CS378: Natural Language Processing

Lecture 4: Feedforward Neural Network

Eunsol Choi

Logistics

- Course modality survey is on the Piazza, please complete it.
- From next week, lectures will be in person at GDC 1.304.
- LectureOnline will be available asynchronously.
- Final Project guideline will be updated later this week, so stay tuned!

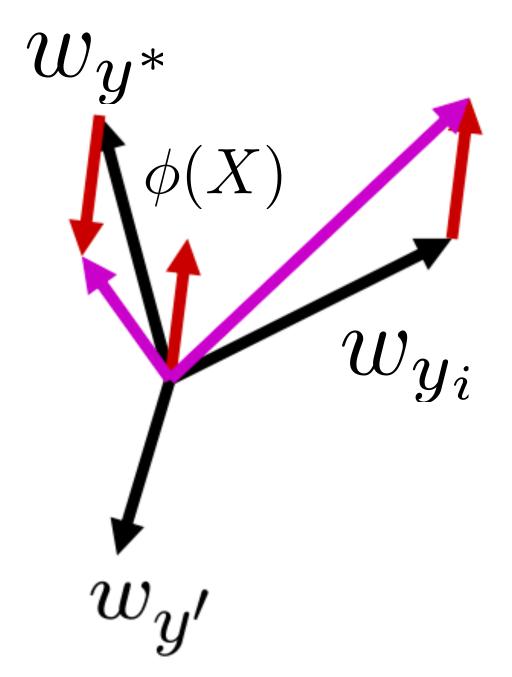
Perceptron

- Simple error-driven learning approach similar to logistic regression
- Start with zero weight vector.
- Visit training examples one by one.
- Decision rule: $w \cdot \phi(x) > 0$
 - If correct: do nothing!
 - If incorrect: if label is positive, $w \leftarrow w + \phi(x)$ negative, $w \leftarrow w \phi(x)$

Multi-class Perceptron

- lacktriangle A weight vector for each class: w_y
- Start with zero weights
- Visit training instances one by one
 - Make a prediction

$$y^* = \operatorname{argmax}_{y \in C} w_y \cdot \phi(x_i)$$



- If correct $(y^*==y^{(i)})$: no change, continue!
- If wrong: adjust weights

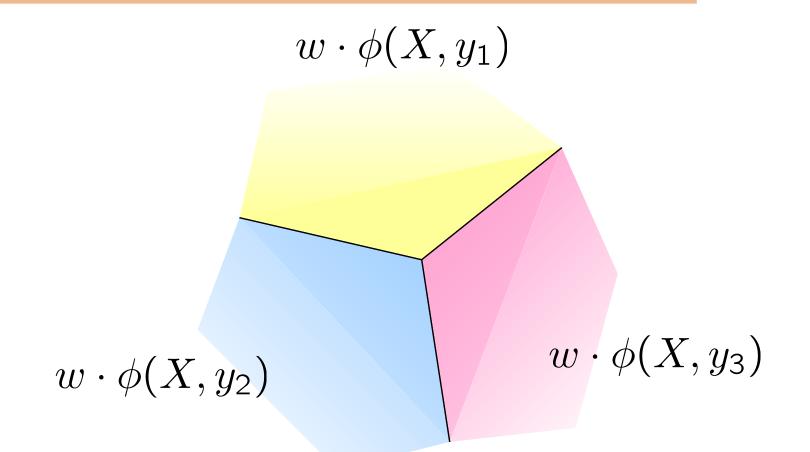
Multi-class Perceptron: Rewrite

- Now feature vector encodes label as well
- Start with zero weights
- Visit training instances one by one
 - Make a prediction

$$y^* = \operatorname{argmax}_{y \in C} w \cdot \phi(x^i, y^i)$$

- If correct $(y^*==y^i)$: no change, go to next example!
- If wrong: adjust weights

$$w = w + \phi(x^i, y^i) - \phi(x^i, y^*)$$

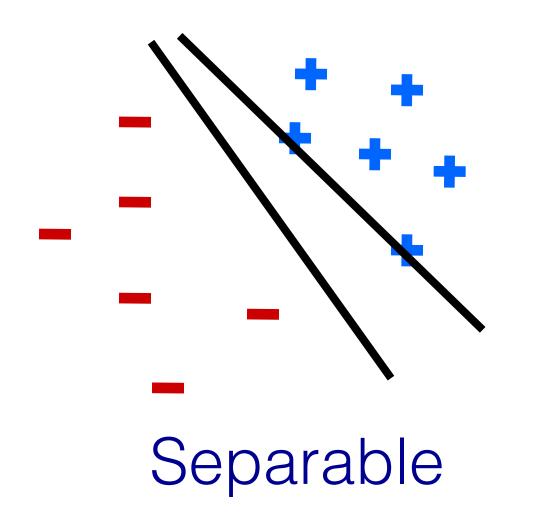


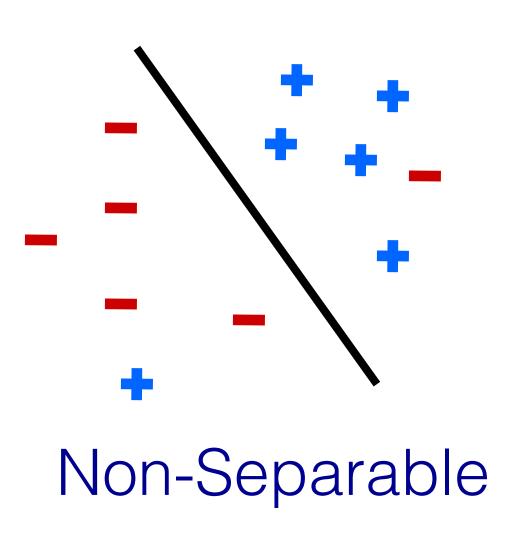
Different Weights vs. Different Features

- Different weights: $y^* = \operatorname{argmax}_{y \in C} w_y \cdot \phi(x_i)$
 - Generalizes to neural networks: $\phi(x)$ is the first n-1 layers of the network, then you multiply by a final linear layer at the end
- Different features: $y^* = \operatorname{argmax}_{y \in C} w \cdot \phi(x_i, y)$
 - Advantage? Can make feature dependent on the label
 - Suppose C is a structured label space (part-of-speech tags for each word in a sentence). $\phi(x,y)$ extracts features over shared parts of these.

