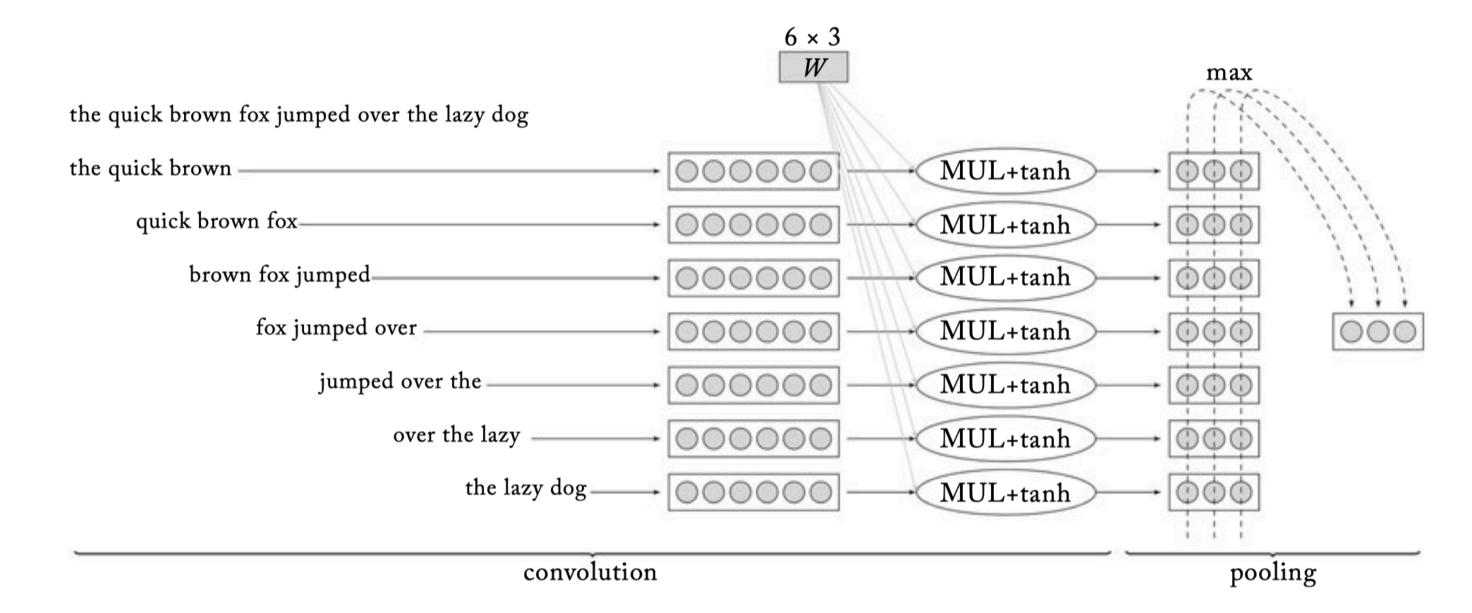


# CNN - applied to text classification

Map (filter) each k-gram to a vector



 Max pooling: return the max activation of a given filter over the entire sentence; like a logical OR (sum pooling is like logical AND)





# Convolution Layer

$$\phi$$
 – embedding function  $\bar{x}$  – sentence  $\mathbf{u}$  – filter, a weight vector

$$\bar{x} = \langle x_1, \dots, x_n \rangle$$

$$\mathbf{x}_i = \phi(x_i)$$

$$p_i = g([\mathbf{x}_i; \dots; \mathbf{x}_{i+k-1}] \cdot \mathbf{u})$$

Non-linearity function

- Map sequence into a shorter sequence (of a fixed window size, k)
- Map (filter) each k-gram to a single number
- Without padding, the output will be of (n-k+1) dimension

[input embedding dimension \* k]



# Multiple Filters

$$\mathbf{U} = \begin{bmatrix} & | & & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_l \\ & | & & | \end{bmatrix} - \text{matrix of } l \text{ filters, each is a column}$$

$$\phi$$
 – embedding function

$$\bar{x}$$
 – sentence

$$\bar{x} = \langle x_1, \dots, x_n \rangle$$

$$\mathbf{x}_i = \phi(x_i)$$

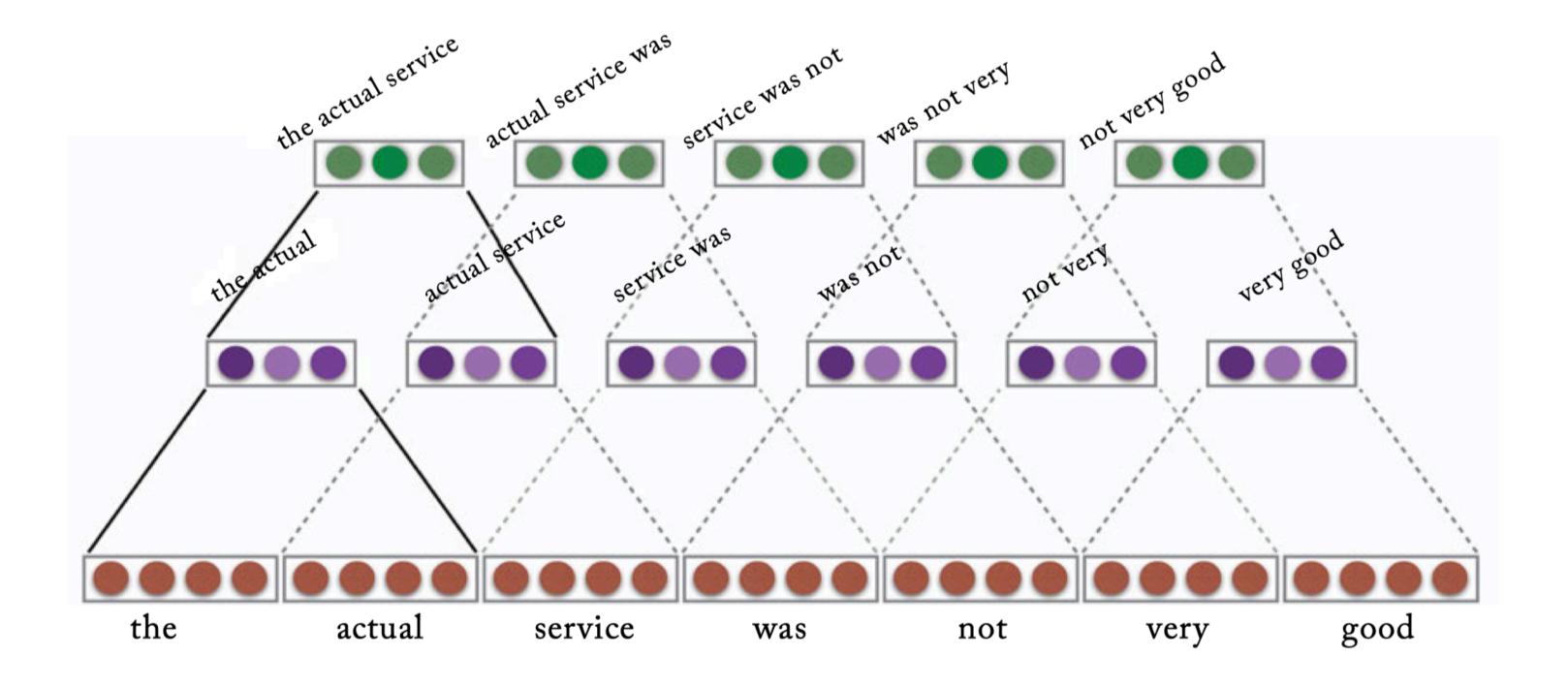
$$\mathbf{p}_i = g([\mathbf{x}_i; \dots; \mathbf{x}_{i+k-1}] \cdot \mathbf{U})$$

- Each filter captures different patterns
- Map each k-gram into l-dimensional vector



