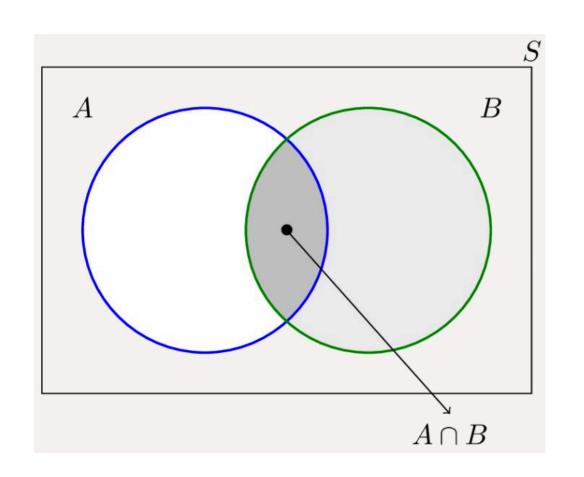
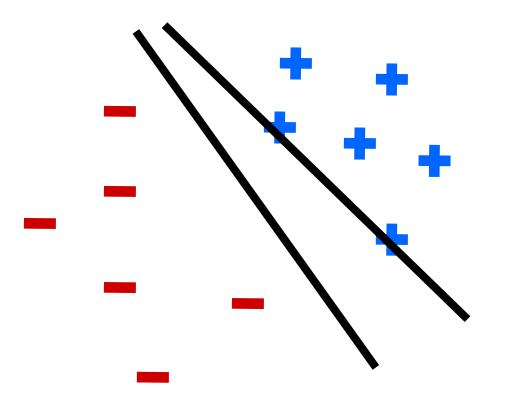
CS 378: Natural Language Processing

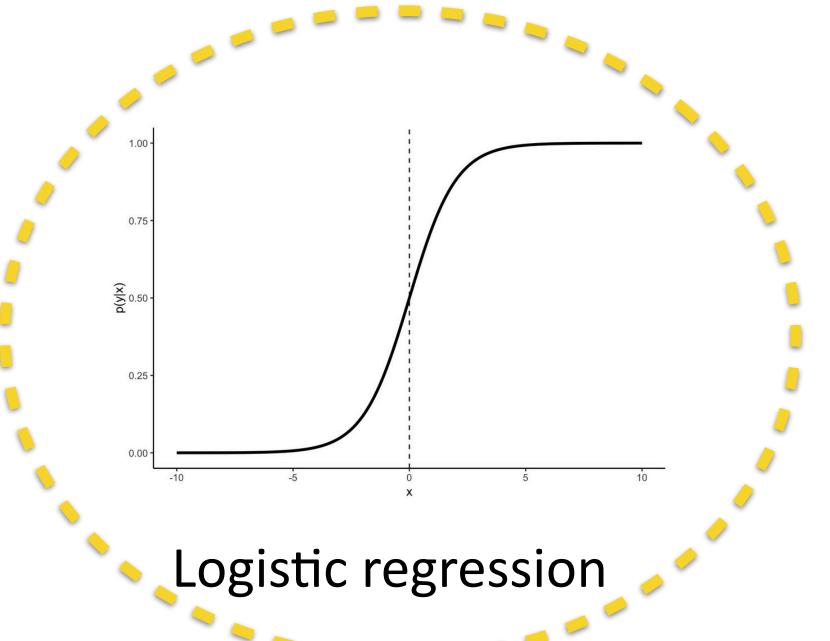
Lecture 2: Text Classification

Slides adapted from Yoav Artzi, Greg Durrett



Overview


- Classification Problem
- Learning a classifier
 - Naive Bayes Classifier
 - Log-linear classifier (maximum entropy models)
 - Perceptron
 - Feedforward Neural Network