Perceptron Learning

- No counting or computing probabilities on training set
- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability





Logistic Regression Updates

Gradient:
$$\frac{dL(w)}{dw} = [y - \sigma(w \cdot \phi(x))]\phi(x)$$

$$w^{t+1} \leftarrow w^t + \eta \frac{d}{dw} L(w)$$

Assuming learning rate $\eta = 1$

if label is positive,
$$\frac{dL(w)}{dw} = [1 - p(y = 1 \mid x, w)]\phi(x)$$
 $w^{t+1} \leftarrow w^t + (1 - P(y = 1 \mid x, w))\phi(x)$

$$w^{t+1} \leftarrow w^t + (1 - P(y = 1 \mid x, w))\phi(x)$$

negative,
$$\frac{dL(w)}{dw} = [-p(y = 1 \mid x, w)]\phi(x)$$

$$w^{t+1} \leftarrow w^t - P(y = 1 \mid x, w) \phi(x)$$

Comparison

Perceptron

- ► Decision rule: $y^* = 1$ If $w \cdot \phi(x) > 0$ $y^* = 0$ Otherwise
 - If correct: do nothing!
 - If incorrect:

if label is positive,

$$w \leftarrow w + \phi(x)$$

negative,

$$w \leftarrow w - \phi(x)$$

Logistic Regression

Decision rule:

$$y^* = \operatorname{argmax}_{y \in 0,1} p(y \mid x, w)$$

Always:

if label is positive,

$$w \leftarrow w + (1 - P(y = 1 | x, w))\phi(x)$$

negative,

$$w \leftarrow w - P(y = 1 \mid x, w)\phi(x)$$

Three views of classification

- Naïve Bayes:
 - Parameters from data statistics
 - Parameters: probabilistic interpretation
 - Training: one pass through the data
- Log-linear models:
 - Parameters from gradient ascent
 - Parameters: linear, probabilistic model, and discriminative
 - Training: gradient ascent, regularize to stop overfitting
- The Perceptron:
 - Parameters from reactions to mistakes
 - Parameters: discriminative interpretation
 - Training: go through the data until validation accuracy maxes out

Overview

- Classification Problem
- Learning a classifier
 - Naive Bayes Classifier
 - Log-linear classifier (maximum entropy models)
 - Perceptron
 - Feedforward Neural Network

What makes neural network different from classifiers we learned so far?

Why Neural Network?

- Linear classification: $\underset{y \in 0,1}{\operatorname{argmax}} w \cdot \phi(x)$
- Want to learn intermediate conjunctive features of the input

the movie was not all that good

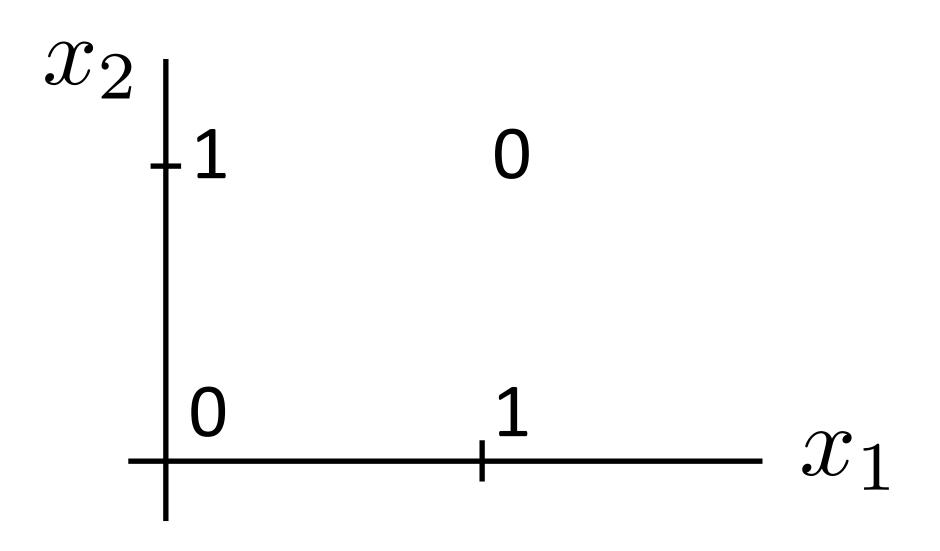
I[contains not & contains good]

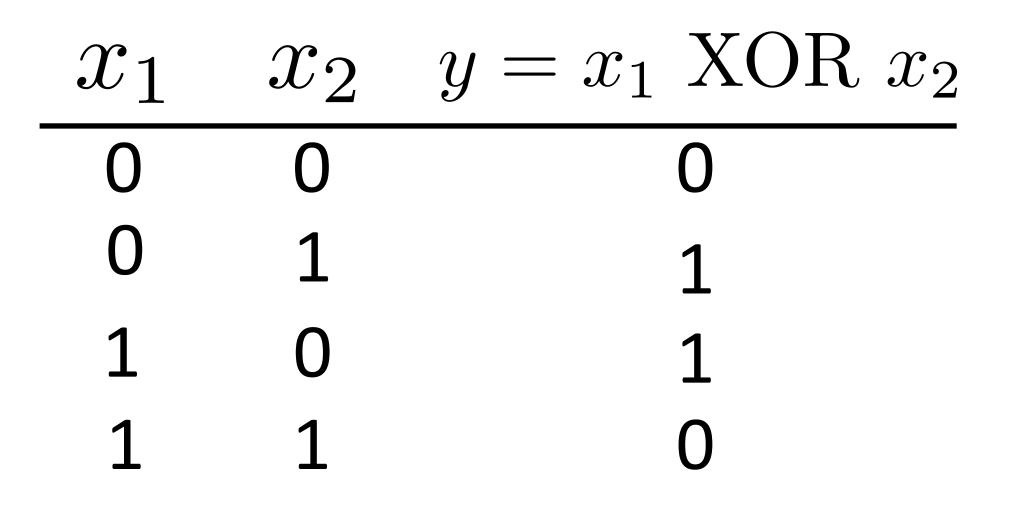
How do we learn this if our feature vector is just the unigram indicators?