### Hierarchical CNN

- Stack convolutional layers
- Capture increasingly wider context

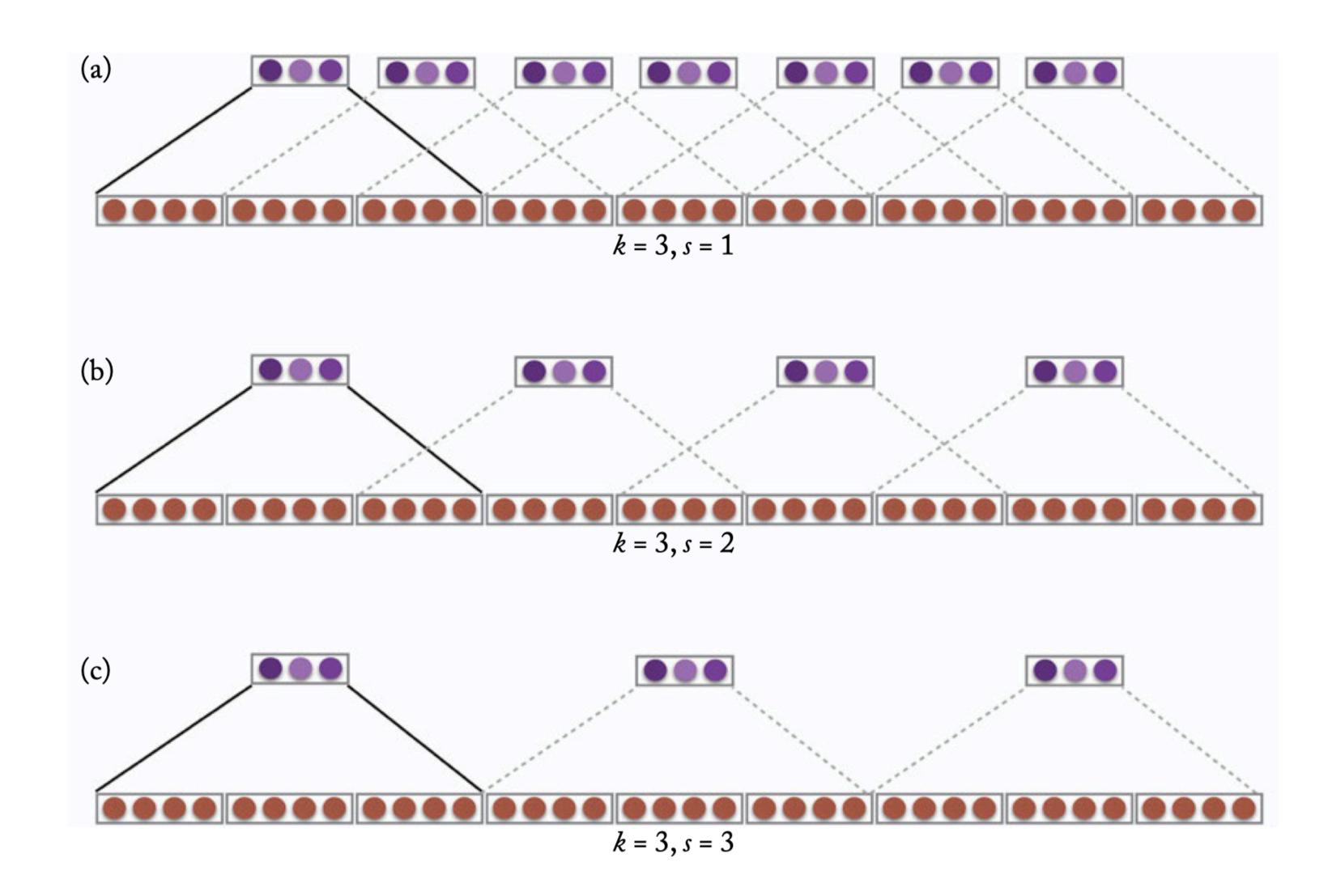




### Strides

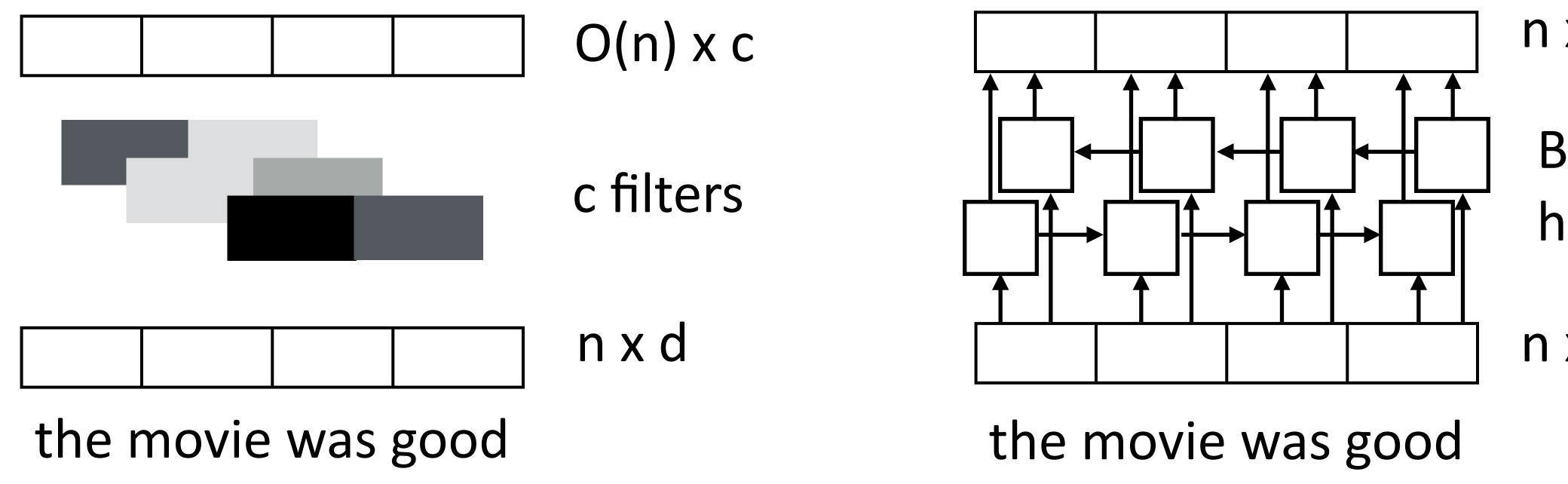
So far we have seen stride of 1

Larger stride is also possible (skipping some k-grams)





## Comparison: CNNs vs. RNNs

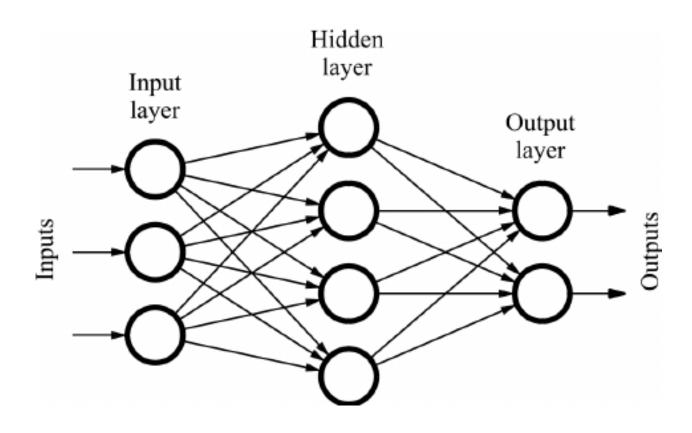


- n x 2c BiLSTM with hidden size c nxd
- Both RNNs and convolutional layers transform the input using context
- RNN: "globally" looks at the entire sentence (but local for many problems)
- CNN: local depending on filter width + number of layers