Types of Supervised Classifiers

Naive Bayes

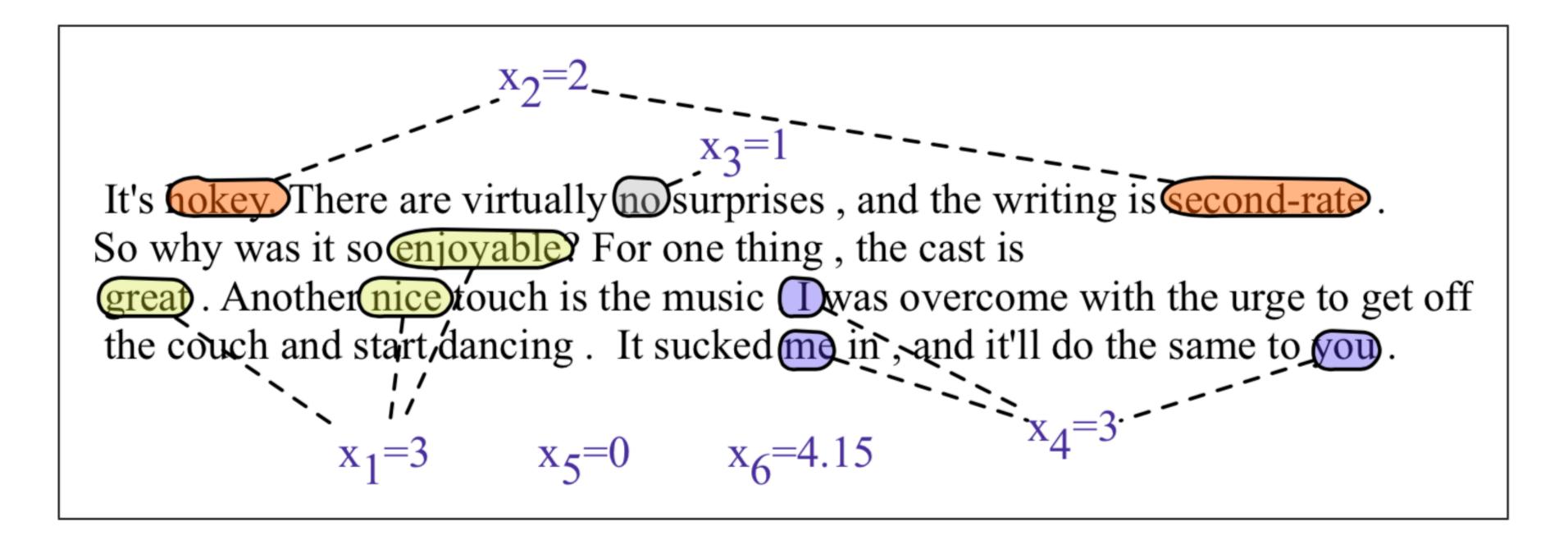
Perceptron

Many others....

Log Linear Model

Inputs:

- Represent input in a feature representation
- Classification function to compute y^* using P(y | x)
- Loss function (for learning)
- Optimization algorithm
- Training: Learn the parameters of the model (w) to minimize loss function
- Test: Apply parameters to predict class given a new input x


Features

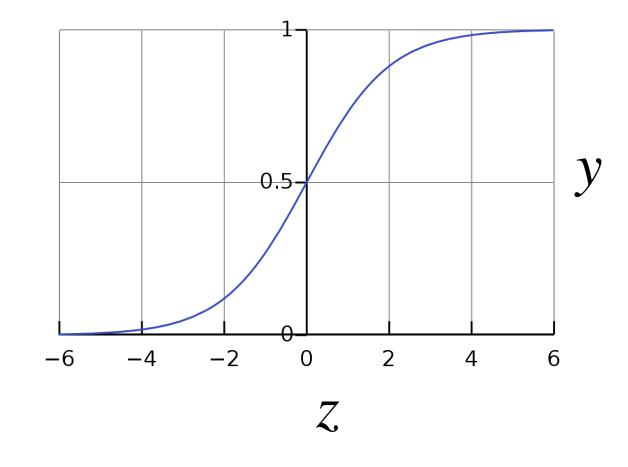
Mapping an input to a fixed dimensional vector

- You get inspiration from the data.
- Can incorporate linguistic intuitions / domain expertise
- Can use complex rules

Features: Sentiment Classification

Var	Definition	Value in Fig. 5.2
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	<pre> 1 if "no" ∈ doc 0 otherwise </pre>	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(64) = 4.15

Classification Function


- Given an input feature vector: $\phi(x) \in R^d$
- Output: p(y = 1 | x, w) Given input x and weight vector w, what is p(y=1)?
- Learning a scoring function: $f: \mathbb{R}^d \to [0,1]$
- Weight vector: $w \in \mathbb{R}^d$

$$z = w \cdot \phi(x)$$
$$z = w \cdot \phi(x) + b$$

- In addition to weights, we often introduce bias (scalar intercept) to compute score.
- For most of this lecture, we omit this scalar bias for simplicity.