I[contains not], I[contains good]

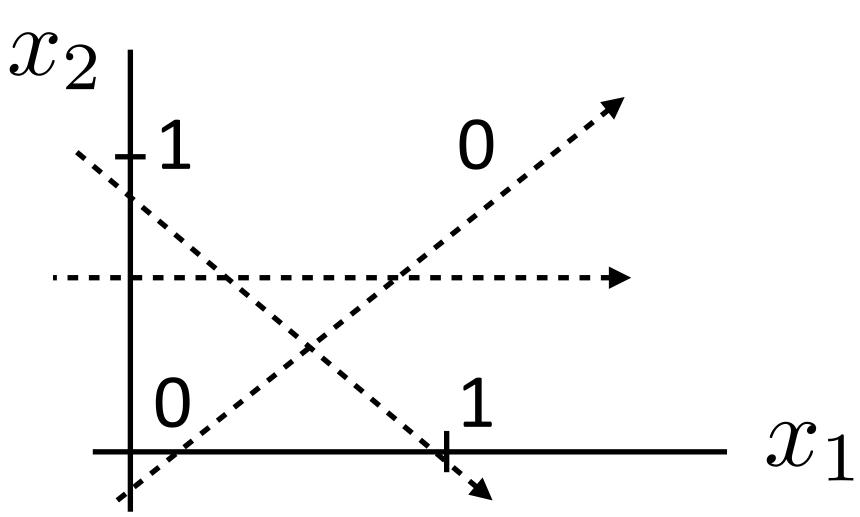
Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 (generally $\mathbf{x} = (x_1, \dots, x_m)$)
- Output y(generally $\mathbf{y} = (y_1, \dots, y_n)$)





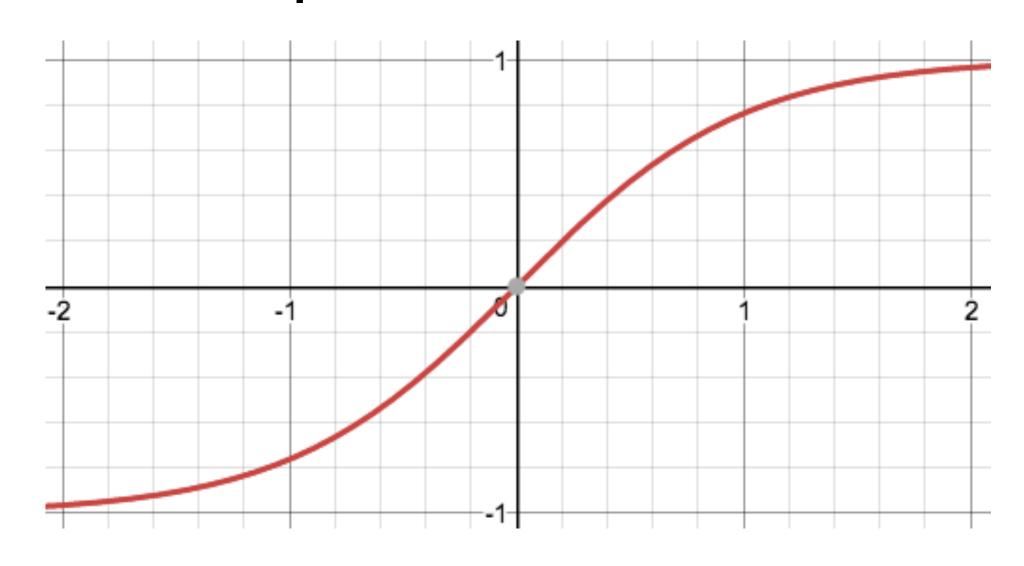
Neural Networks: XOR



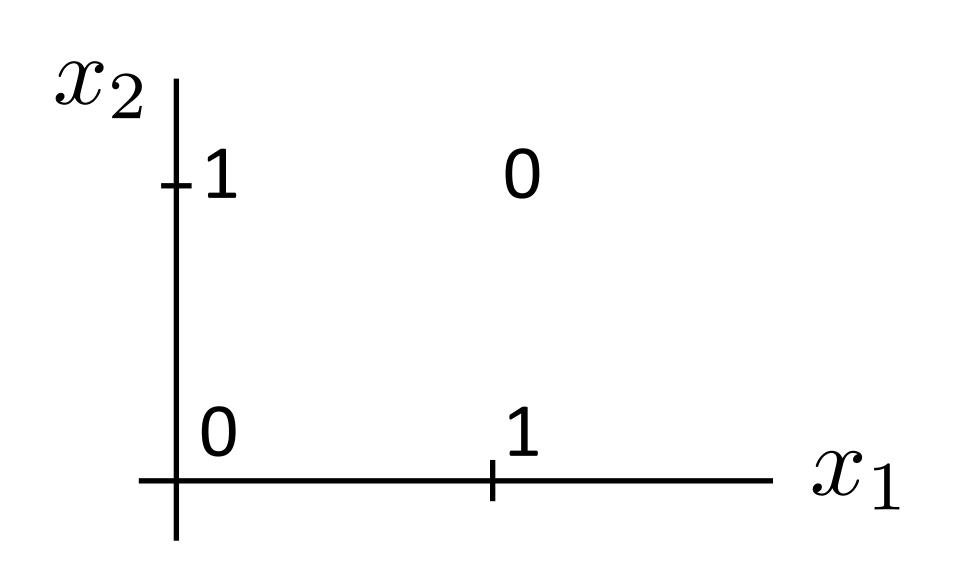
-		
x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	

$$y = a_1x_1 + a_2x_2$$
 $x_1 + a_2x_2 + a_3 \tanh(x_1 + x_2)$ "or"

(looks like action potential in neuron)