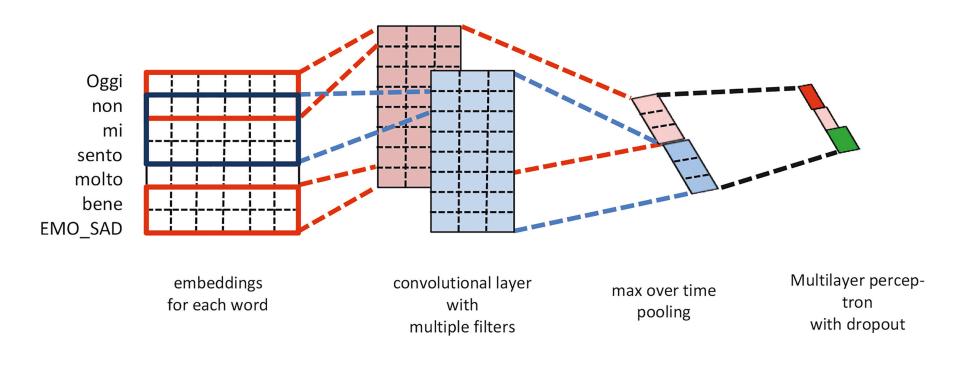


### Neural Networks in NLP

#### Feed-forward NNs

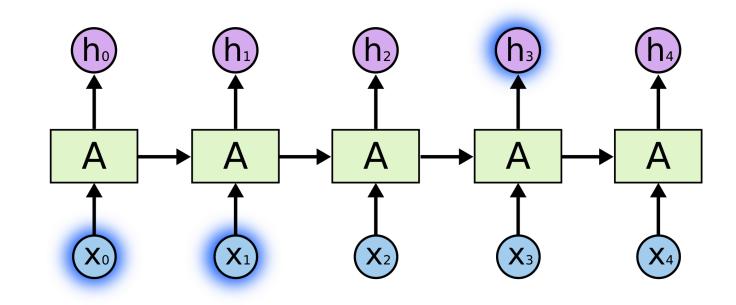


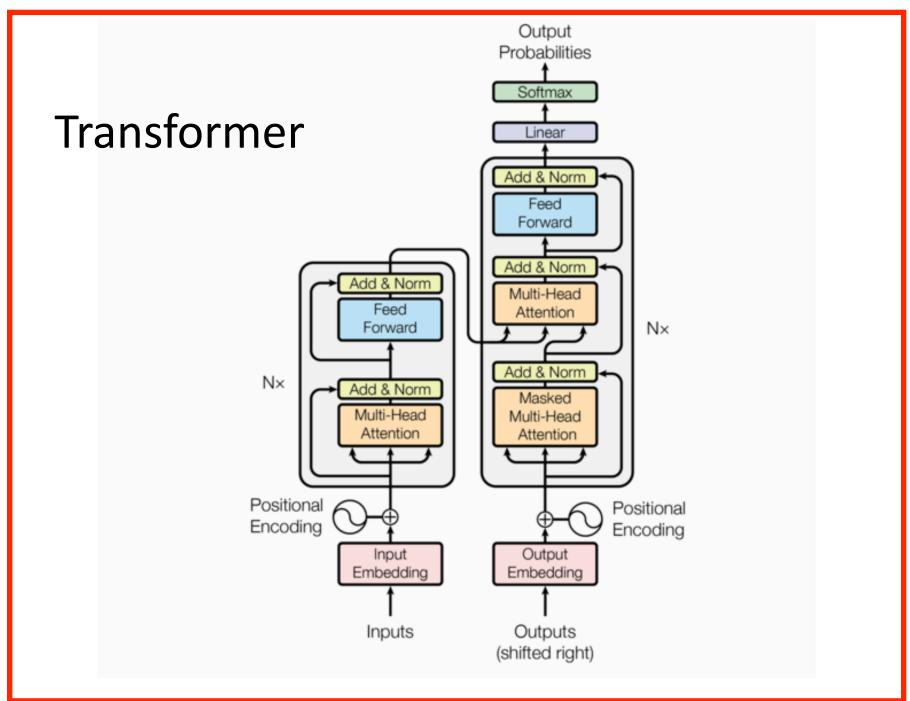
#### **Convolutional NNs**



Always coupled with word embeddings...

#### Recurrent NNs







### Motivation for Transformers

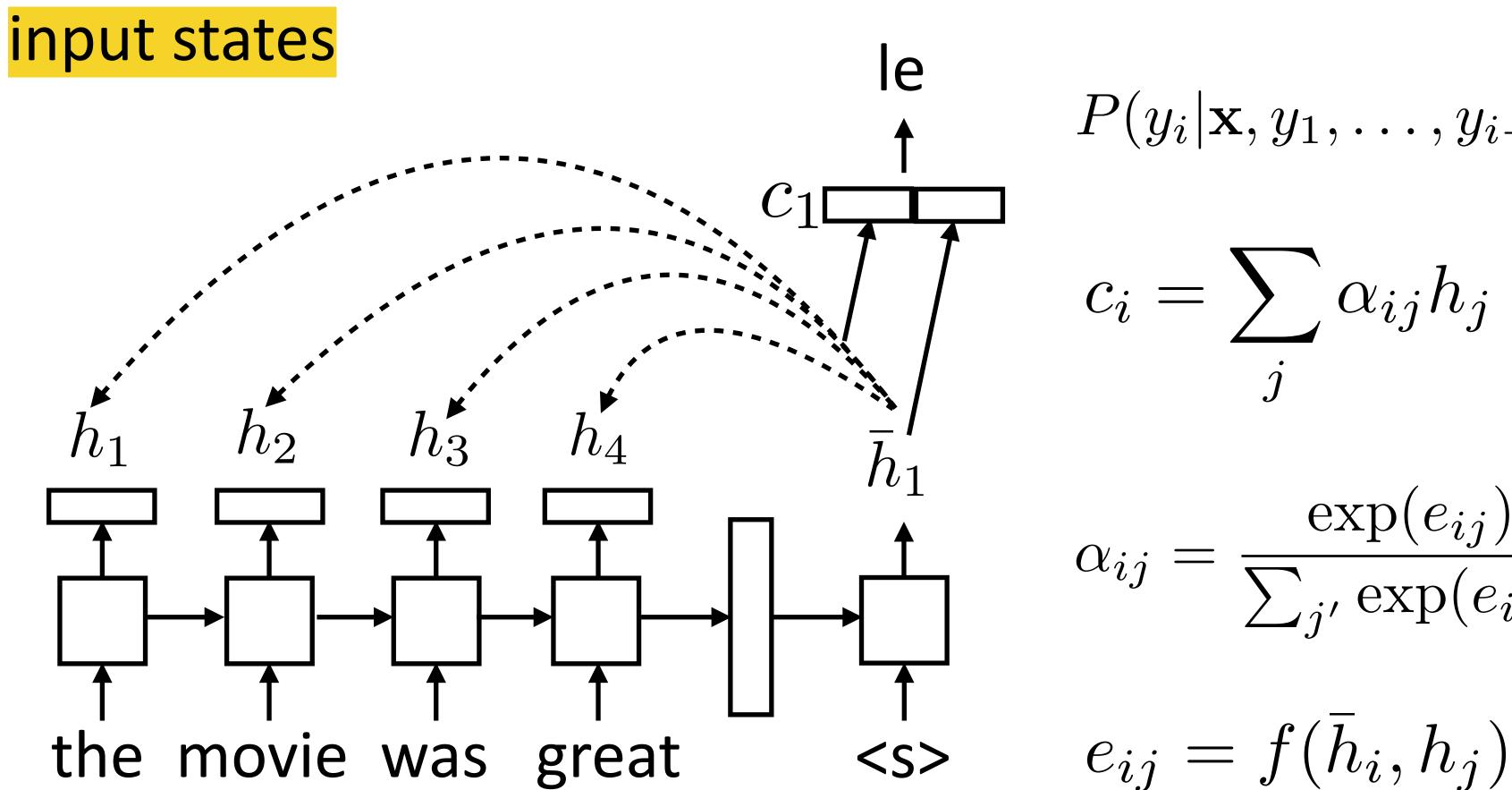
We want parallelization, but RNNs are inherently sequential.

- CNN gives us parallelization, but does not capture long range dependency.
- Despite its state representations and gating mechanisms, RNNs still need attention to deal with long-range dependencies
- If attention gives access to any state (and is required for high performance anyway), can we use attention instead of RNN?



# Recap: Attention from Seq2Seq

- For each decoder state, compute weighted sum of
- No attn:  $P(y_i|\mathbf{x}, y_1, ..., y_{i-1}) = \text{softmax}(Wh_i)$



$$P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$

$$c_i = \sum_j \alpha_{ij} h_j$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

$$e_{ij} = f(\bar{h}_i, h_j)$$



### Motivation for Transformers



We would like to capture long range dependencies!

CNN, RNN tends to be local



The ballerina is very excited that she will dance in the show.



