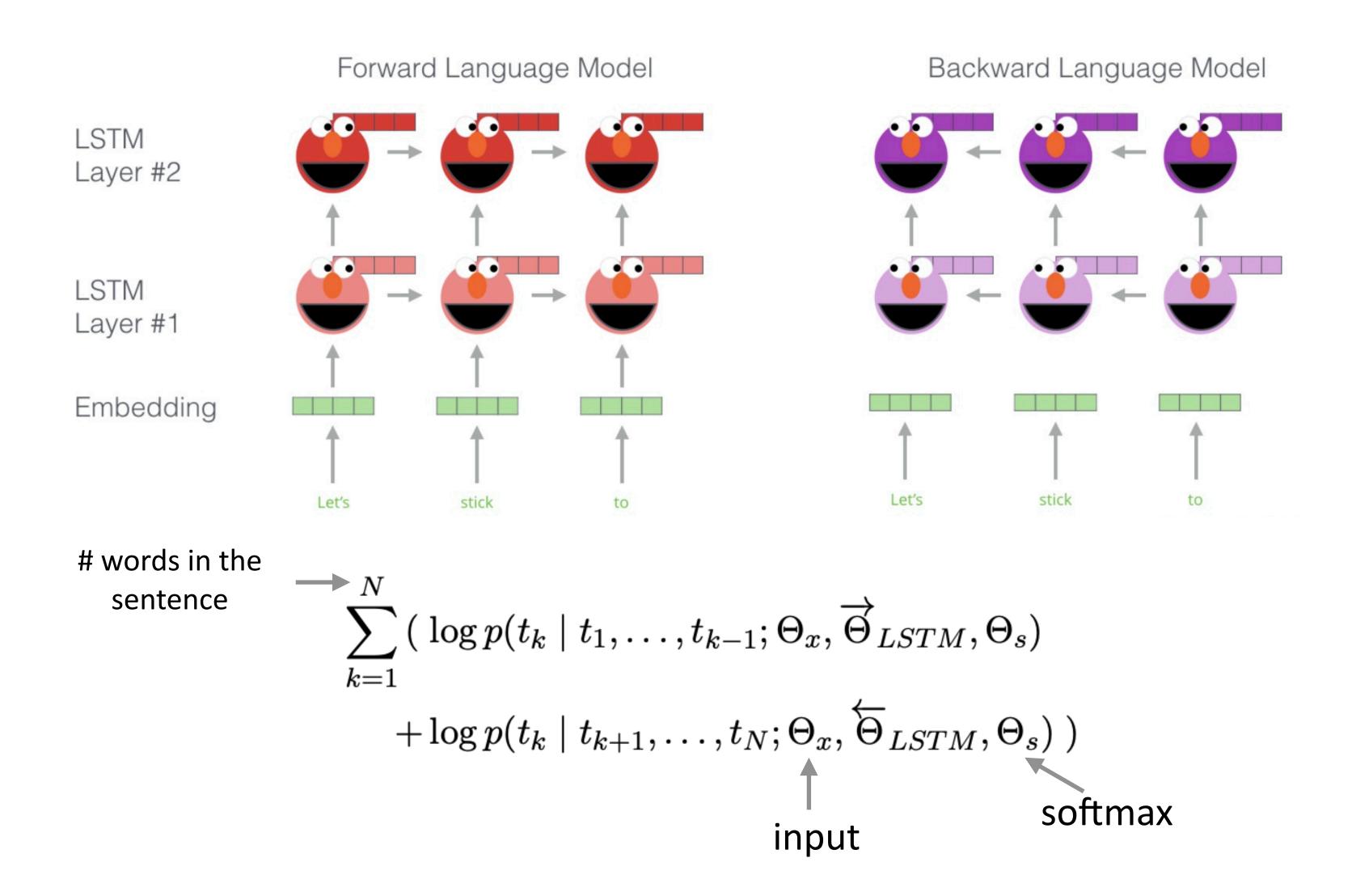
CS378: Natural Language Processing

Lecture 18: Contextualized Word Embeddings / Language Model For Everything

Today

- Contextualized Word Embeddings
 - Brief Recap on ELMo
 - BERT
 - Encoder-Decoder Model

Recap:Embeddings from Language Models



Recap: Applying ELMo

- Take those embeddings and feed them into whatever architecture you want to use for your task
- Frozen embeddings: update the weights of your network but keep ELMo's parameters frozen
- Plug ELMo into any (neural) NLP model: freeze all the LMs weights and change the input representation to:

$$[\mathbf{x}_k; \mathbf{ELMo}_k^{task}]$$

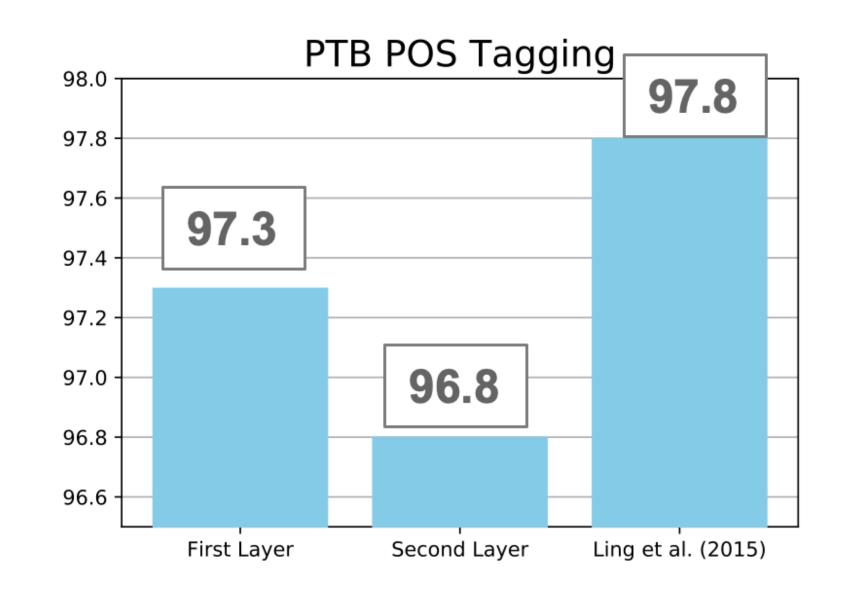
(could also insert into higher layers)

Task predictions (sentiment, etc.) Some neural network Contextualized word embeddings terribly exciting the movie was

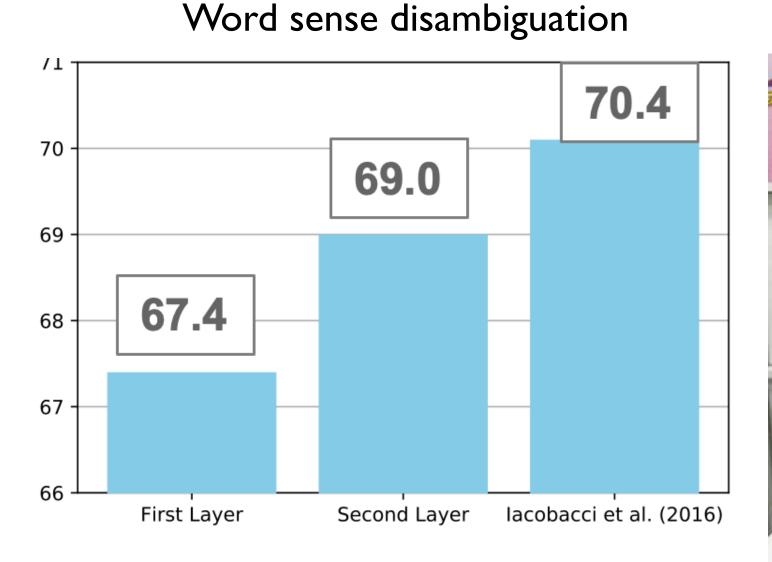
$$f: (w_1, w_2, ..., w_n) \longrightarrow \mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$$

Probing ELMo

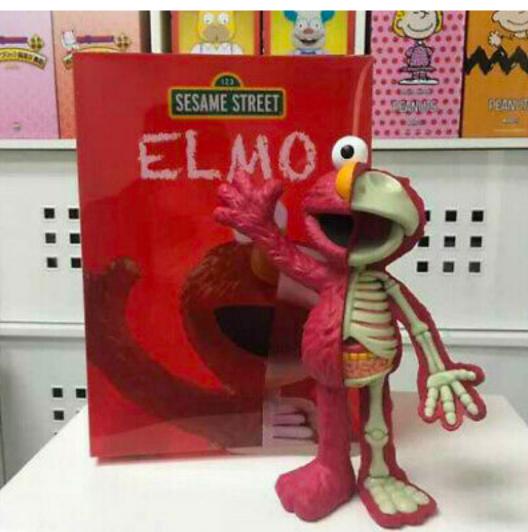
- From each layer of the ELMo model, attempt to predict something:
 POS tags, word senses, etc.
- Higher accuracy => ELMo is capturing that thing more strongly