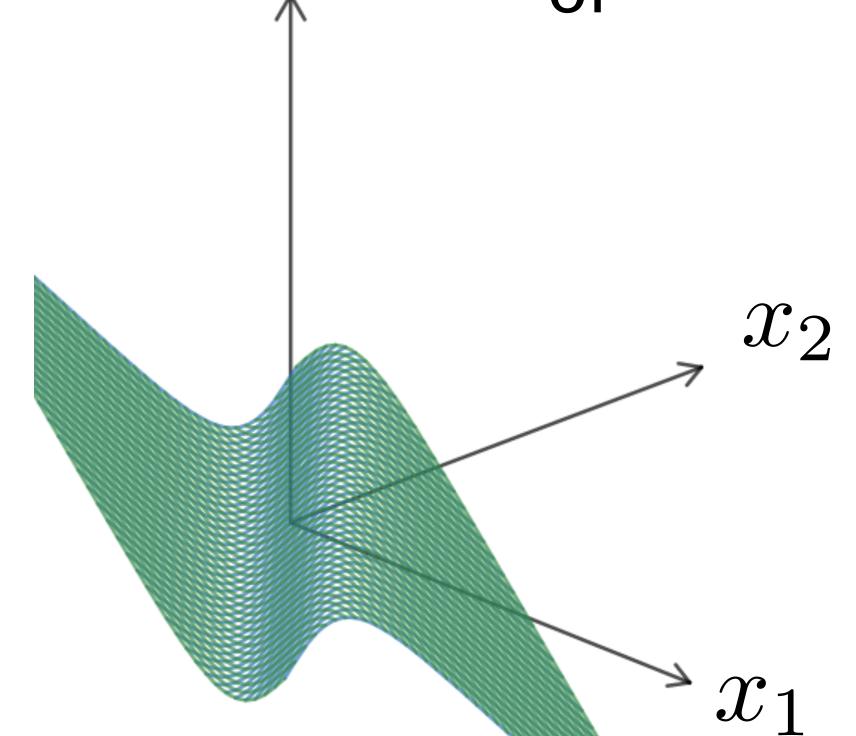
Neural Networks: XOR



x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

$$y = a_1x_1 + a_2x_2$$

 $y = a_1x_1 + a_2x_2 + a_3 \tanh(x_1 + x_2)$
 $y = -x_1 - x_2 + 2 \tanh(x_1 + x_2)$
*or"

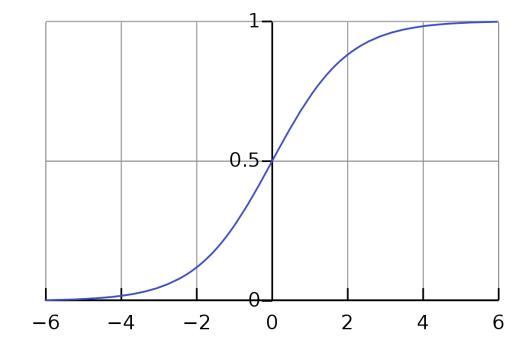


Non linear activation function

• Entry-wise function: $g: \mathbb{R} \to \mathbb{R}$

sigmoid

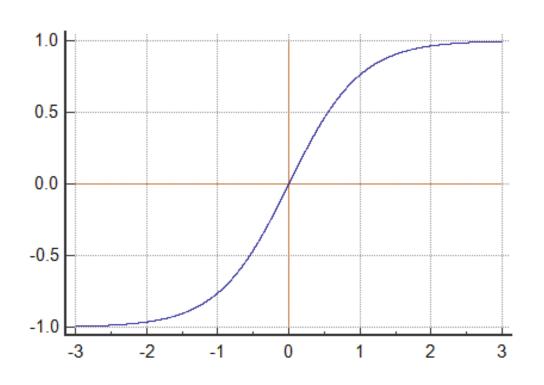
$$g(z) = \frac{1}{1 + e^{-z}}$$



$$\mathbf{g}'(z) = f(z) \times (1 - f(z))$$

tanh

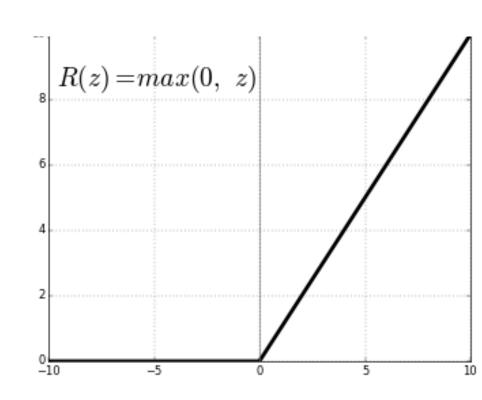
$$g(z) = \frac{e^{2z} - 1}{e^{2z} + 1}$$



$$g'(z) = 1 - f(z)^2$$

ReLU (rectified linear unit)

$$g(z) = \max(0, z)$$



$$g'(z) = f(z) \times (1 - f(z))$$
 $g'(z) = 1 - f(z)^2$ $g'(z) = \begin{cases} 1 & z > 0 \\ 0 & z < 0 \end{cases}$