### Motivation for Transformers

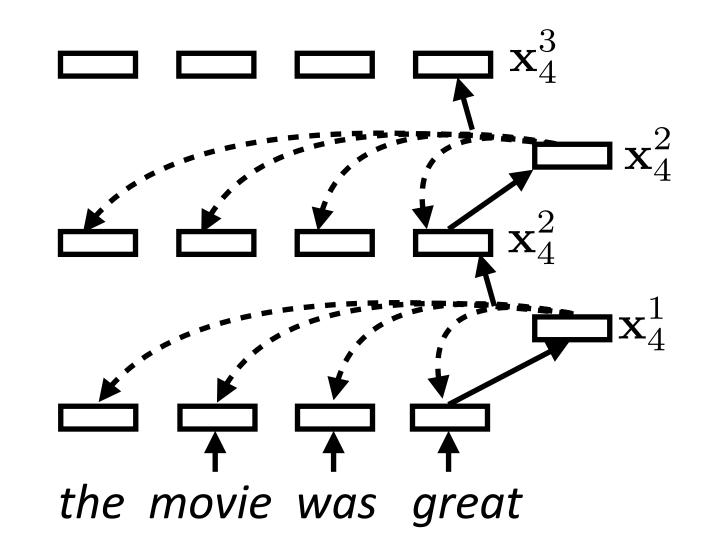
The ballerina is very excited that she will dance in the show.

- We would like to use:
  - Pronouns context should be the ancedecents (i.e., what they refer to)
  - Ambiguous words should consider local context
  - Word should look at its syntactic parents / children
- Goal: dynamically contextualize, passing information over long distances for each word



## Solution: Self Attention

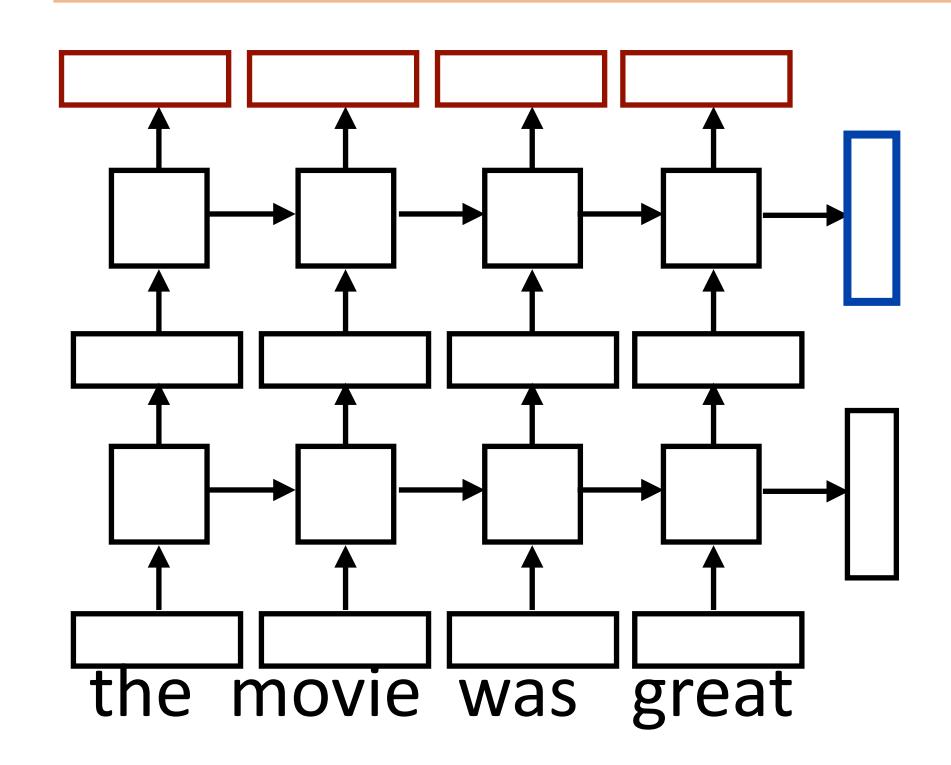
- Using attention for the encoder.
- Each input token is a query to form attention over all tokens.
- Then, attention weights dynamically mix how much is taken from all tokens.



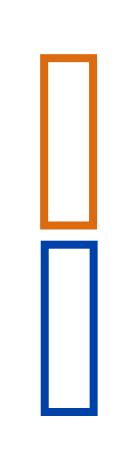
- Context-dependent representation of each token: a weighted sum of all tokens
- This will happen iteratively! Each step computing self-attention on the output of the previous level