Sigmoid:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$p(y = 1 \mid x, w) = \sigma(w \cdot \phi(x))$$

Binary Classification

Probabilities:

$$P(y = 1 \mid x, w) = \frac{1}{1 + e^{-(w \cdot \phi(x))}}$$

Decision Boundary:

$$y^* = \operatorname{argmax}_{y \in 0,1} p(y \mid x, w)$$

Example: Sentiment Classification

Var	Definition	Value in Fig. 5.2
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
x_3	<pre> 1 if "no" ∈ doc 0 otherwise </pre>	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	ln(64) = 4.15

Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b = 0.1

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.15] + 0.1)$$

$$= \sigma(.805)$$

$$= 0.69$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

$$= 0.31$$
(5.6)

Classification Function

binary classifier (sigmoid):

Feature vector: $\phi(x)$

$$P(y = 1 \mid x, w) = \frac{1}{1 + e^{-(w \cdot \phi(x))}}$$

$$y^* = \operatorname{argmax}_{y \in 0,1} p(y \mid x, w)$$

multi class classifier (softmax):

$$\phi(x,y)$$

$$p(y \mid x, w) = \frac{e^{(w \cdot \phi(x,y))}}{\sum_{y'} e^{(w \cdot \phi(x,y'))}}$$

$$y^* = \operatorname{argmax}_{y \in C} w \cdot \phi(x, y)$$

Log Linear Model

Inputs:

- Represent input in a feature representation
- Classification function to compute y^* using $P(y \mid x)$
- Loss function (for learning)
- Optimization algorithm
- Training: Learn the parameters of the model to minimize loss function
- Test: Apply parameters to predict class given a new input x

Log linear model: Classification function

You compute the score for each label, and predict the label with the highest score

$$P(y = 1 \mid x, w) = \frac{1}{1 + e^{-(w \cdot \phi(x))}}$$

$$y^* = \operatorname{argmax}_{y \in 0,1} p(y \mid x, w)$$

How do we learn the weight vector w?

$$\theta = [w]$$

What is the best weights?

- Goal: Choose the weights that will give highest test set accuracy / F1
 - But we don't have an access to the test set

- Maybe choose the weights that gives highest training set accuracy / F1?
 - Optimization is not easy
 - May not generalize to test set

Learning Objective

Model: we use the scores to compute probabilities

$$p(y = 1 \mid x, w) = \frac{1}{(1 + e^{(-w \cdot \phi(x))})}$$

- Learning: maximize the log conditional likelihood of training data
 - How much predicted label distribution differs from the true label distribution?

$$L(w) = \log \prod_{i=1}^{N} p(y^i | x^i, w) = \sum_{i=1}^{N} \log(p(y^i | x^i, w))$$

$$w^* = \operatorname{argmax}_{w} L(w)$$

Cross Entropy Loss

Minimize the discrepancy between the true distribution $P(y \mid x)$ and predicted distribution $P(y \mid x)$

$$H(p,q) = -E_p(\log q)$$

$$H(p(y|x), p(y^*|x)) = -\sum_{y} p(y|x) \log p(y^*|x)$$

$$L(w) = \log \prod_{i=1}^{N} p(y^i | x^i, w) = \sum_{i=1}^{N} \log(p(y^i | x^i, w))$$

$$w^* = \operatorname{argmax}_{w} L(w)$$

Example: Loss

Var	Definition	Value in Fig. 5.2
$\overline{x_1}$	count(positive lexicon) ∈ doc)	3
x_2	$count(negative lexicon) \in doc)$	2
x_3	<pre> 1 if "no" ∈ doc 0 otherwise </pre>	1
x_4	count(1st and 2nd pronouns ∈ doc)	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \\ \log(\text{word count of doc}) \end{cases}$	0 $ln(64) = 4.15$