Neural Networks

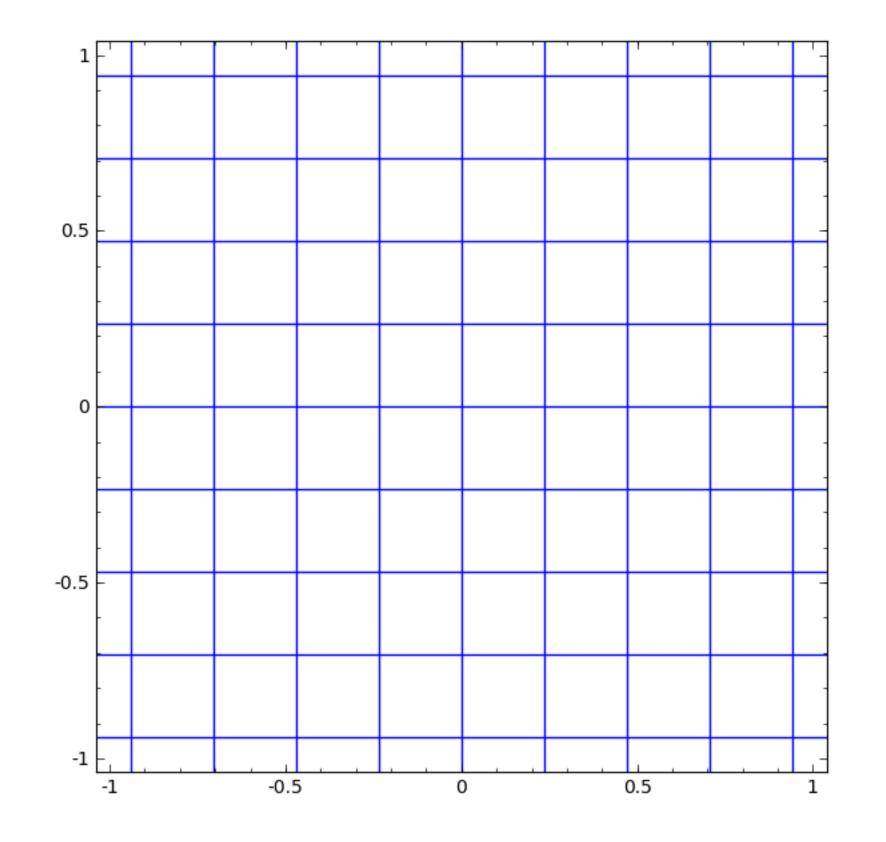
Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$

$$y = g(\mathbf{w} \cdot \mathbf{x} + b)$$
 $\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$

Nonlinear Linear Shift function transfor

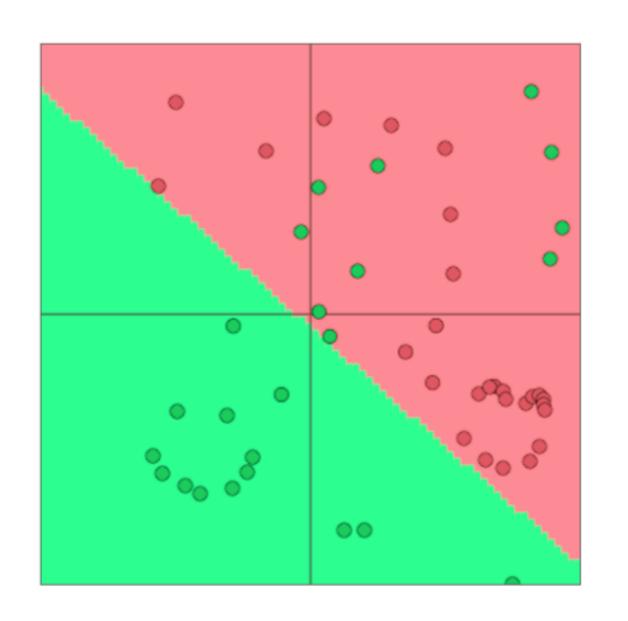
mation

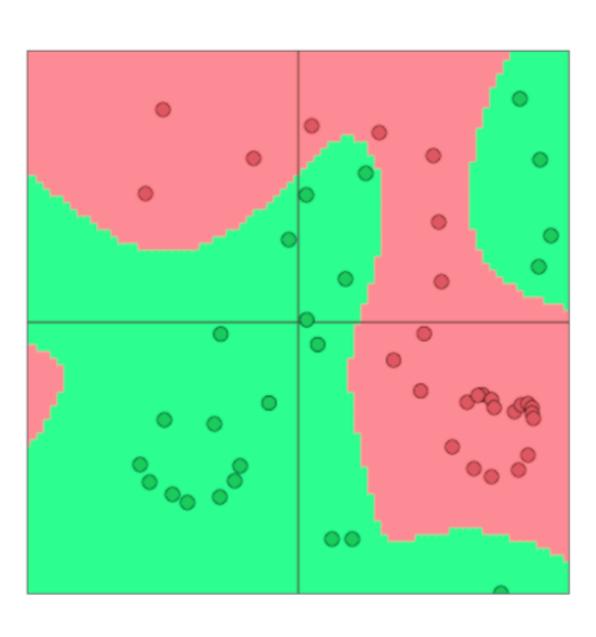
function



Non-linearity & Deep network

 Neural network can learn much more complex functions and nonlinear decision boundaries