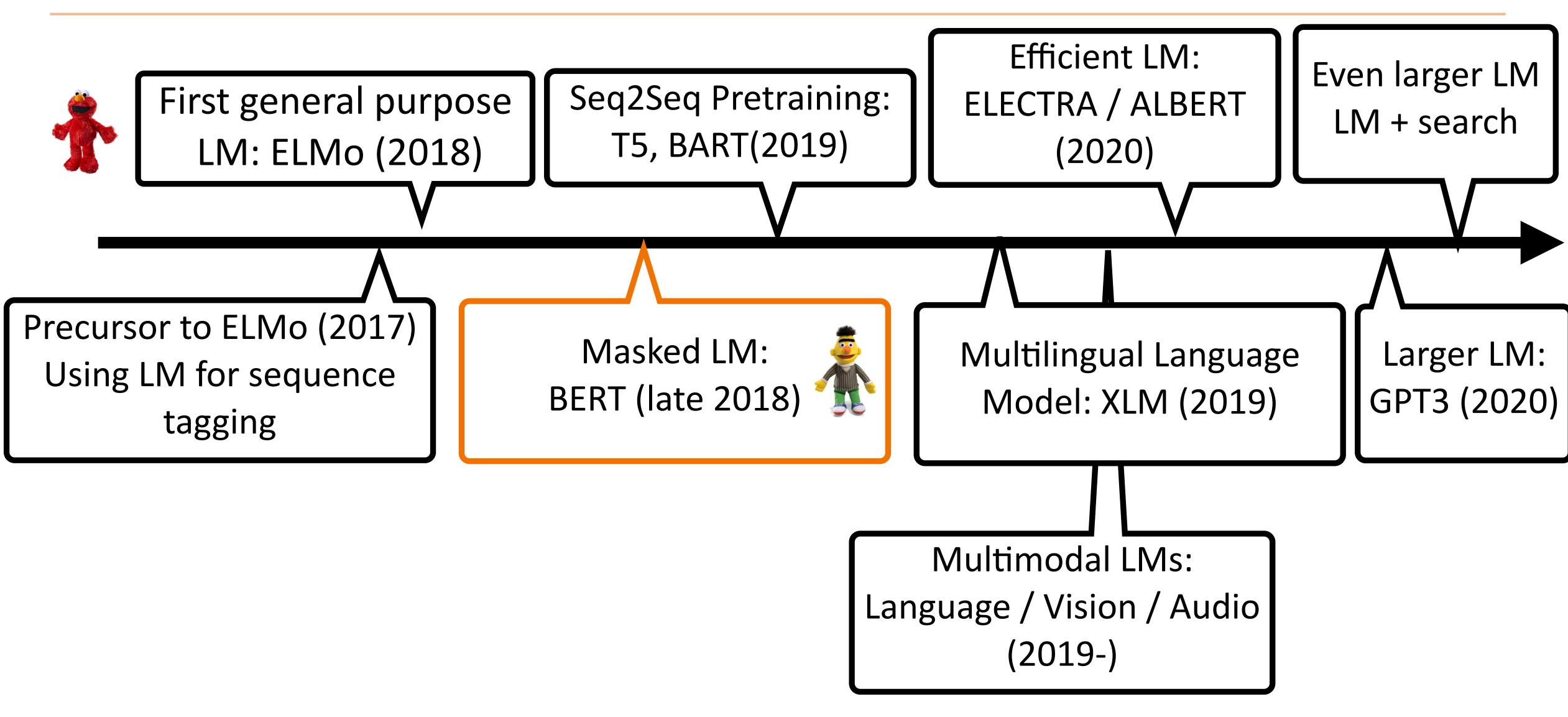
First Layer > Second Layer



Second Layer > First Layer



Timeline of Pretrained LM

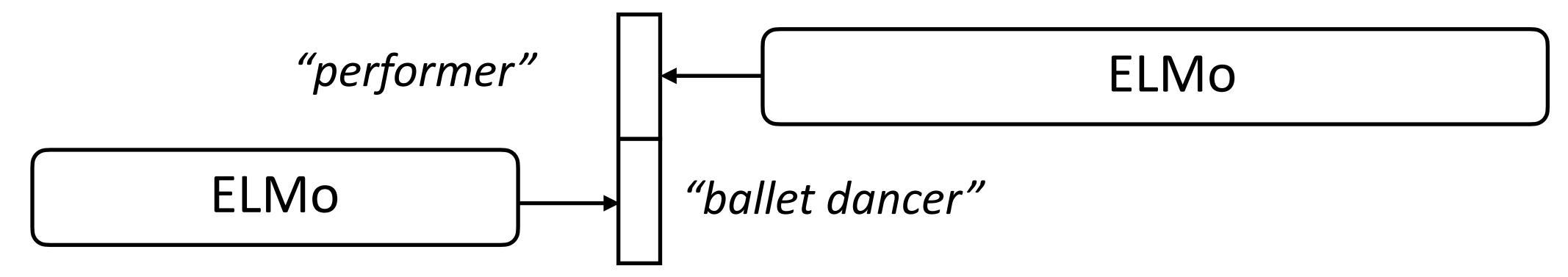


BERT

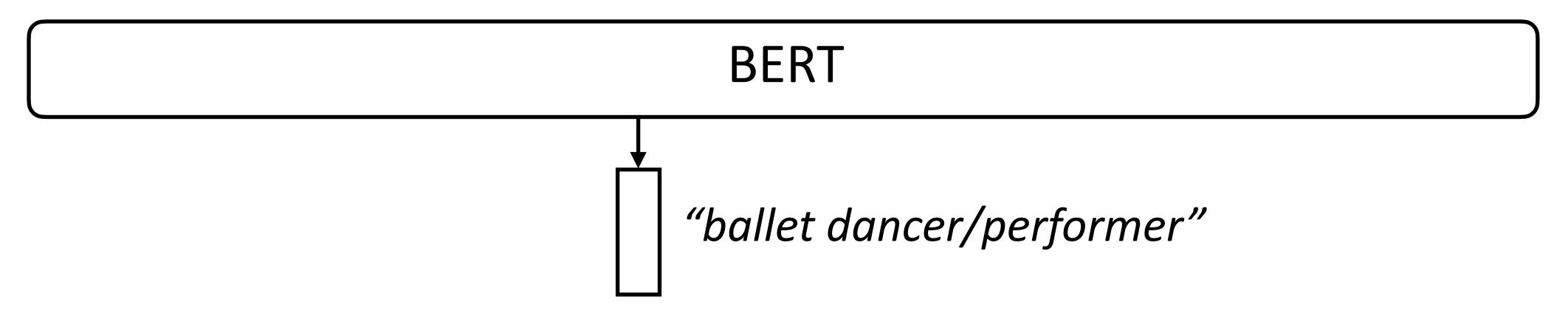
- Four major changes compared to ELMo:
 - Transformers instead of LSTMs
 - Bidirectional model with "Masked LM" objective instead of standard LM
 - Fine-tune all parameters instead of freezing LM parameters
 - Operates over word pieces (sub word vocabulary)

BERT

• ELMo is a unidirectional model (as is GPT): we can concatenate two unidirectional models, but is this the right thing to do?



A stunning ballet dancer, Copeland is one of the best performers to see live.

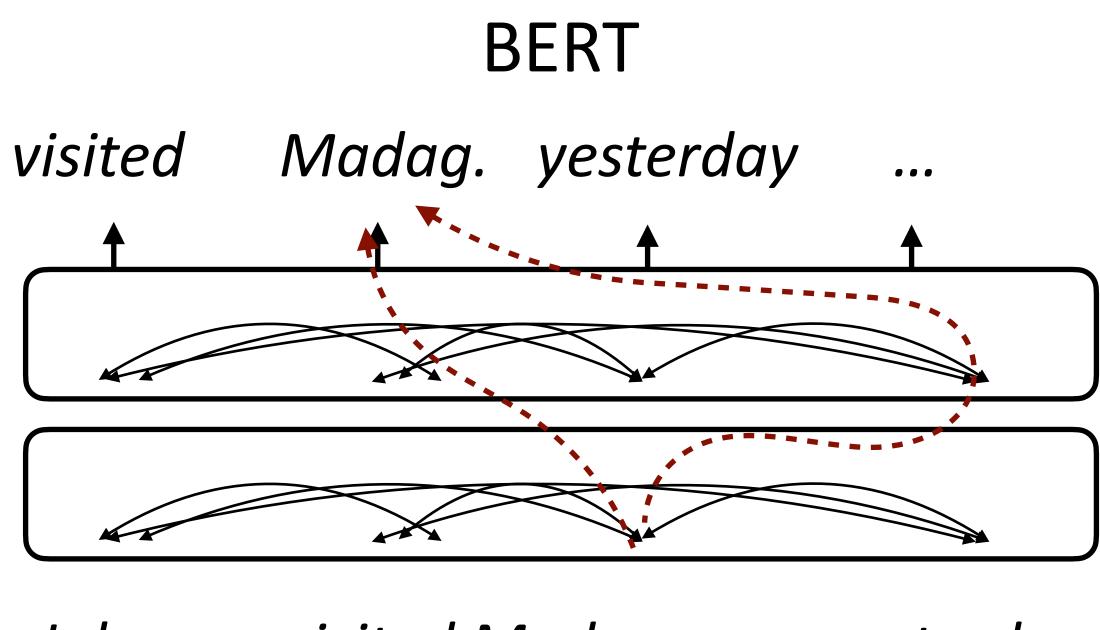


Devlin et al. (2019)

BERT

How to learn a "deeply bidirectional" model? What happens if we just replace an LSTM with a transformer?