Assume weights

$$w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$$
 and bias $b = 0.1$

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

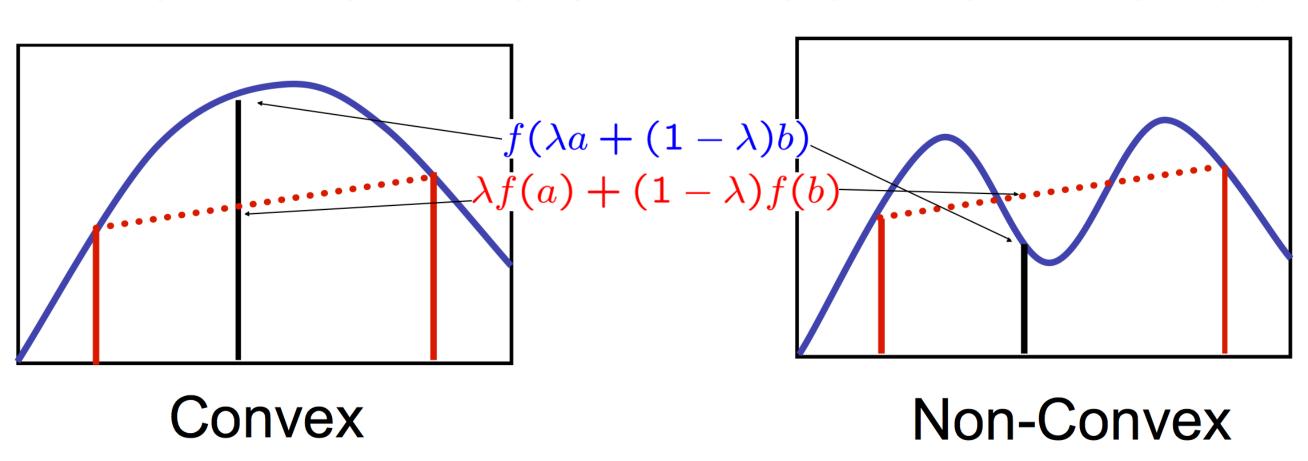
$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.15] + 0.1)$$

$$= \sigma(.805)$$

$$= 0.69$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

$$= 0.31$$
(5.6)


- If y = 1 (positive sentiment), $L(w) = \log(0.69) = -0.37$
- If y = 0 (negative sentiment), $L(w) = \log(0.31) = -1.17$

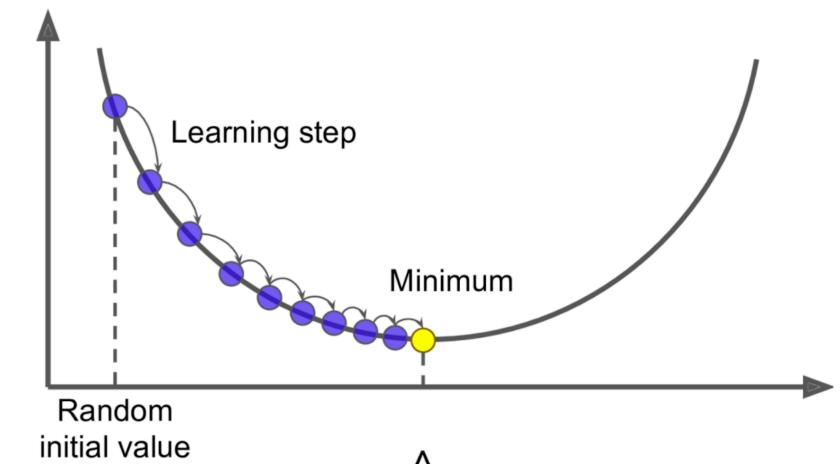
Cross Entropy Loss

- Unfortunately, this does not have a closed form solution
- Differentiable
- Convex (local optima = global optima)
- Easy to optimize

$$f(\lambda a + (1 - \lambda)b) \ge \lambda f(a) + (1 - \lambda)f(b)$$

Log Linear Model

Inputs:


- Represent input in a feature representation
- Classification function to compute y^* using $P(y \mid x)$
- Loss function (for learning)
- Optimization algorithm
- Training: Learn the parameters of the model to minimize loss function
- Test: Apply parameters to predict class given a new input x