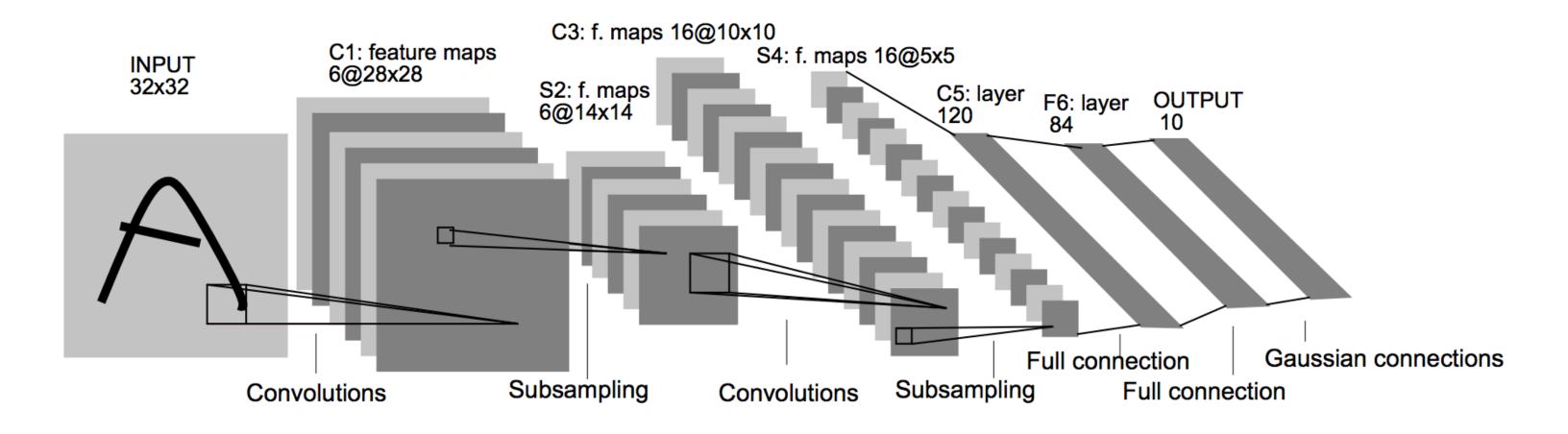




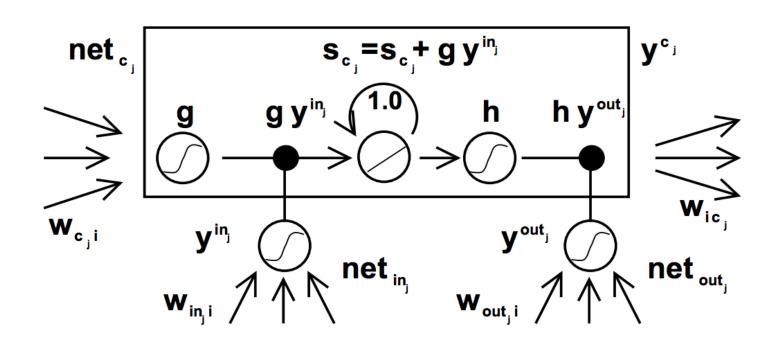
Brief History of Neural Network in NLP

History: Early Times

Convnets: applied to digit recognition by LeCun in 1998



 Long short term memory network (LSTM): Hochreiter and Schmidhuber (1997)



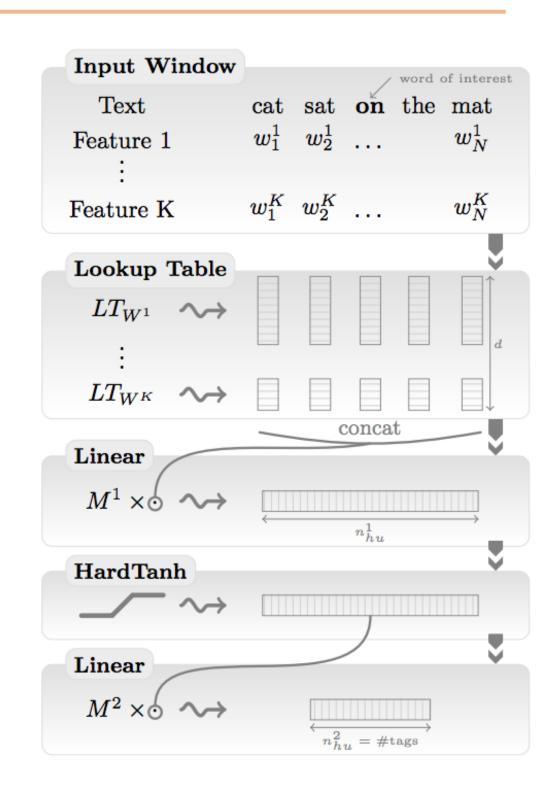
Henderson (2003): applied to nlp task (parsing) not SOTA

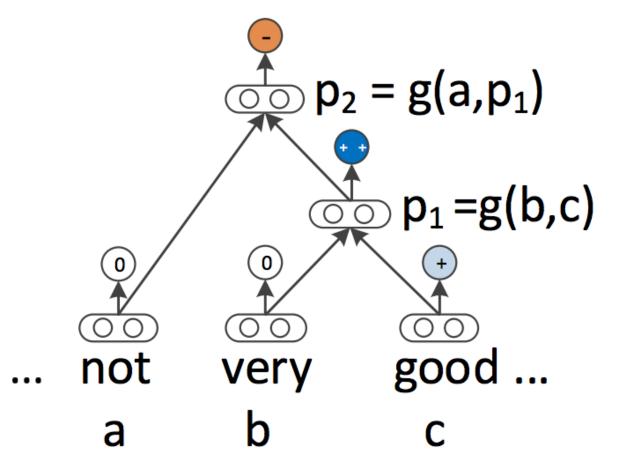
2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
 - Feedforward neural nets induce features

 Krizhevskey et al. (2012): AlexNet for vision (image classification)

 Socher 2011-2014: tree-structured recursive neural networks working okay (for sentiment classification)





2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
 - Applying convolutional NN
- Sutskever et al. + Bahdanau et al.: Neural MT
 - LSTMs

- Chen and Manning transition-based dependency parser
 - Feedforward neural network

2015: explosion of neural nets for everything under the sun

Why didn't they work before?

 Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)

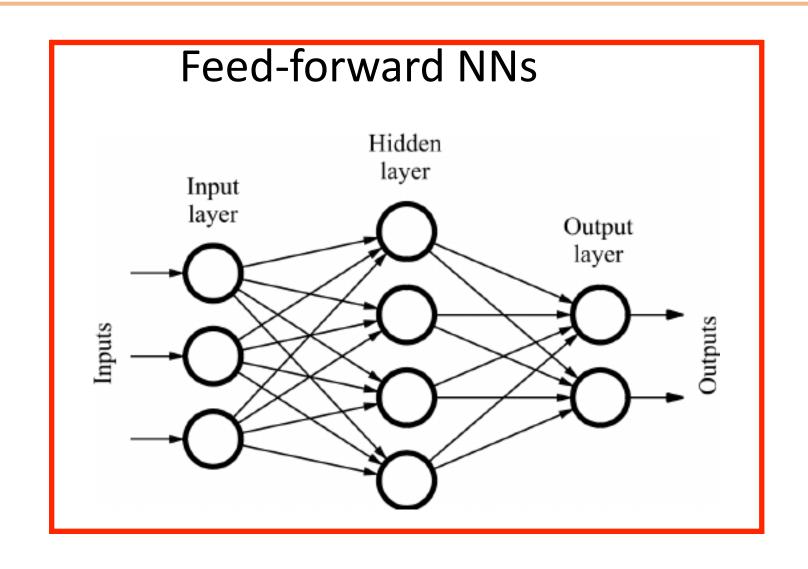
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - Regularization: dropout is pretty helpful
 - Computers not big enough: can't run for enough iterations