ELMo (Language Modeling) visited Madag. yesterday John visited Madagascar yesterday

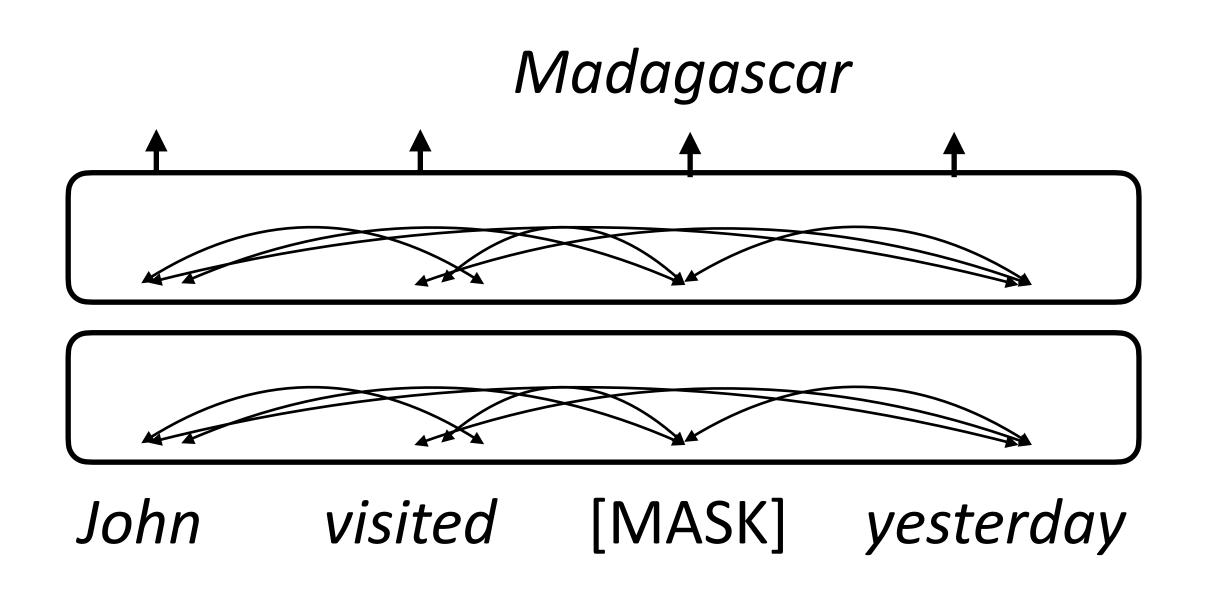


John visited Madagascar yesterday

You could do this with a "onesided" transformer, but this "twosided" model can cheat

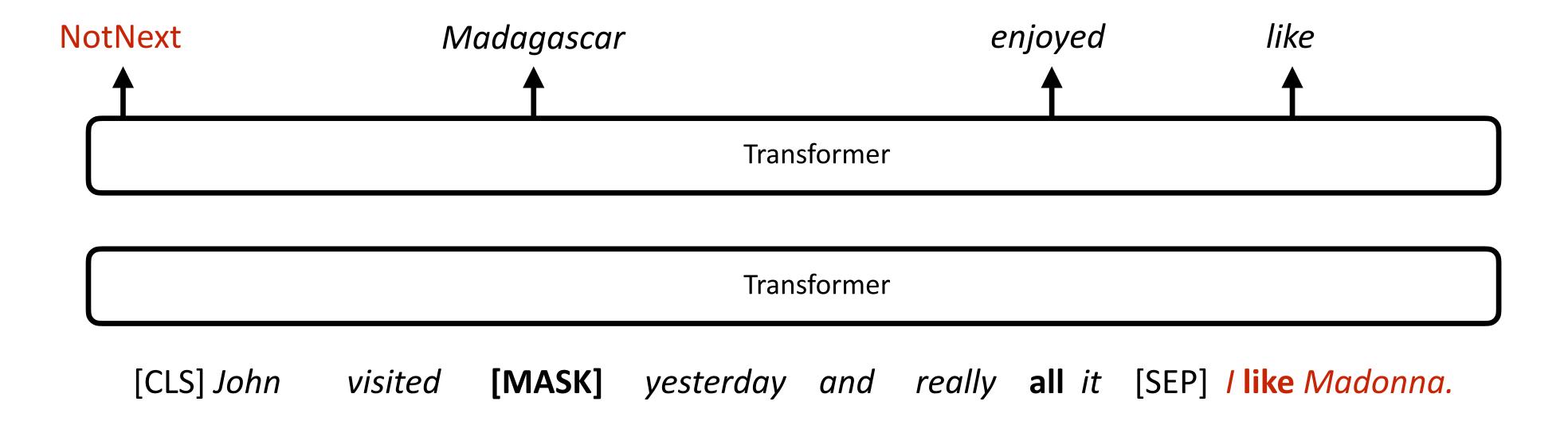
Masked Language Modeling

- How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, mask out 15% of the tokens, and try to predict them



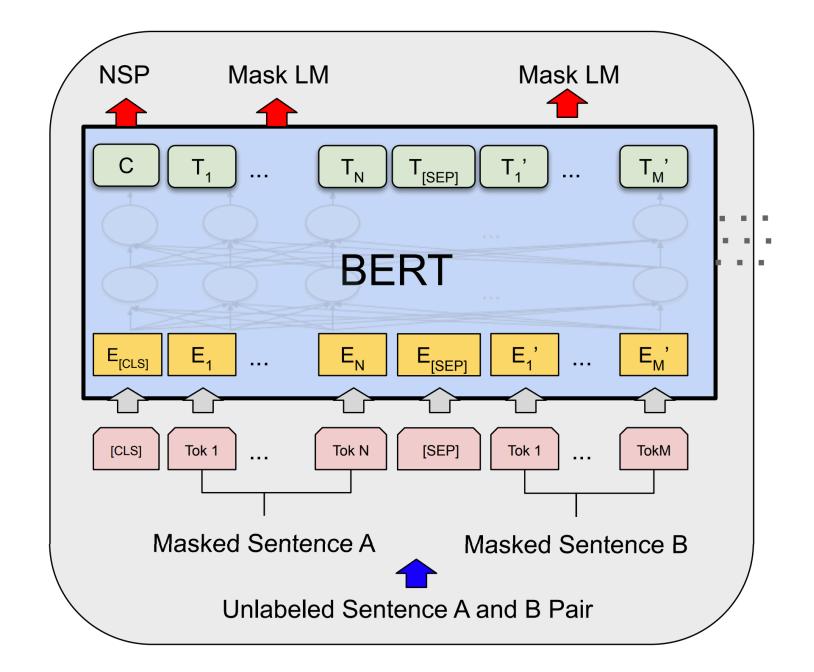
BERT objective

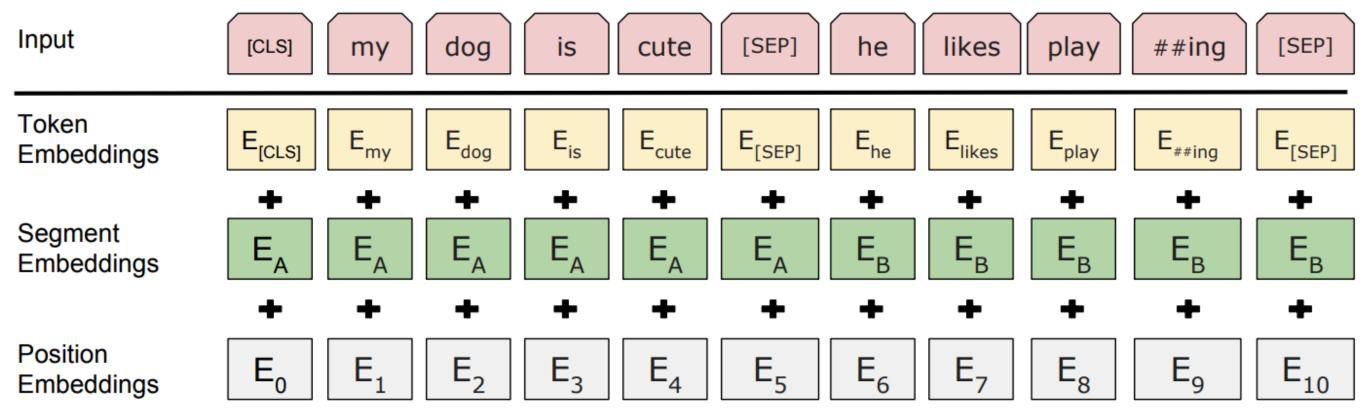
- Language Modeling Objective (Predicting the masked word)
- Next Sentence Prediction Objective
 - Input: [CLS] Text chunk 1 [SEP] Text chunk 2
 - 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next