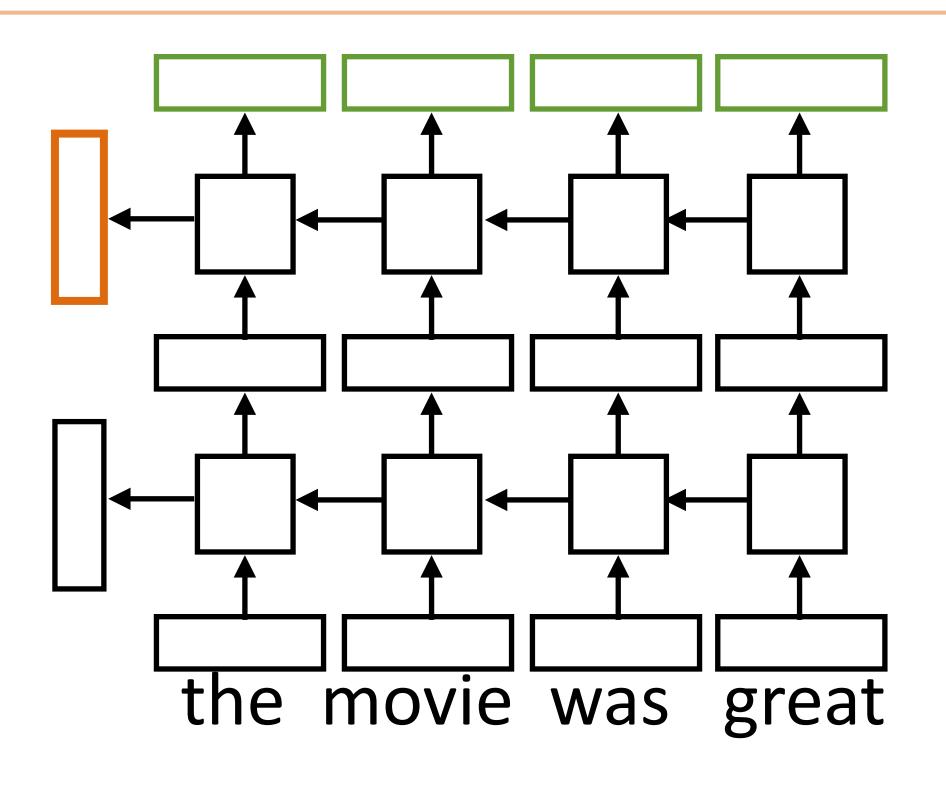


## Recap: Multilayer Bidirectional RNN



 Sentence classification based on concatenation of both final outputs



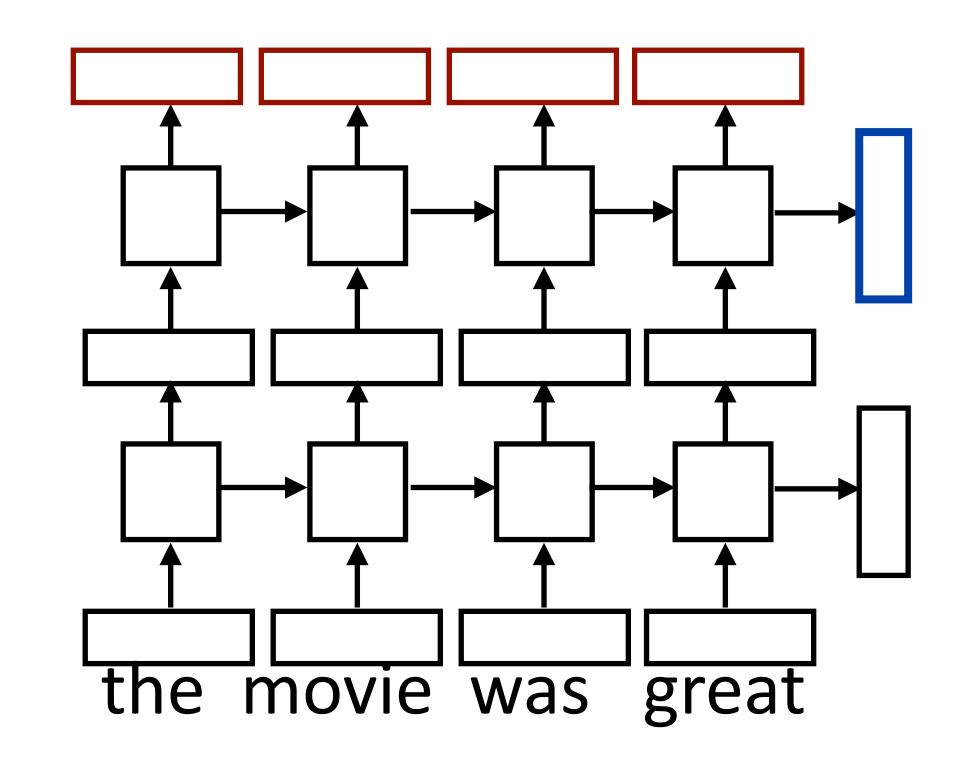


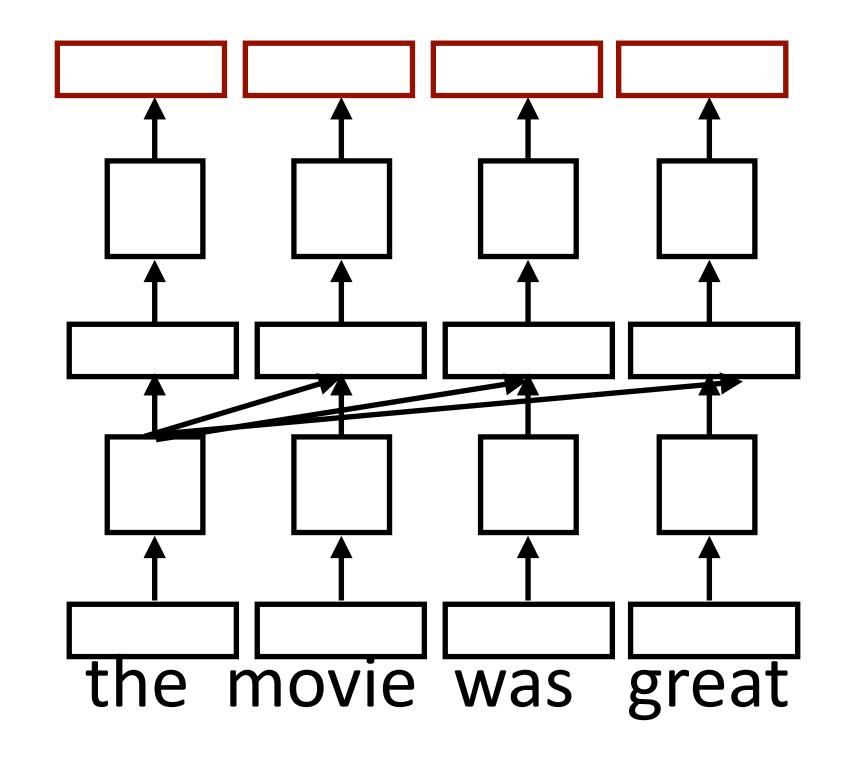
 Token classification based on concatenation of both directions' token representations





## RNN vs. Transformers







# Self Attention: Equation

k: level number

X: input vectors

$$X = \mathbf{x}_1, \dots, \mathbf{x}_n$$

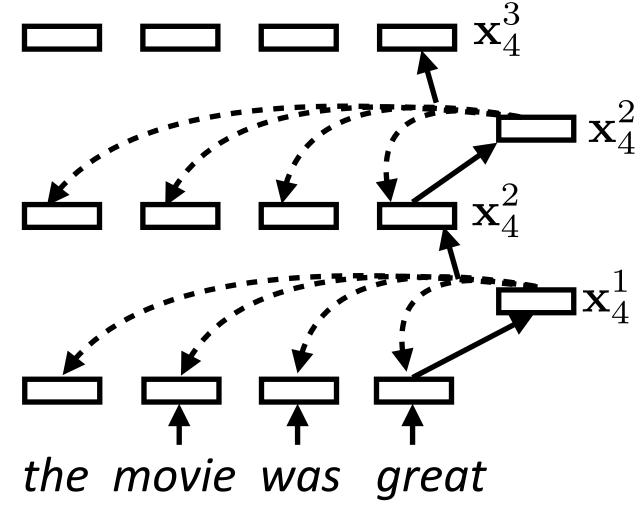
 $X = \mathbf{x}_1, \dots, \mathbf{x}_n \subset \mathsf{Input} \ \mathsf{sequence} \ \mathsf{of} \ \mathsf{length} \ \mathsf{n}$ 

$$\mathbf{x}_i^1 = \mathbf{x}_i$$

$$\bar{\alpha}_{i,j}^{k} = \mathbf{x}_{i}^{k-1} \cdot \mathbf{x}_{j}^{k-1} \cdot \mathbf{x}_{j}^{k-1} \cdot \mathbf{x}_{j}^{k}$$

$$\alpha_{i,j}^{k} = \frac{\exp(\bar{\alpha}_{i,j}^{k})}{\sum_{j} \exp(\bar{\alpha}_{i,j}^{k})}$$

 $\bar{\alpha}_{i,j}^k = \mathbf{x}_i^{k-1} \cdot \mathbf{x}_j^{k-1} \leq \text{Attention score for i-th input}$ for j-th input

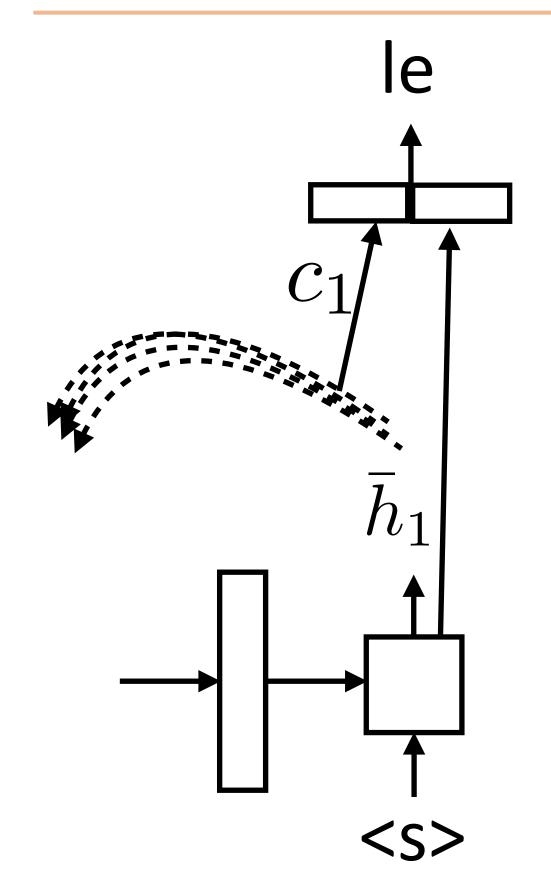


$$x_i^k = \sum_{j} \alpha_{i,j}^k x_j^{k-1}$$

Weighted sum of previous states (vector)



## Recap: Attention Score Function



$$e_{ij} = f(\bar{h}_i, h_j)$$

Bahdanau+ (2014): additive

$$f(\bar{h}_i, h_j) = \tanh(W[\bar{h}_i, h_j])$$

Luong+ (2015): dot product

$$f(\bar{h}_i, h_j) = \bar{h}_i \cdot h_j$$

$$f(\hat{h}_i, h_j) = \frac{\bar{h}_i \cdot h_j}{\sqrt{d_k}}$$

Luong+ (2015): bilinear

$$f(\bar{h}_i, h_j) = \bar{h}_i^\top W h_j$$

$$h_i, h_j \in R^{d_k}$$



# Multiple Attention Heads

- Why multiple heads? Softmax operations often end up peaky, making it hard to put weight on multiple items
- You can think of each head capturing different dependencies: one for finding subject, one for finding object, etc...