Inputs: need word representations to have the right continuous semantics

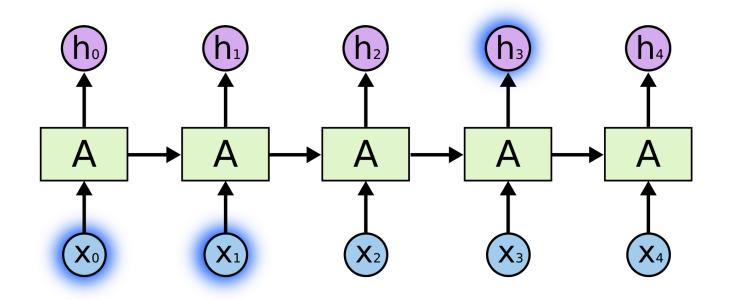
The "Promise"

- Most ML works with human-designed feature representations
- ML becomes optimizing weights
- Representation Learning: automatically learn good features and representations
- Deep Learning: attempts to learn multilevel of representation of increasing complexity / abstraction

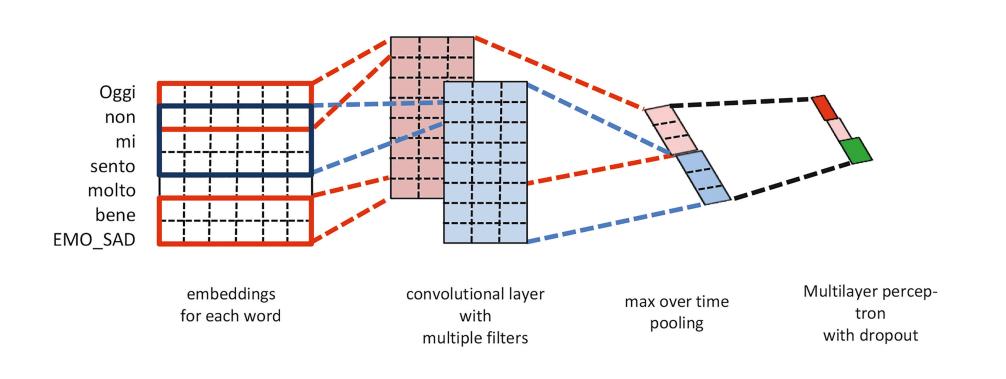
Neural Networks in NLP

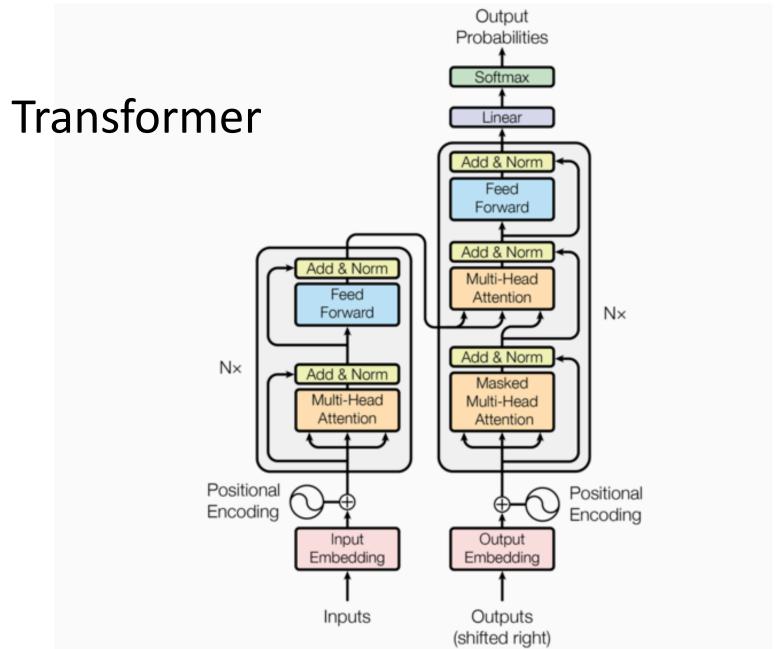


Recurrent NNs



Convolutional NNs



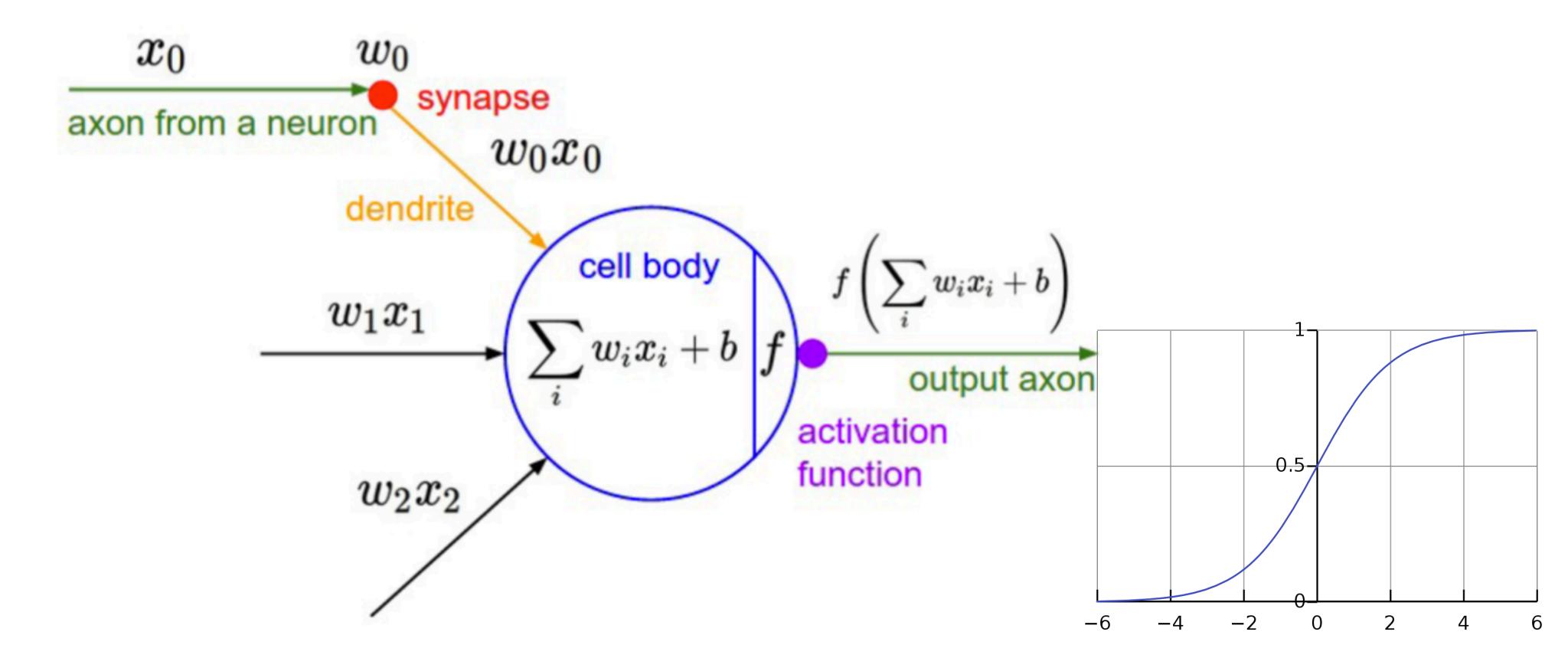


Always coupled with word embeddings...

Feedforward Networks

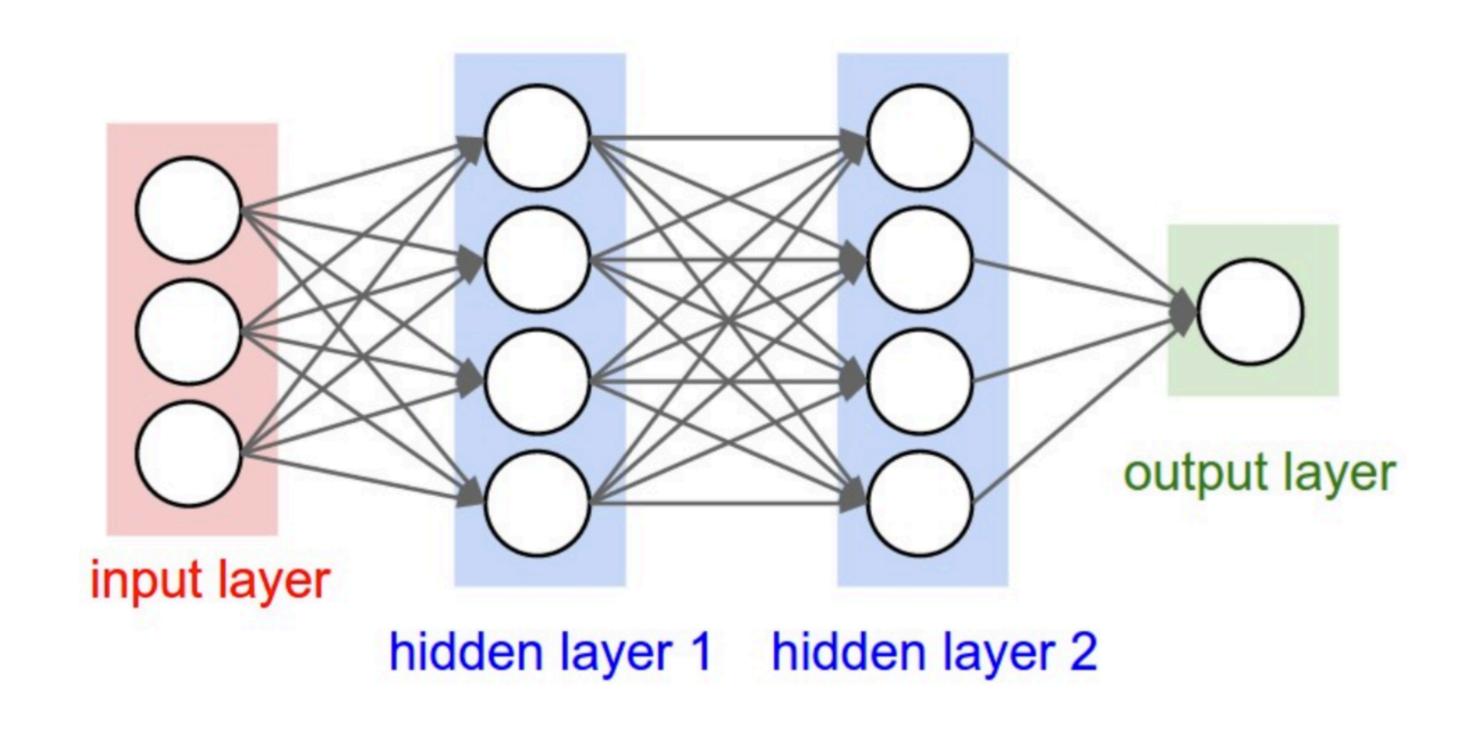
Sigmoid Neuron in Neural Network

- A single neuron is a computational unit
- The neuron multiples each input by its weight, sums them, applied a nonlinear function to the result, and passes it to its output.



A neural network

- If we feed inputs through multiple logistic regression functions, then we can construct a output vector...
- which we can feed into another logistic regression function as an input.



Recap: Multinomial Logistic Regression

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Three classes,"different weights"

$$\mathbf{w}_{1}^{\top} f(\mathbf{x})$$
 -1.1 $\overset{\overset{\longleftarrow}{\mathsf{w}}}{\overset{\smile}{\mathsf{w}}}$ 0.036 $\mathbf{w}_{2}^{\top} f(\mathbf{x})$ = 2.1 $\overset{\smile}{\mathsf{w}}$ 0.89 probs $\mathbf{w}_{3}^{\top} f(\mathbf{x})$ -0.4 0.07

- Softmax operation = "exponentiate and normalize"
- We write this as: $\operatorname{softmax}(Wf(\mathbf{x}))$

Logistic Regression with NNs

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Single scalar probability

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

Weight vector per class;W is [num classes x num feats]

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Now one hidden layer