BERT architecture details

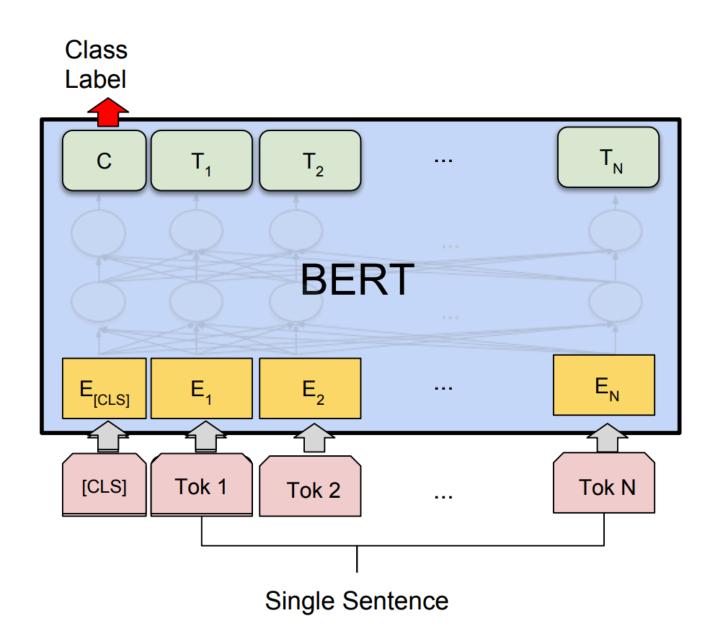
- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads. Total params = 340M
- word pieces instead of words: playing => play ##ing
- Positional embeddings and segment embeddings
- pre-trained on a large corpus (40 epochs on Wikipedia (2.5B tokens)
 - + BookCorpus (0.8B tokens)



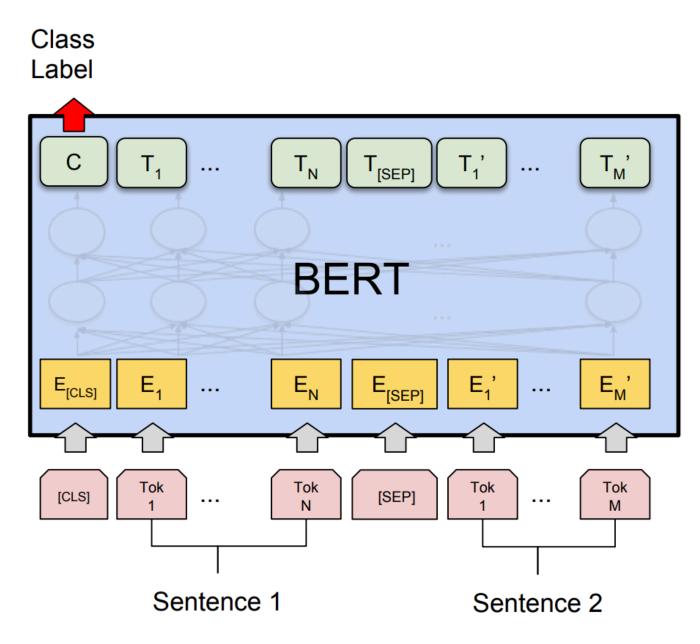


Devlin et al. (2019)

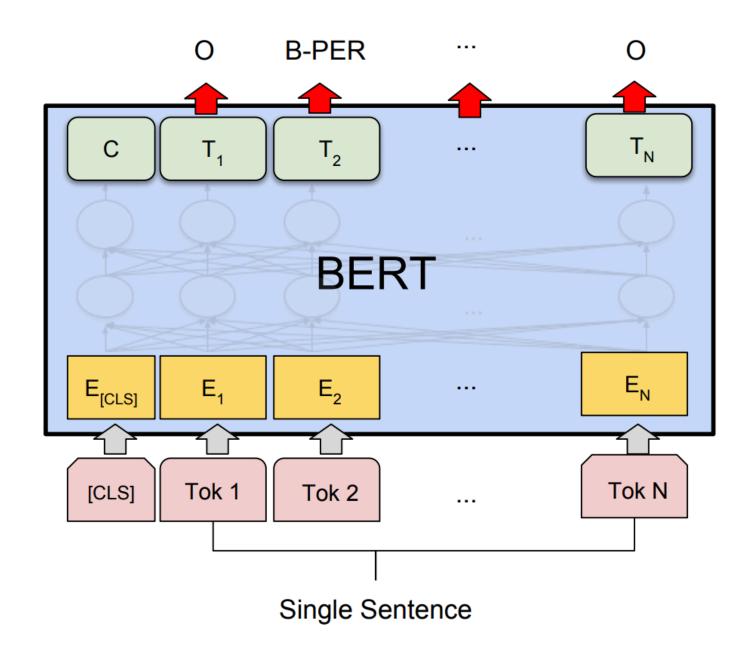
What can BERT do?



(b) Single Sentence Classification Tasks: SST-2, CoLA



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Artificial [CLS] token is used as the vector to do classification from
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece
 Devlin et al. (2019)

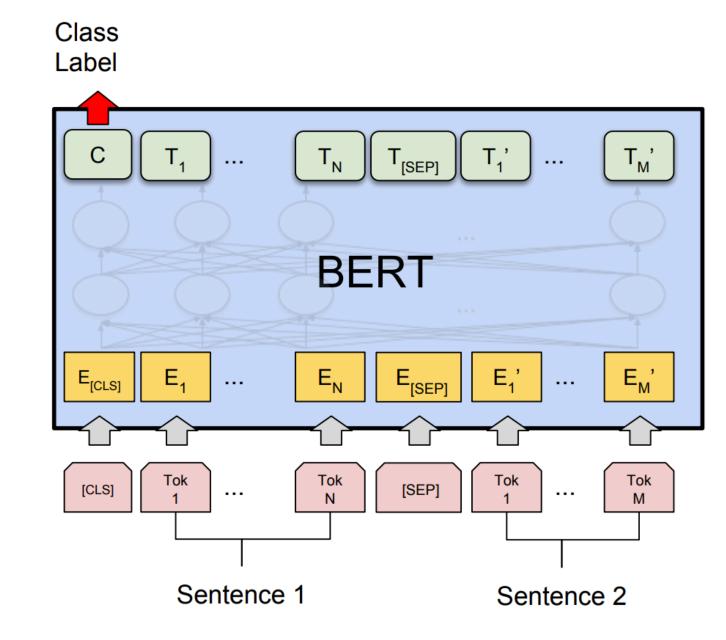
What can BERT do?

Entails (first sentence implies second is true)

Transformer ...

Transformer

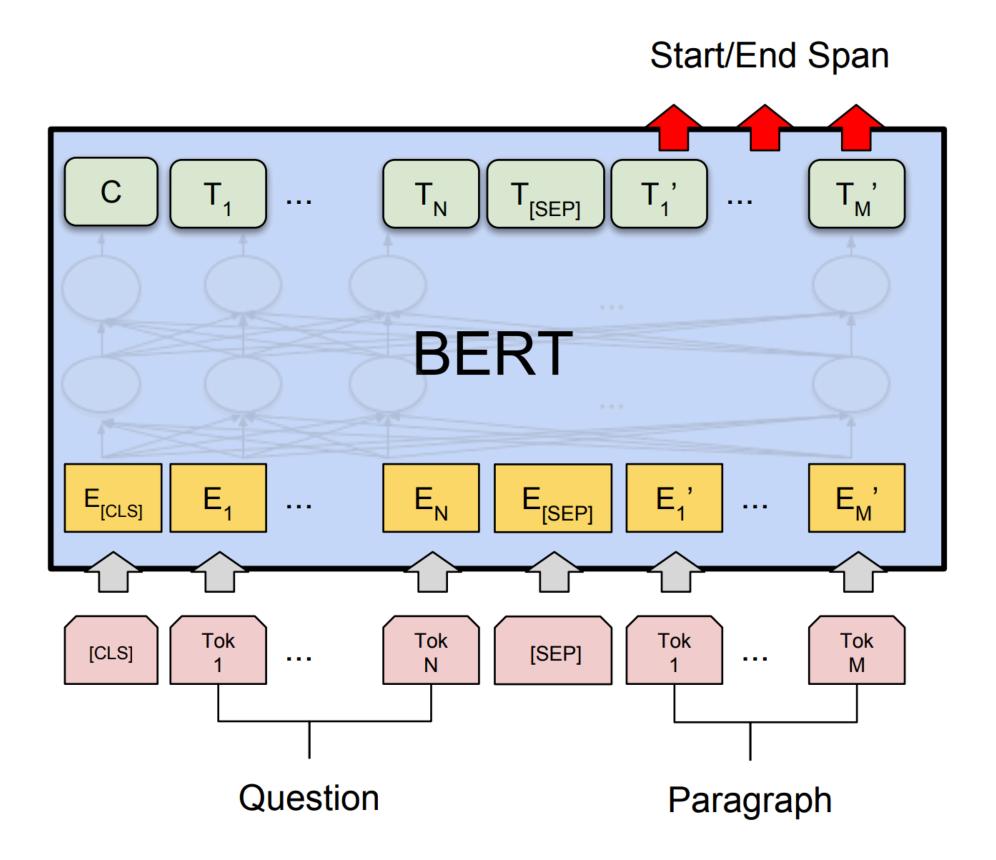
[CLS] A boy plays in the snow [SEP] A boy is outside