Optimization

$$L(w) = \log \prod_{i=1}^{N} p(y^i | x^i; w) = \sum_{i=1}^{N} \log(p(y^i | x^i; w))$$

$$w^* = \operatorname{argmax}_{w} L(w)$$

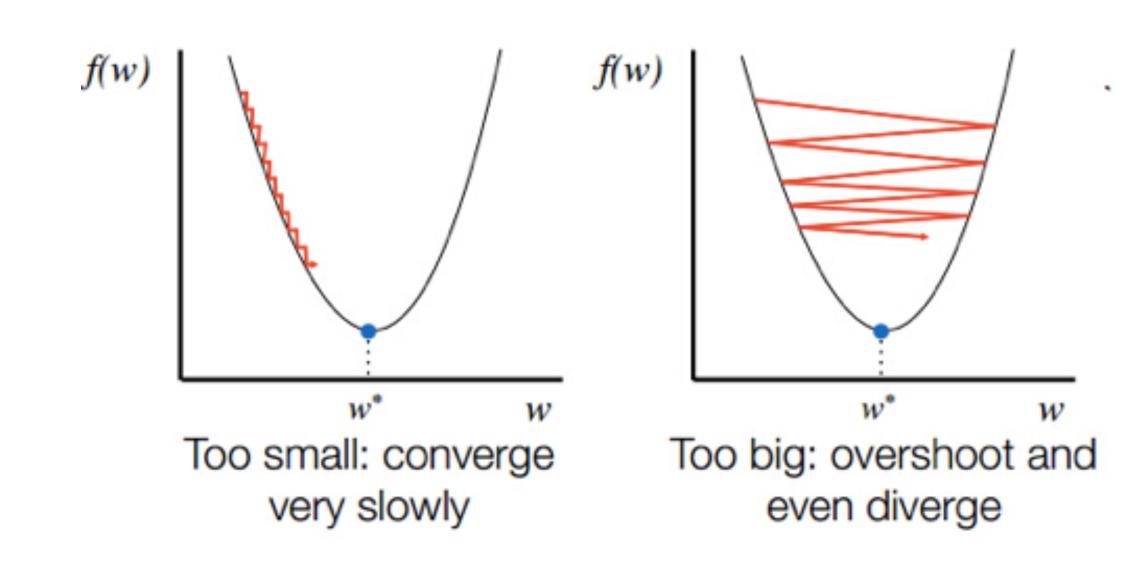
- Basic Idea:
 - Compute the derivate, move following the gradient incrementally
 - At local optimum, derivative will be zero
- Online learning algorithm: stochastic gradient descent/ascent
 - Compute loss and minimize after each training example

Stochastic Gradient Descent

```
function Stochastic Gradient Descent(L(), f(), x, y) returns \theta
     # where: L is the loss function
              f is a function parameterized by \theta
             x is the set of training inputs x^{(1)}, x^{(2)},..., x^{(m)}
y is the set of training outputs (labels) y^{(1)}, y^{(2)},..., y^{(m)}
\theta \leftarrow 0
repeat til done # see caption
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)

    Optional (for reporting):

                                                  # How are we doing on this tuple?
          Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                                  # What is our estimated output \hat{y}?
          Compute the loss L(\hat{y}^{(i)}, y^{(i)}) # How far off is \hat{y}^{(i)} from the true output y^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                  # How should we move \theta to maximize loss?
      3.~\theta \leftarrow \theta~-~\eta~g
                                                   # Go the other way instead
return \theta
```



Learning Rate

Updates:
$$w^{t+1} = w^t + \eta \frac{d}{dw} L(w)$$

Random initial value

Higher/faster learning rate (η): larger updates to parameters

Let's compute the gradient

$$L(w) = \log \prod_{i=1}^{N} p(y^{i} | x^{i}, w)$$

$$= \log \prod_{i=1}^{n} P(y | x) = \log \prod_{i=1}^{n} \hat{y}^{y} (1 - \hat{y})^{1-y}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right]$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \log \sigma(w \cdot \phi(x^{(i)})) + (1 - y^{(i)}) \log (1 - \sigma(w \cdot \phi(x^{(i)}))) \right]$$

$$\frac{dL(w)}{dw} = \sum_{i=1}^{n} \left[y^{(i)} - \sigma(w \cdot \phi(x^{(i)})) \right] \phi(x^{i})_{j}$$

$$\text{J-th input feature value}$$

Predicted label

Implementation

$$\frac{dL(w)}{dw_j} = \sum_{i=1}^{n} [y^{(i)} - \sigma(w \cdot \phi(x^{(i)}))]\phi(x^i)_j$$

- Supposing k active features on an instance, gradient is only nonzero on k dimensions
- $\triangleright k < 100$, total num features = 1M+ on many problems
- Be smart about applying updates!
- In PyTorch: applying sparse gradients only works for certain optimizers and sparse updates are very slow (assumes dense feature vectors)