$$k: \text{level number} \\ X: \text{input vectors} \\ X = \mathbf{x}_1, \dots, \mathbf{x}_n \\ \mathbf{x}_i^1 = \mathbf{x}_i \\ \bar{\alpha}_{i,j}^k = \mathbf{x}_i^{k-1} \cdot \mathbf{x}_j^{k-1} \\ \alpha_{i,j}^k = \frac{\exp(\bar{\alpha}_{i,j}^k)}{\sum_j \exp(\bar{\alpha}_{i,j}^k)} \\ x_i^k = \sum \alpha_{i,j}^k x_j^{k-1} \\ x_i^k = \sum \alpha_{i,j}^k x_j^{k-1} \\ \alpha_{i,j}^{k-1} = \frac{\exp(\bar{\alpha}_{i,j}^k)}{\sum_j \exp(\bar{\alpha}_{i,j}^k)} \\ \alpha_{i,j}^{k-1} = \frac{\exp(\bar{\alpha}_{i,j}^{k,l})}{\sum_j \exp(\bar{\alpha}_{i,j}^{k,l})} \\ x_i^k = \sum \alpha_{i,j}^k x_j^{k-1} \\ \alpha_{i,j}^{k,l} = \frac{\exp(\bar{\alpha}_{i,j}^{k,l})}{\sum_j \exp(\bar{\alpha}_{i,j}^{k,l})} \\ x_i^k = \nabla^k [\mathbf{x}_i^{k,1}; \dots; \mathbf{x}_i^{k,L}]$$



# Multiple Attention Heads

Why mak

You

for

Would this algorithm know the position of the words in the input sequence?

k: level number

X: input vectors

$$X = \mathbf{x}_1, \dots, \mathbf{x}_n$$

$$\mathbf{x}_i^1 = \mathbf{x}_i$$

$$\bar{\alpha}_{i,j}^k = \mathbf{x}_i^{k-1} \cdot \mathbf{x}_j^{k-1}$$

$$\alpha_{i,j}^{k} = \frac{\exp(\bar{\alpha}_{i,j}^{k})}{\sum_{j} \exp(\bar{\alpha}_{i,j}^{k})}$$

$$x_i^k = \sum_{j} \alpha_{i,j}^k x_j^{k-1}$$

k: level number

L: number of heads

X: input vectors

$$X = \mathbf{x}_1, \dots, \mathbf{x}_n$$

$$\mathbf{x}_i^1 = \mathbf{x}_i$$

$$\bar{\alpha}_{i,j}^{k,l} = \mathbf{x}_i^{k-1} \mathbf{W}^{k,l} \mathbf{x}_j^{k-1}$$

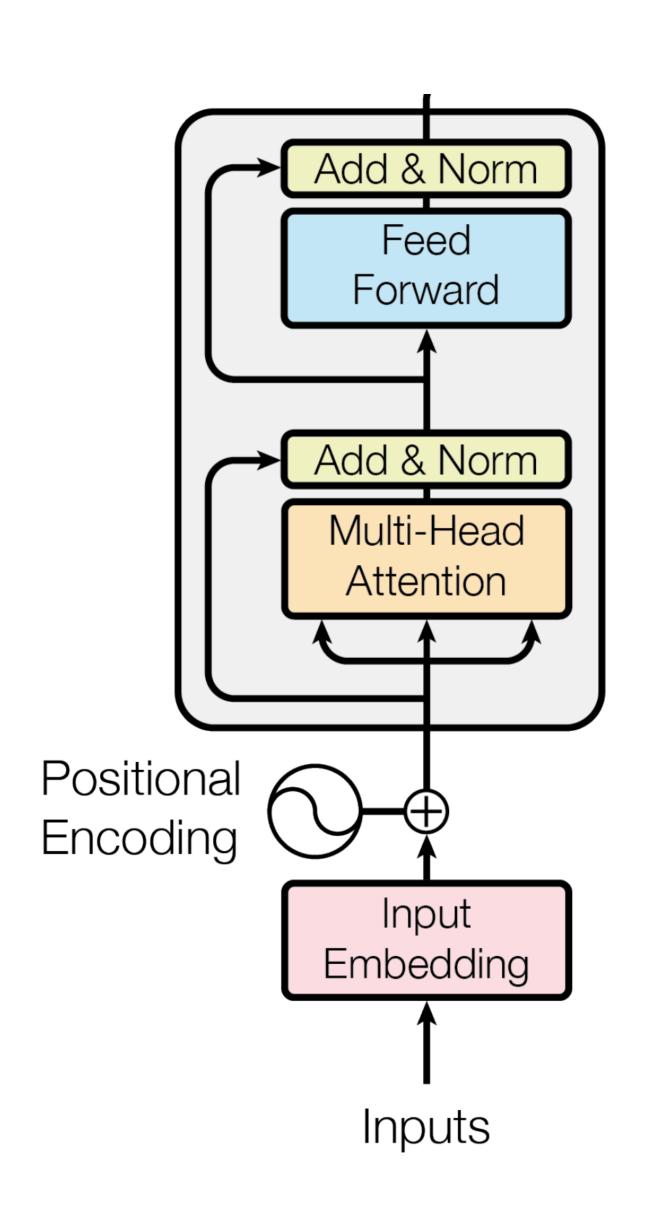
$$\alpha_{i,j}^{k,l} = \frac{\exp(\bar{\alpha}_{i,j}^{k,l})}{\sum_{j} \exp(\bar{\alpha}_{i,j}^{k,l})}$$

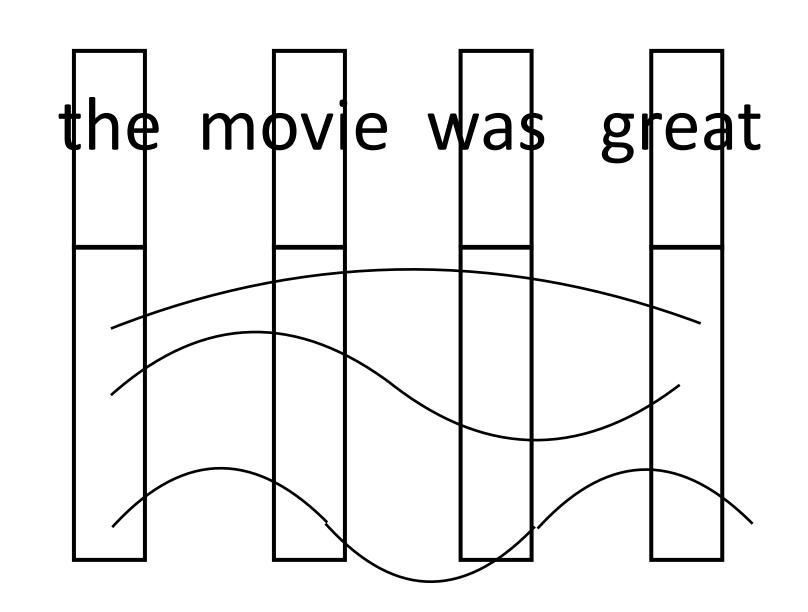
$$x_i^{k,l} = \sum_j \alpha_{i,j}^{k,l} x_j^{k-1}$$

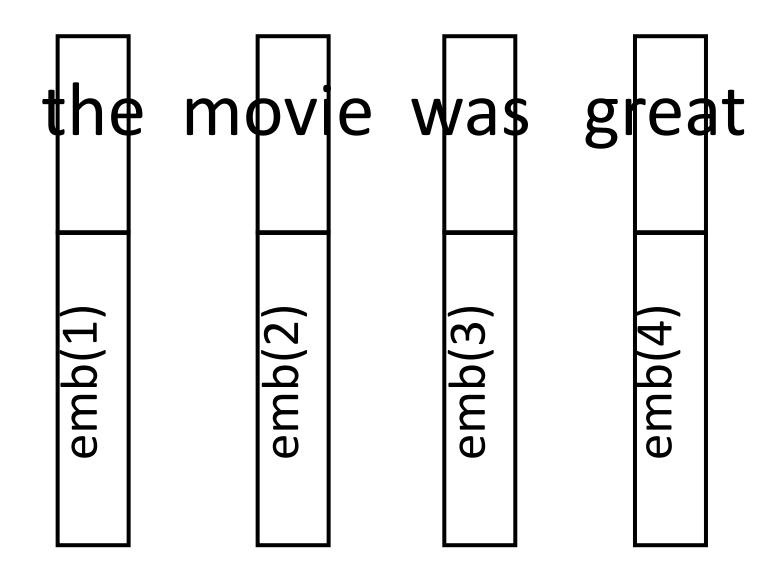
$$\mathbf{x}_i^k = \mathbf{V}^k[\mathbf{x}_i^{k,1}; \dots; \mathbf{x}_i^{k,L}]$$