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

- How does BERT model a pair of sentences?
- Transformers can model interactions between the two sentences

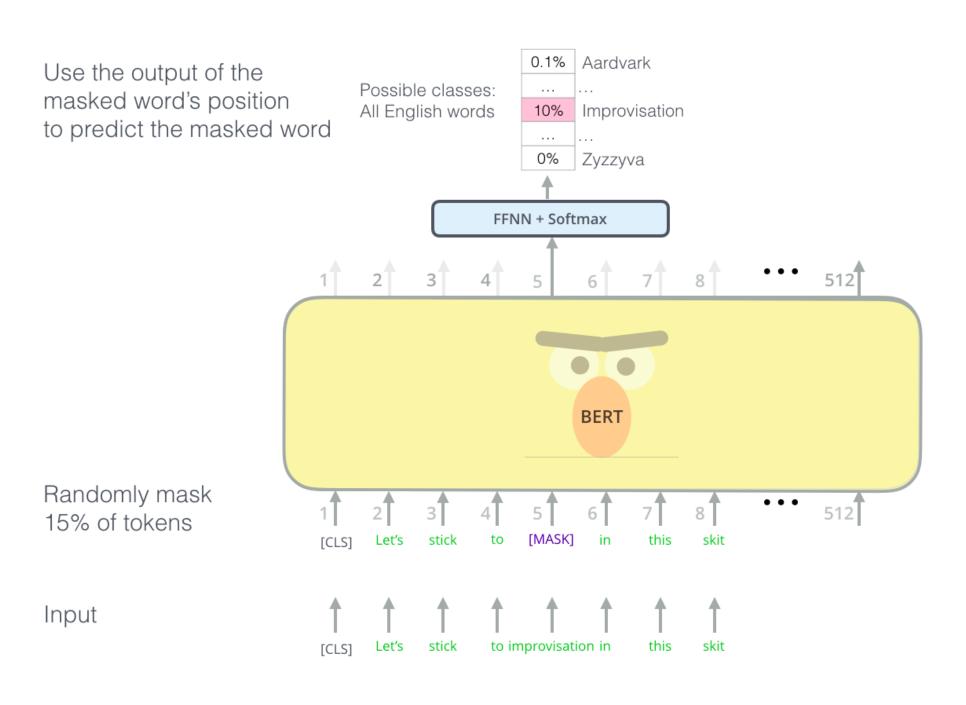
QA with BERT



What was Marie Curie the first female recipient of? [SEP] One of the most famous people born in Warsaw was Marie ...

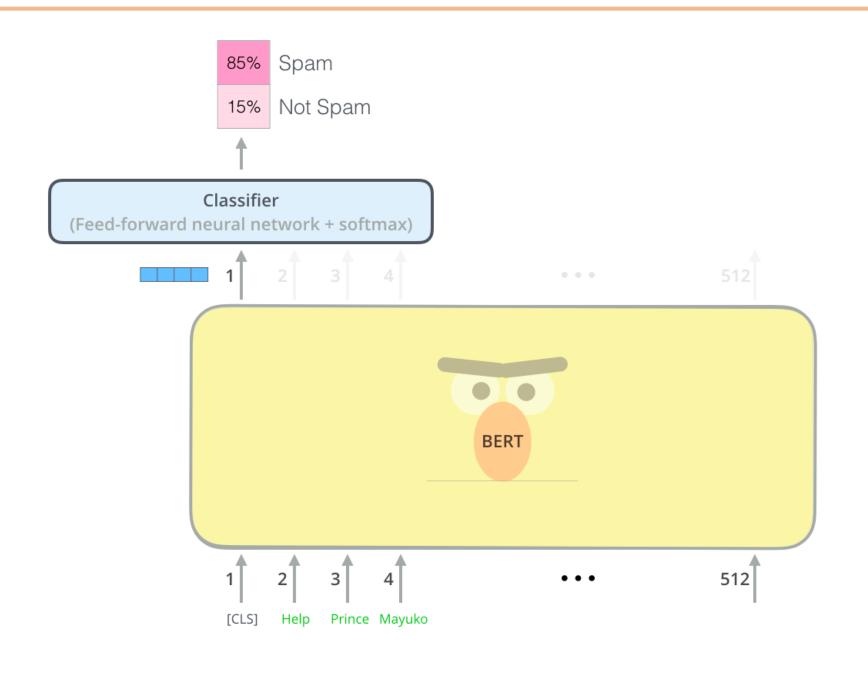
Predict start and end positions in passage

Pretraining and fine-tuning



Pre-training

language modeling objective

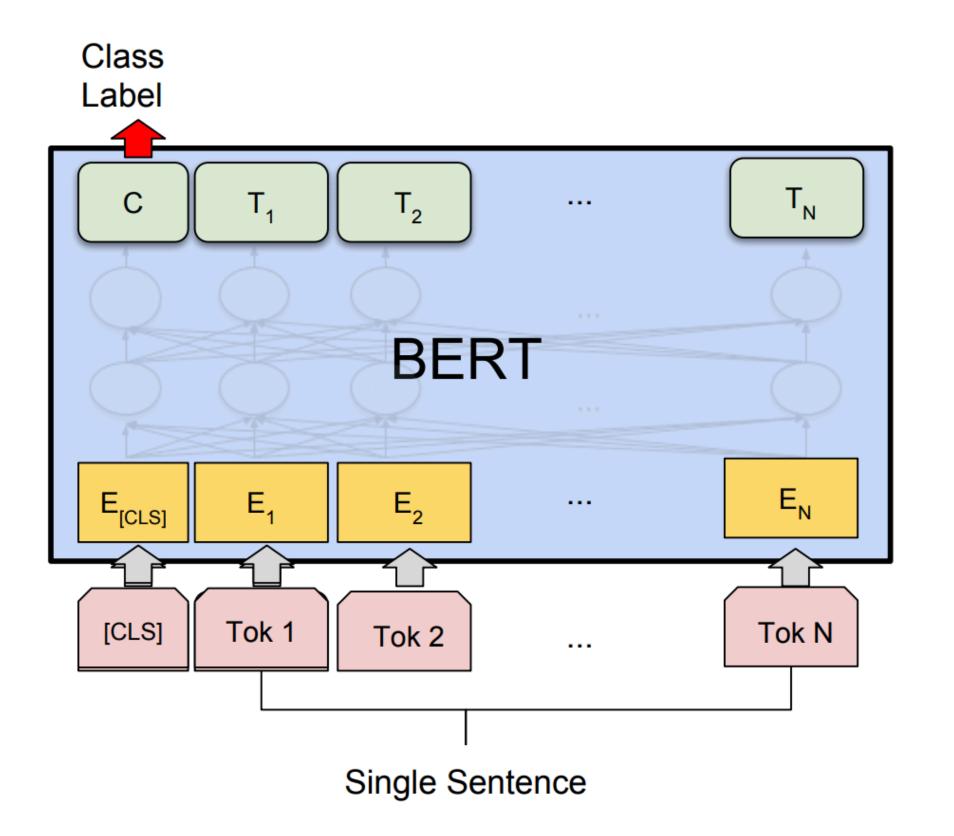


Fine-tuning

task-specific objective

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5



(b) Single Sentence Classification Tasks: SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Huge improvements over prior work (even compared to ELMo)
- Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. (2018)

RoBERTa

- "Robustly optimized BERT"
- 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
\mathbf{BERT}_{LARGE}						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7

New training hyperparameters + more data = better performance

Design Choices for Language Model

- Tokenization:
 - how do you segment text? how do you construct the vocabulary?
- Model Architecture:
 - LSTM / CNN / Transformer (or combinations of them)
 - Hyper-parameters (hidden dimensions, etc)
- Learning Objective
 - During Pre-training
 - During Task-specific Fine-tuning

Question:

What are design choices that impact the performances of pre-trained language models?