Overfitting

- Regularization:
 - Controlling large feature weights
 - Add a L2 regularization term to the likelihood, to push weights towards zero

$$L(w) = \log \prod_{i=1}^{N} p(y^{i} | x^{i}, w) - \frac{\lambda}{2} ||w||^{2}$$

$$\frac{dL(w)}{dw_{j}} = \sum_{i=1}^{n} [y^{(i)} - \sigma(w \cdot \phi(x^{(i)}))]\phi(x^{i})_{j} - \lambda w_{j}$$

Big weights are bad

Logistic Regression: Multinomial

Model:

$$p(y \mid x; w) = \frac{\exp(w \cdot \phi(x, y))}{\sum_{y'} \exp(w \cdot \phi(x, y'))}$$

Inference:

$$y^* = \operatorname{argmax}_{y \in C} w \cdot \phi(x, y)$$

Learning: gradient ascent on the discriminative log-likelihood

$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^N \left(\phi_j(x_i, y_i) - \sum_{y'} P(y'|x_i, w) \phi_j(x_i, y') \right)$$

Total count of feature j in correct candidate

Expected count of feature j in predicted candidate

"towards gold feature value, away from expectation of feature value"

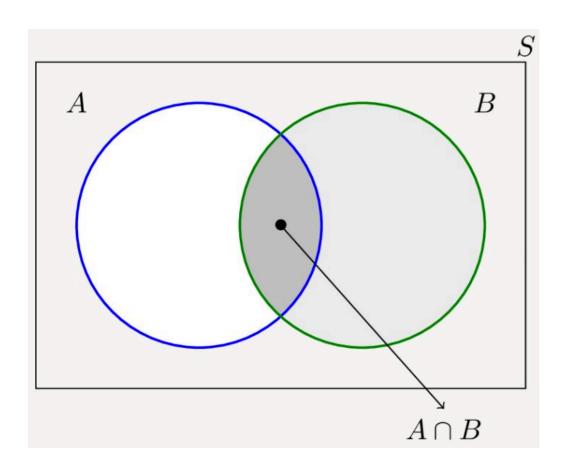
How well does this classifier work?

	Features	# of	frequency or	NB	\mathbf{ME}	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	$\operatorname{bigrams}$	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

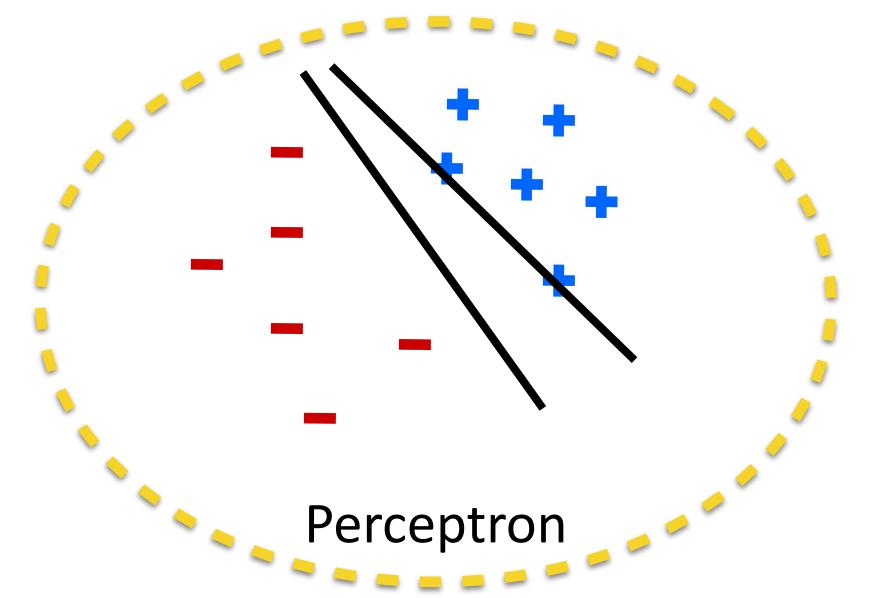
Pretty comparable performances with Naive Bayes!

Recap: Two Types of Classifiers

- Generative model (e.g., Naive Bayes)
 - Work with a joint probabilistic model of the data P(x,y)
 - Estimating probabilities from the data
 - Advantage: learning weights is easy and well understood
- Discriminative Models (e.g., logistic regression)
 - Work with conditional probability p(y|x)
 - Estimate parameters from data
 - Advantage: you do not model p(x). Can develop rich features for p(y|x)!