# Positional Embeddings



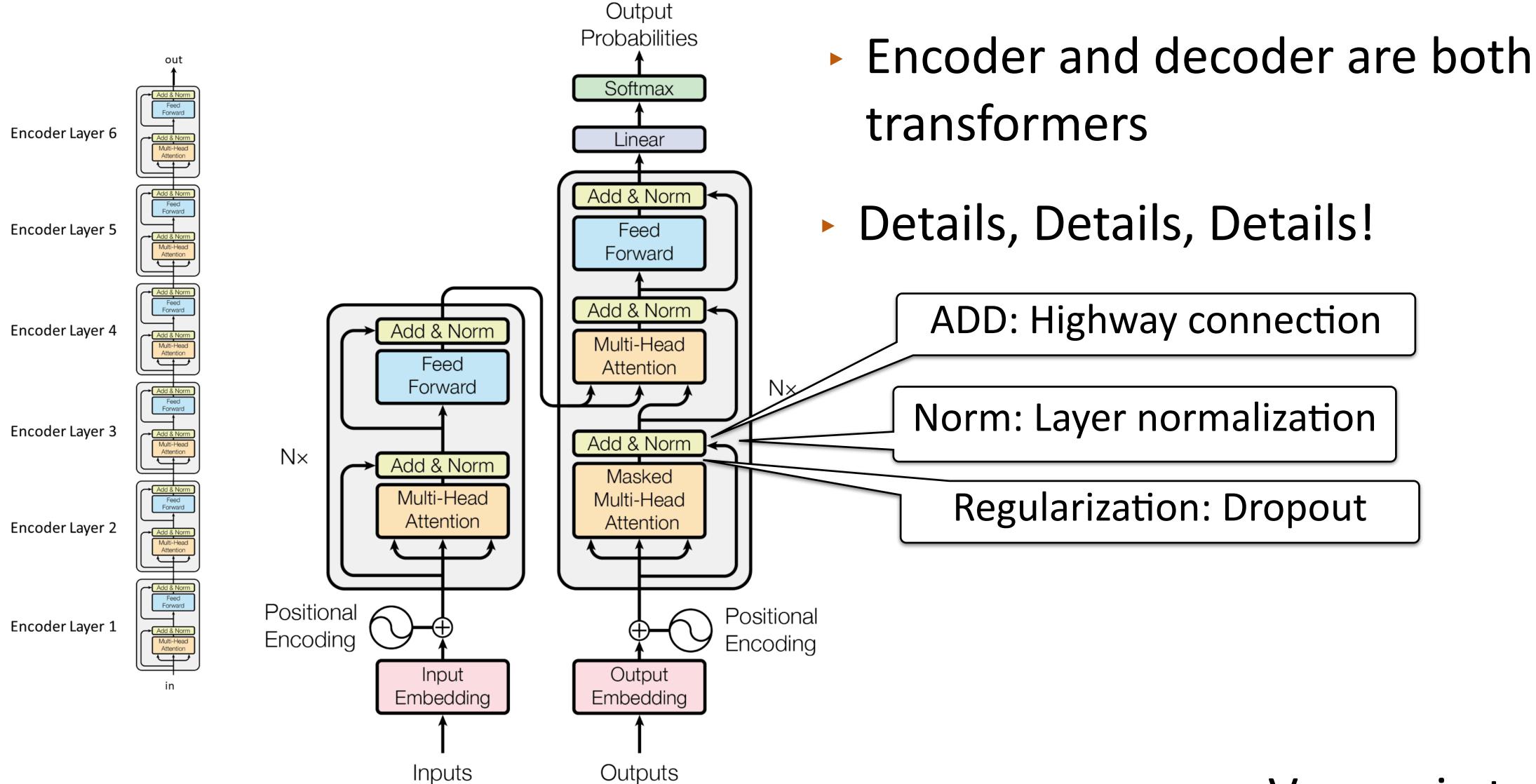




- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products
- Works essentially as well as just encoding position as a one-hot vector
   Vaswani et al. (2017)



### Transformers



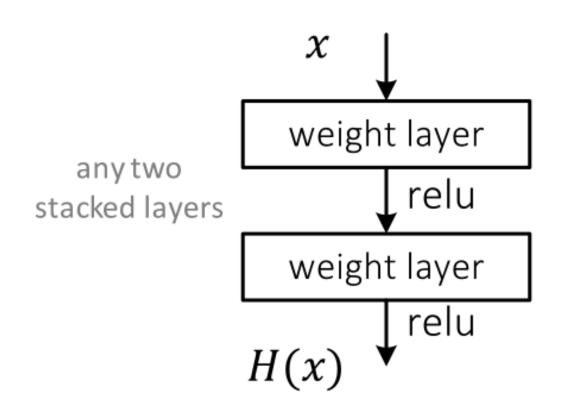
(shifted right)

Vaswani et al. (2017)

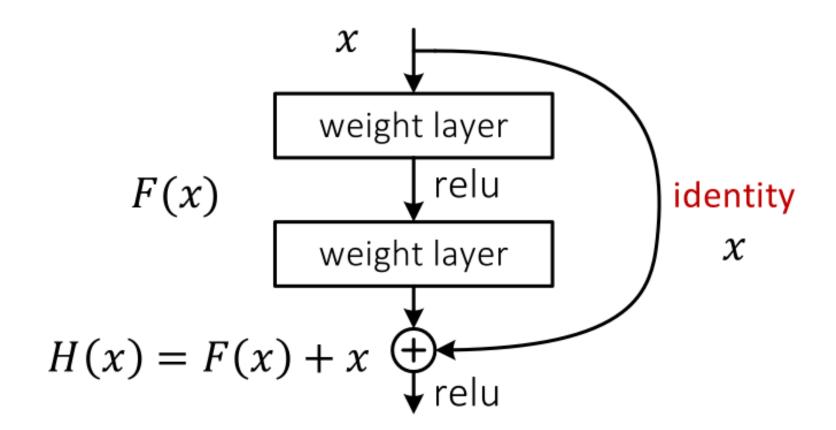


# Residual Network

Plaint net



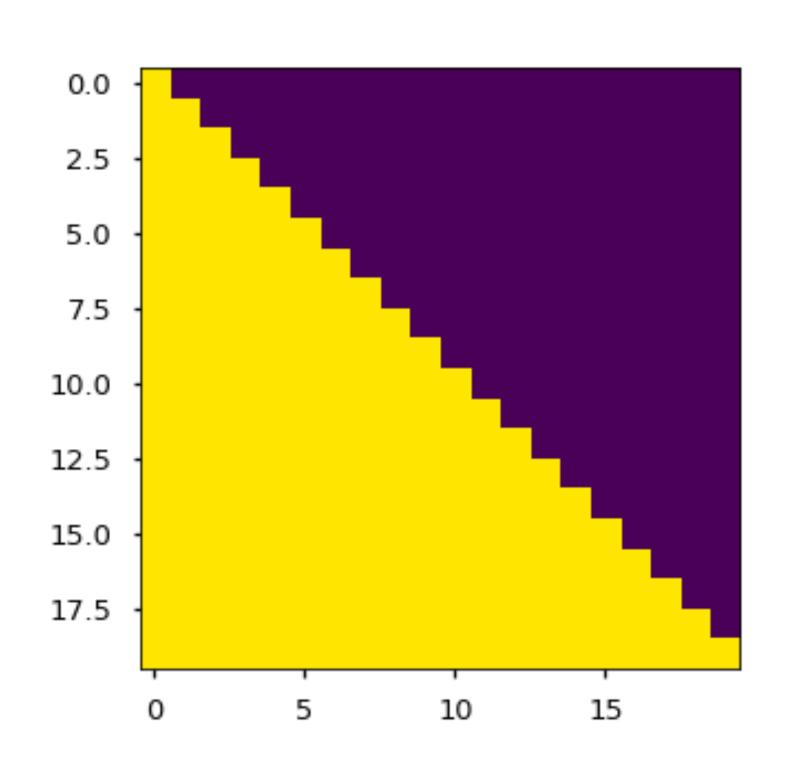
Residual net



ResNet (He et al. 2015): first very deep (152 layers)
network successfully trained for object recognition