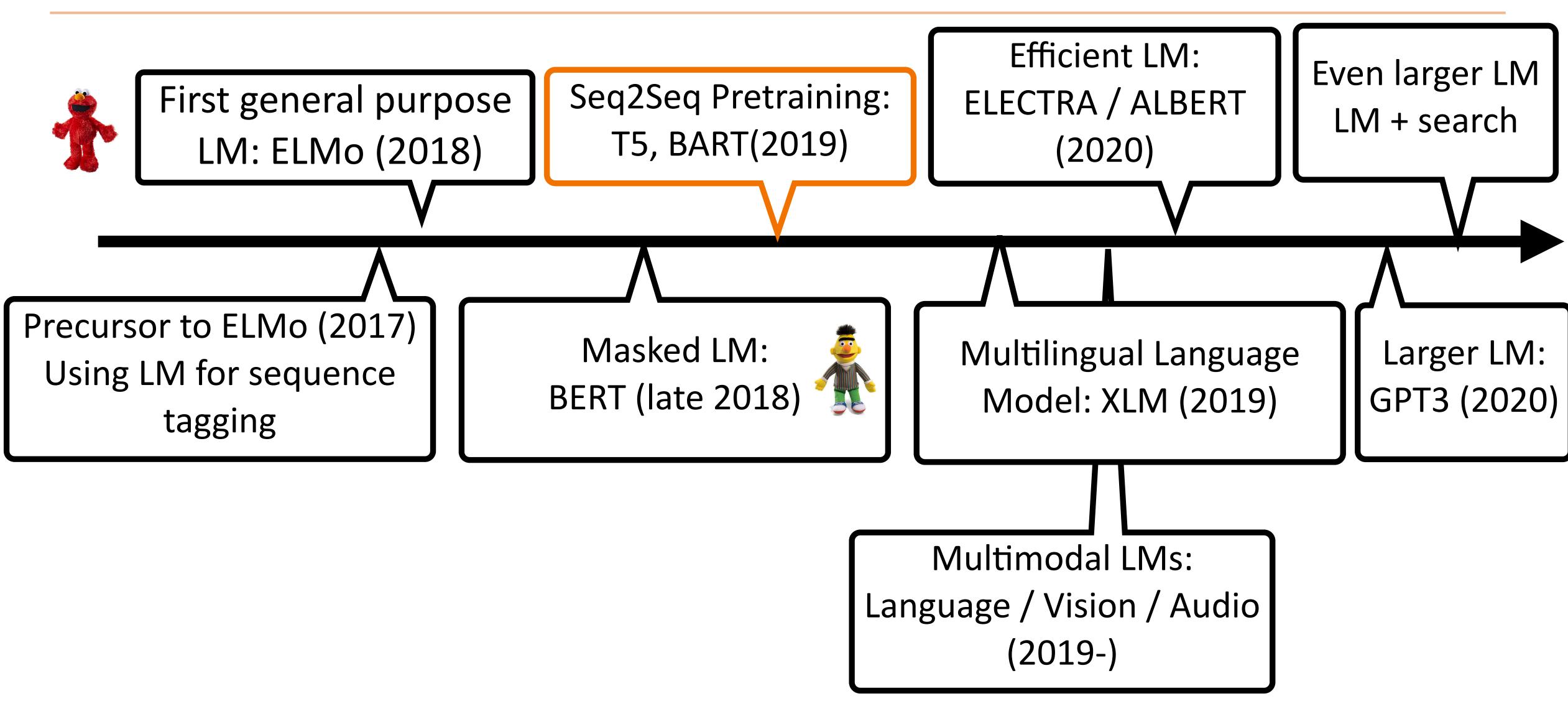
How would they interact with each other?

(e.g., if you decide to train with a large amount of data instead of moderately size of the data, how would it interact with the size of the architecture?)

What can BERT NOT do?

- BERT cannot generate text (at least not in an obvious way)
 - Can fill in MASK tokens, but can't generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)

Timeline of Pretrained LM

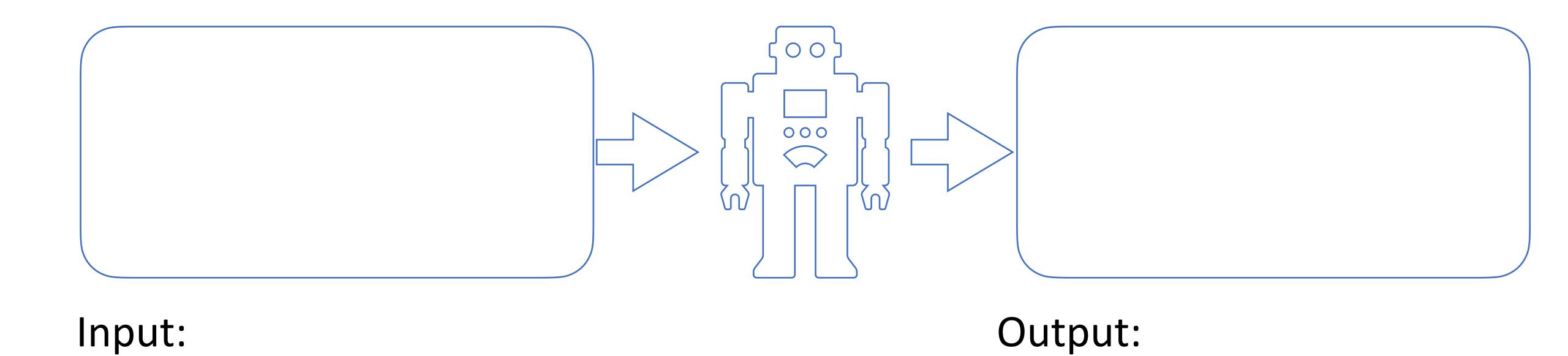


Goal: Use pre-training for conditional text generation

LMS

- Unconditional Text generation,
- You generate text left to right
- $P(w_{i+1} | w_1, w_2, ..., w_i)$

Conditional Text Generation



Conditional Text Generation

Input: Text in {English,...}

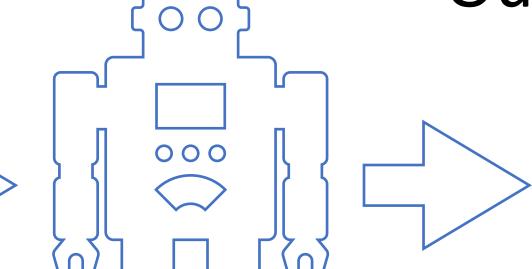
Yesterday was Sunday.

Output: Text in {Portuguese,...}

Ontem foi domingo.

Input: question

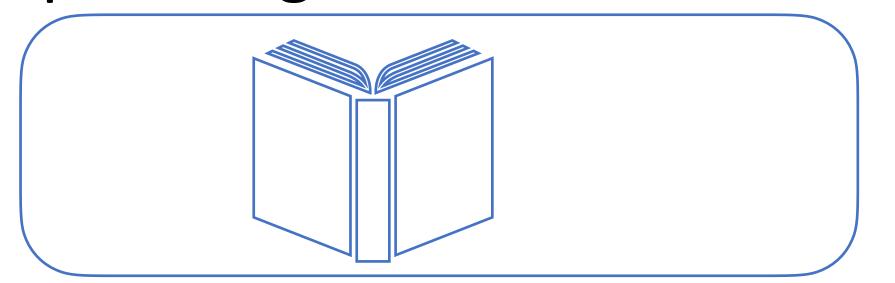
Who is the current president of UT Austin?



Output: answer

Jay Hartzell

Input: long document



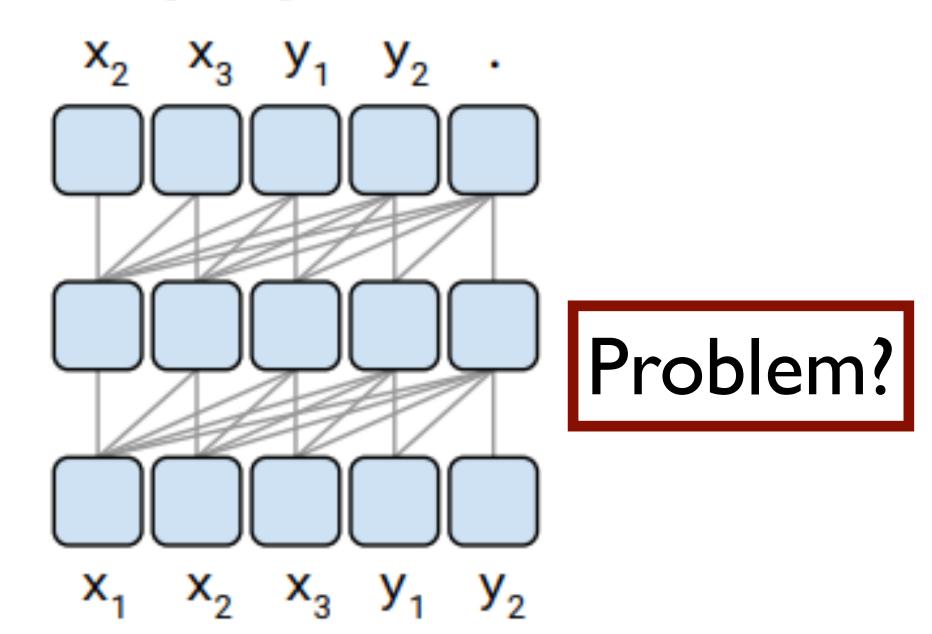
Output: short summary

Can we use language model?