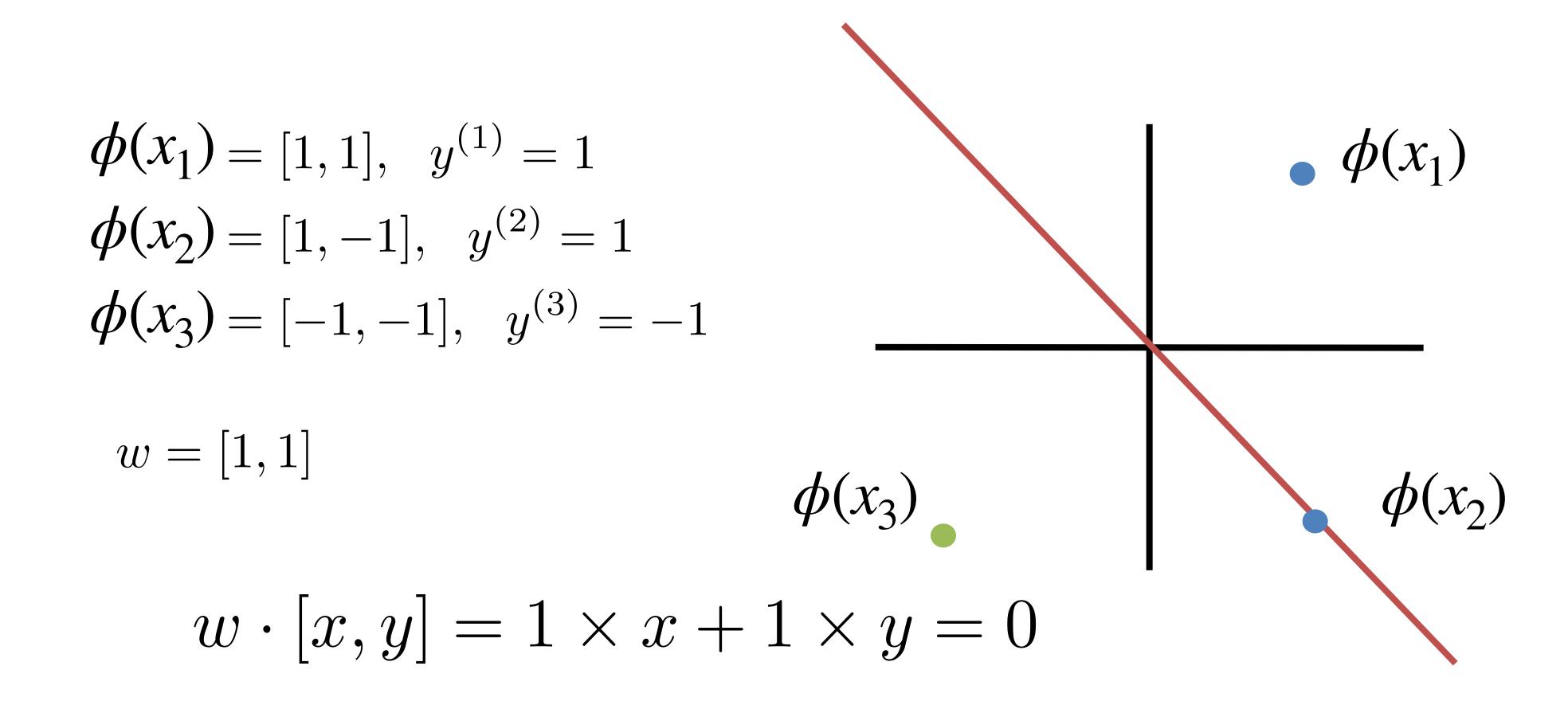
Types of Supervised Classifiers


- Two probabilistic approaches for predicting classes
 - Joint: probabilistic model of the data, $y^* = \operatorname{argmax}_y(p(x, y))$
 - Conditional: can develop rich features $y^* = \operatorname{argmax}_y p(y \mid x)$
- Q: Do we have to estimate a probability distribution at all?
 - Linear predictor: $y^* = \operatorname{argmax}_y w \cdot \phi(x, y)$
 - Perceptron algorithm
 - Error driven, simple, additive updates