## Decoding with Transformers



Decoder consumes the previous generated token (and attends to input), without recurrent state

 Words are blocked for attending to future words



### Performances of Transformers: MT

| Model                           | BLEU  |       |
|---------------------------------|-------|-------|
|                                 | EN-DE | EN-FR |
| ByteNet [18]                    | 23.75 |       |
| Deep-Att + PosUnk [39]          |       | 39.2  |
| GNMT + RL [38]                  | 24.6  | 39.92 |
| ConvS2S [9]                     | 25.16 | 40.46 |
| MoE [32]                        | 26.03 | 40.56 |
| Deep-Att + PosUnk Ensemble [39] |       | 40.4  |
| GNMT + RL Ensemble [38]         | 26.30 | 41.16 |
| ConvS2S Ensemble [9]            | 26.36 | 41.29 |
| Transformer (base model)        | 27.3  | 38.1  |
| Transformer (big)               | 28.4  | 41.8  |

big = 6 layers, 1000 dim for each token, 16 heads,
 base = 6 layers + other params halved



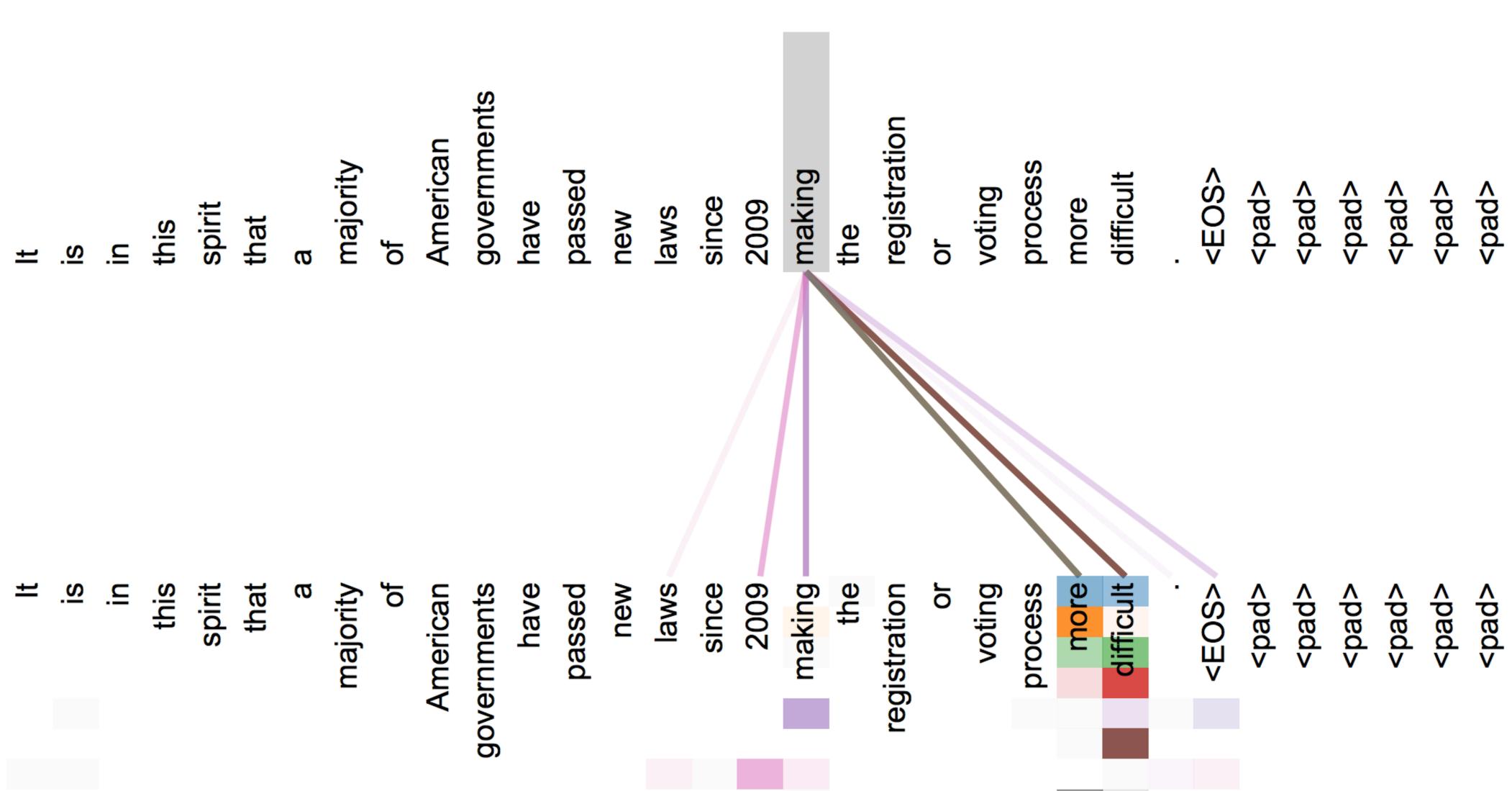
## Visualization



Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top: Full attentions for head 5. Bottom: Isolated attentions from just the word 'its' for attention heads 5 and 6. Note that the attentions are very sharp for this word.



## Visualization

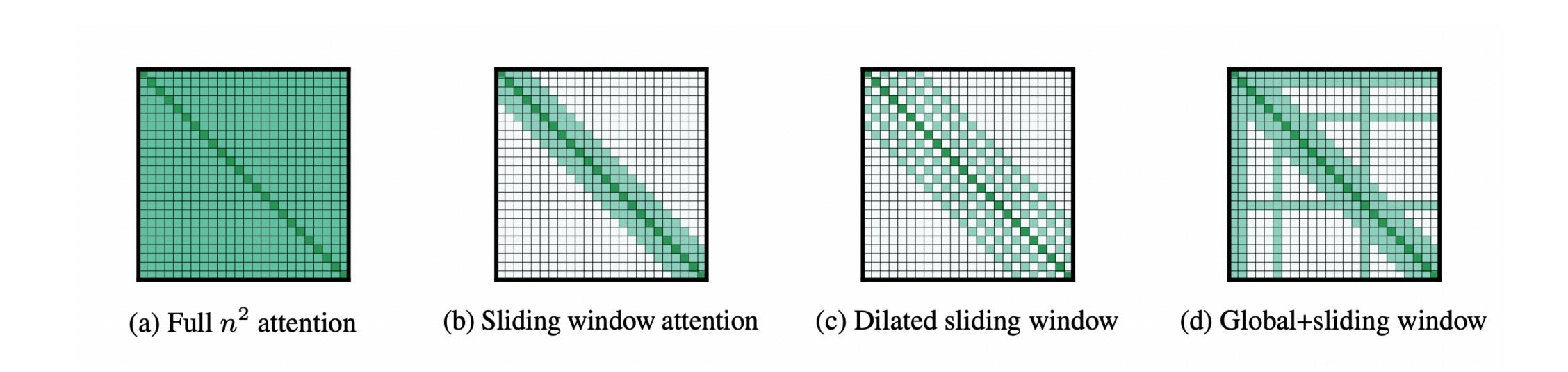


Vaswani et al. (2017)



# Limitations?

 $ightharpoonup n^2$  attention computation can get expensive when the sequence is long



[Beltagy et al, 2020, Zaheer et al, 2020, many others..]



# Takeaways

- RNN requires sequential processing, CNN enables parallel processing
- Both CNN and RNN assumes locality
- Transformers are strong, general models we'll see frequently
- Next week: Contextualized word embedding
  - How language models, RNN, Transformers are used for many downstream tasks
- Next Next week: Tree structure
  - Dependency parse
  - Constituency parse