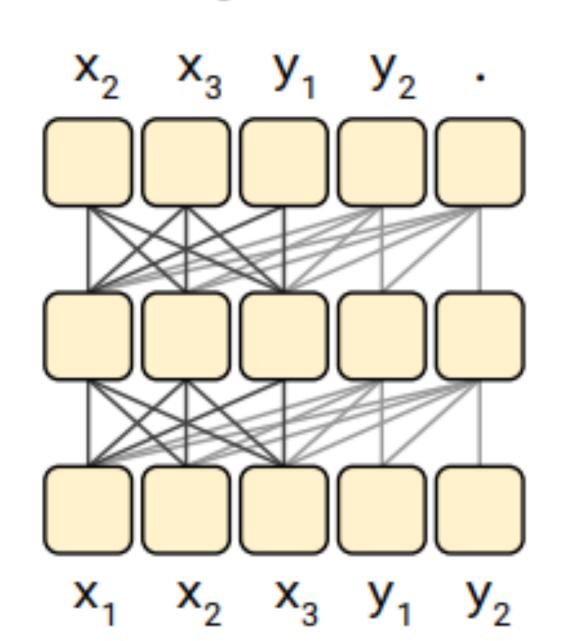
- Yes!
 - During training: "X Y"
 - During prediction: "X" and let it generate Y

- Prefix LM:
 - Let tokens in the input to attend to each other
 - Fully visible masking for input
 - Autoregressive masking for output

Language model



Prefix LM



OpenAl GPT/GPT2

- "ELMo with transformers" (works better than ELMo)
- Train a single unidirectional transformer LM on long contexts
- GPT2: trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained as of March 2019

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

Because it's a language model, we can generate from it

OpenAl GPT2

SYSTEM PROMPT (HUMAN-WRITTEN)

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

MODEL COMPLETION (MACHINE-WRITTEN, SECOND TRY) The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

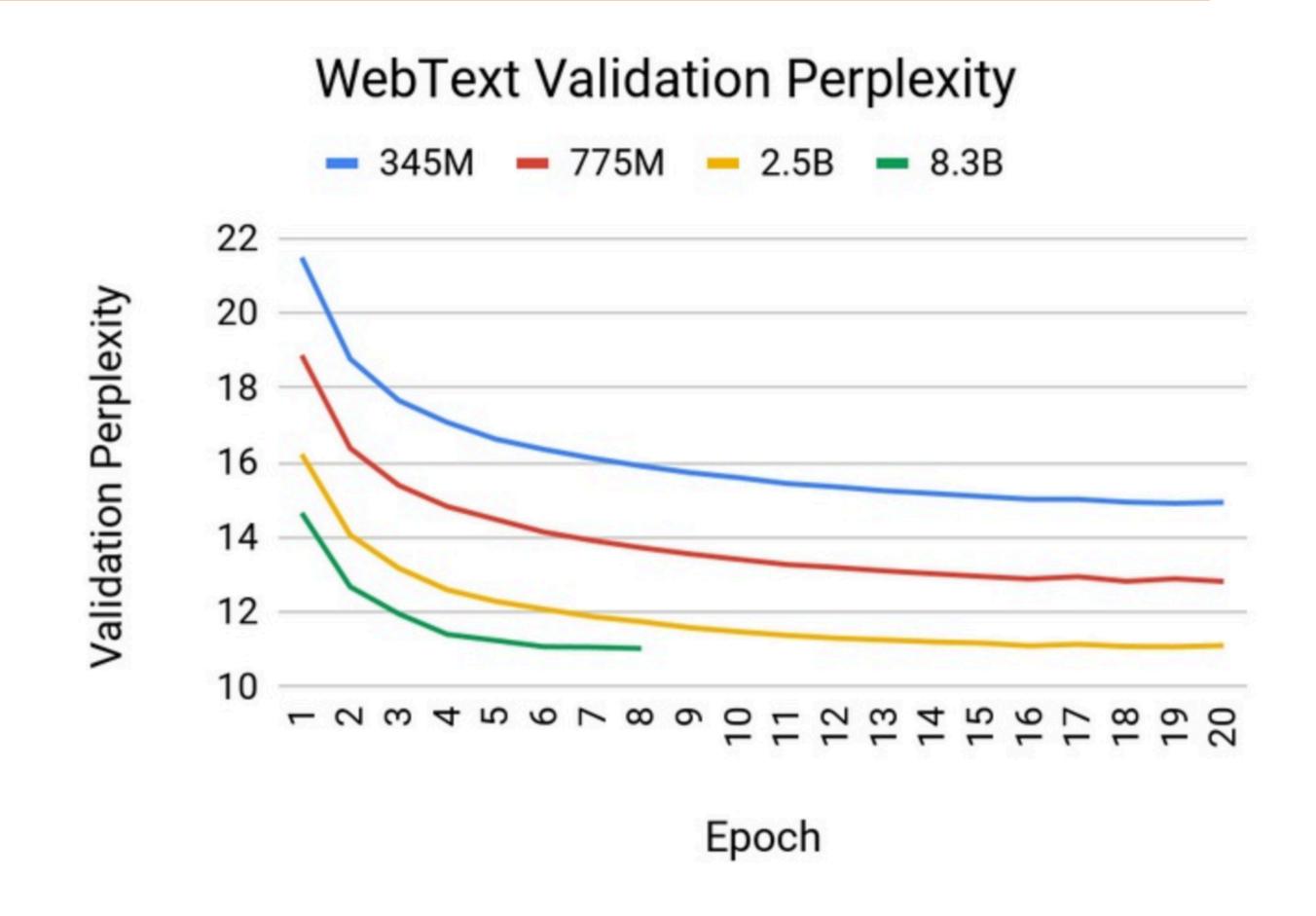
The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black sandals.

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl

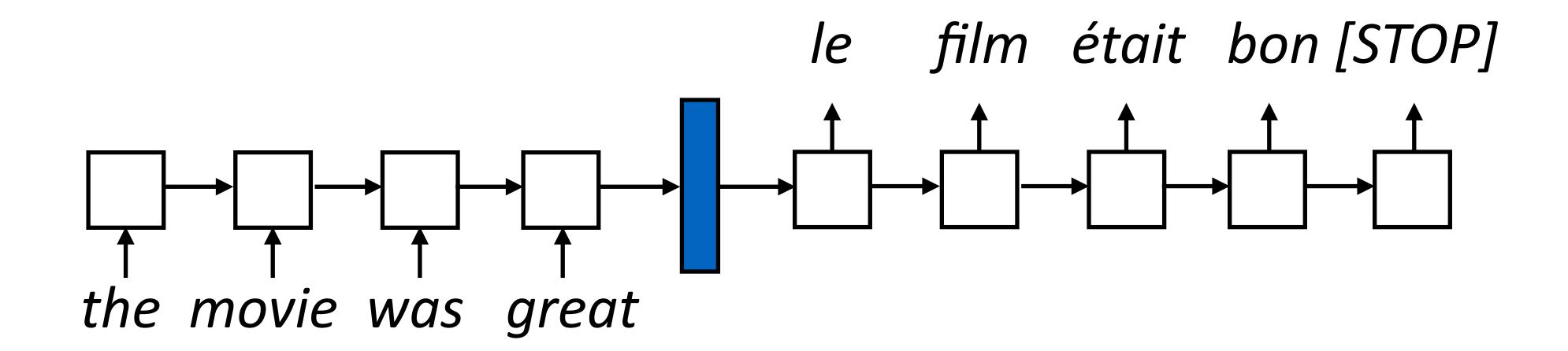
GPT-3

- Same architecture as GPT-2, just larger
 - ► 1.3B -> 175B parameters
 - Trained on 570GB of Common Crawl
 - Requires 400GB to store parameters!