Types of Supervised Classifiers

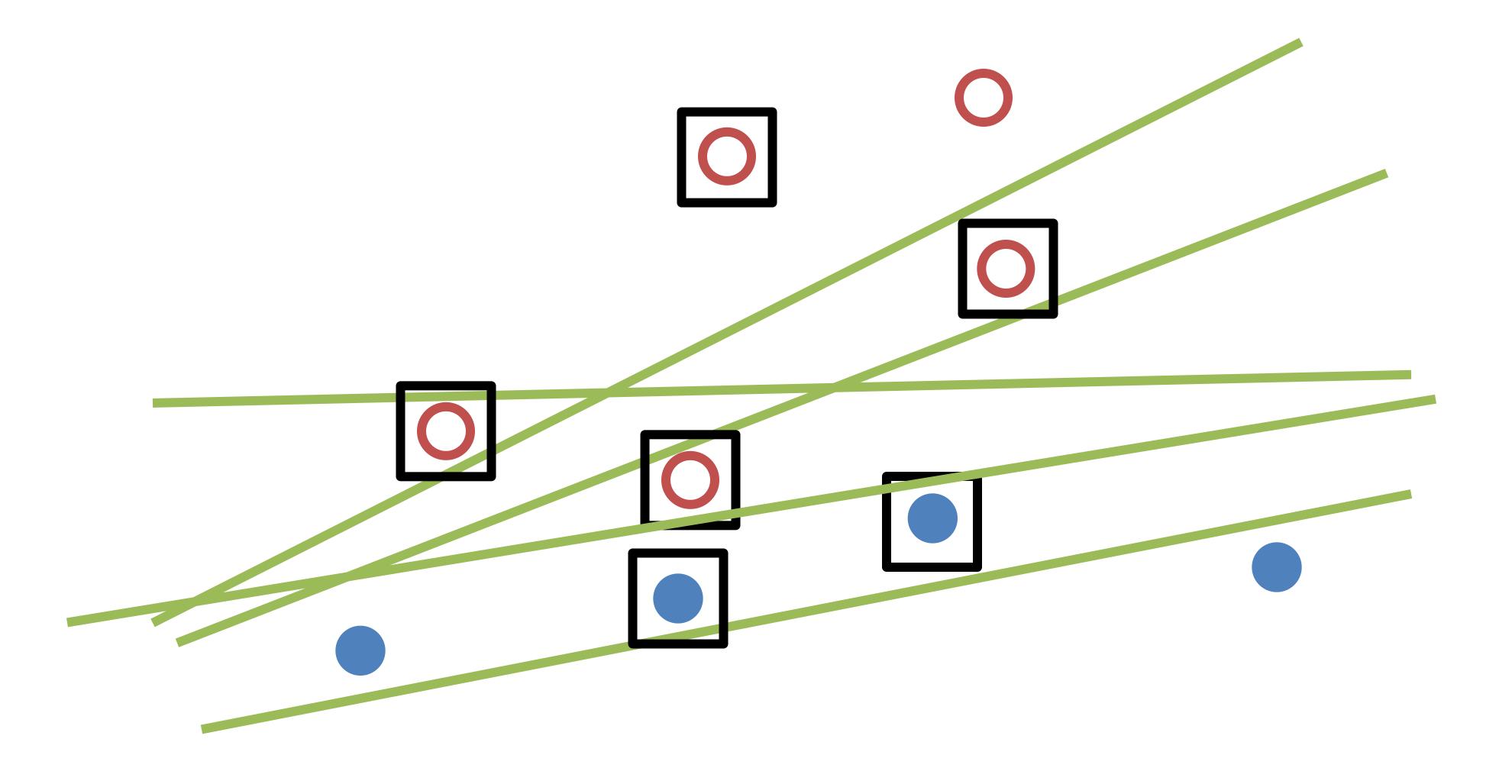
Naive Bayes

Logistic regression


Many others....

Perceptron

- Start with zero weight vector.
- Visit training examples one by one.
- Decision rule: $w \cdot \phi(x) > 0$
 - If correct: do nothing!
 - If incorrect: if label is positive, $w \leftarrow w + \phi(x)$ negative, $w \leftarrow w \phi(x)$



Geometric Interpretation: Separating Hyperplane

Geometric Interpretation: Separating Hyperplane