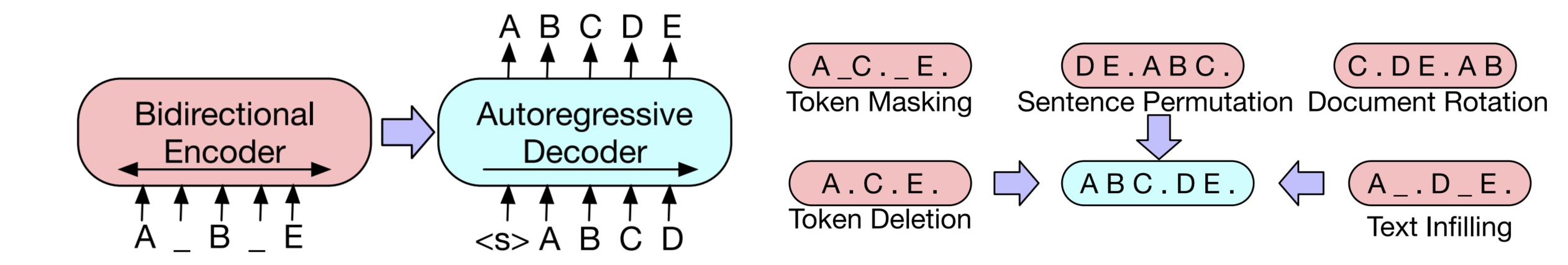
Recap: Seq2Seq Model

- Input: a sequence of tokens
- Output: a sequence of tokens (of arbitrary length)



BART

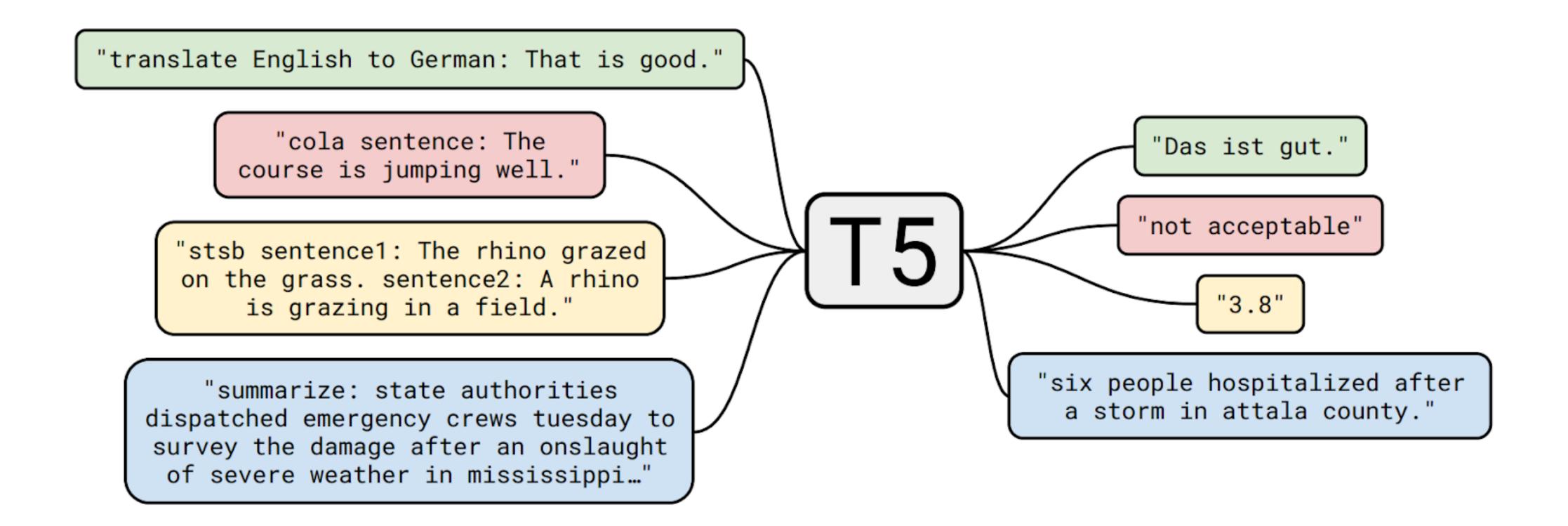
Objective: Re-construct (corrupted) input sequence



[Lewis et al, 2019]

T5: Text-to-Text Transfer Transformer

Train on multiple tasks

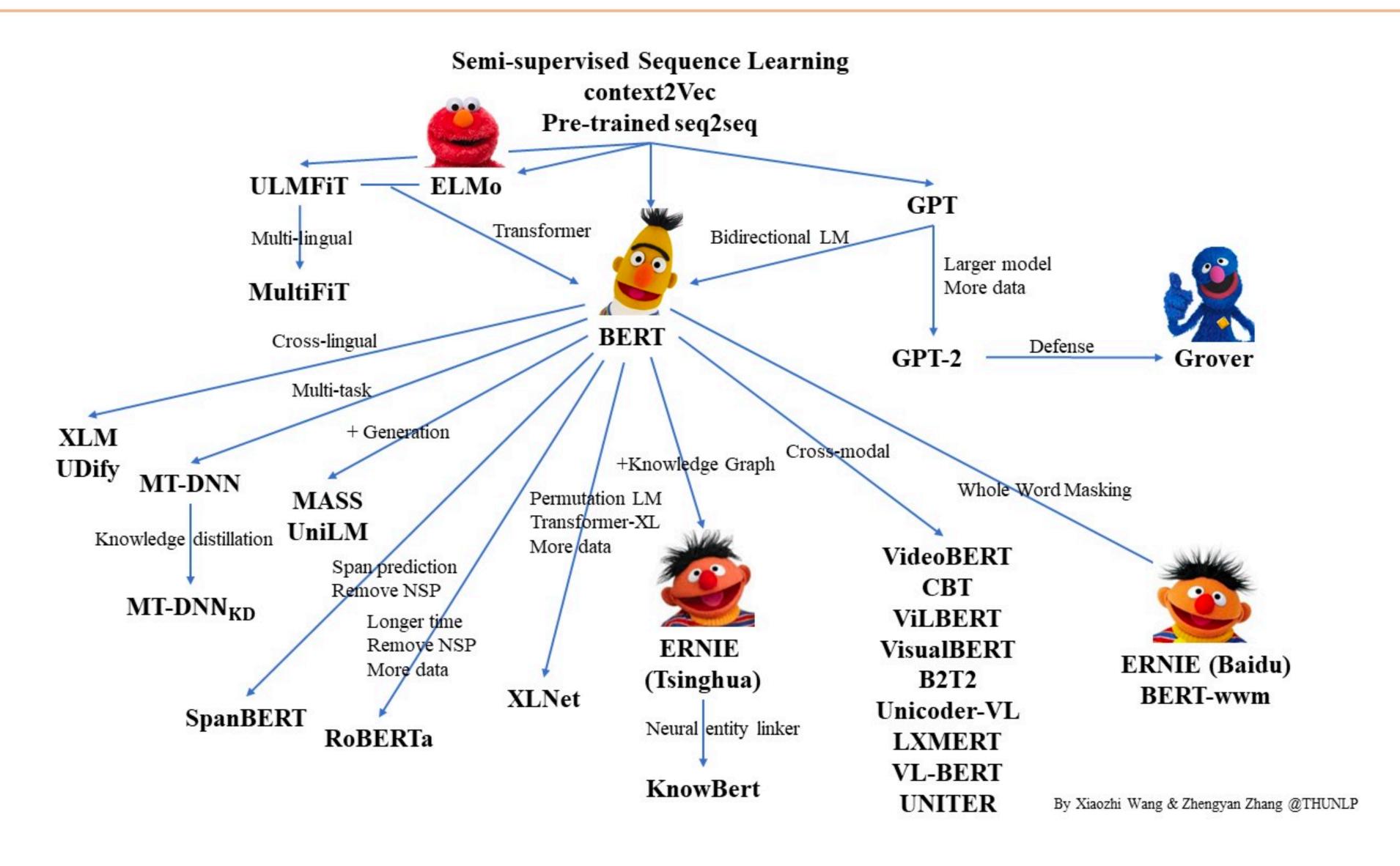


Masked LM vs. SeqSeq

- Considerable win on generation tasks such as summarization, translation
 - Compared to BERT based encoder, randomly initialized decoder
 - 2-3 ROUGE score gains (summarization task metric)

- On classification tasks?
 - Roughly comparable performances, sometimes better, sometimes worse.

many, many variants



Using BERT

- Huggingface Transformers: big open-source library with most pre-trained architectures implemented, weights available
- Lots of standard models...

Model architectures

- Transformers currently provides the following NLU/NLG architectures:
- 1. **BERT** (from Google) released with the paper BERT: Pre-training of Deer Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Krist
- GPT (from OpenAI) released with the paper Improving Language Under Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- 3. GPT-2 (from OpenAI) released with the paper Language Models are Un Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskev
- 4. Transformer-XL (from Google/CMU) released with the paper Transform Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime
- 5. **XLNet** (from Google/CMU) released with the paper XLNet: Generalized Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbon
- 6. XLM (from Facebook) released together with the paper Cross-lingual Land Alexis Conneau.
- 7. Roberta (from Facebook), released together with the paper a Robustly

and "community models"

```
mrm8488/spanbert-large-finetuned-tacred
mrm8488/xlm-multi-finetuned-xquadv1
nlpaueb/bert-base-greek-uncased-v1 **
nlptown/bert-base-multilingual-uncased-sentiment
patrickvonplaten/reformer-crime-and-punish *
redewiedergabe/bert-base-historical-german-rw-cased
roberta-base
severinsimmler/literary-german-bert
seyonec/ChemBERTa-zinc-base-v1
```

• •

 \bullet

Preview: Next class

You can visit the cemetery where famous Russian composers are buried daily except Thursday

Toronto law to protect squirrels hit by mayor.