CS378: Natural Language Processing Lecture 6: Maximum Entropy Markov Model

Eunsol Choi

Overview

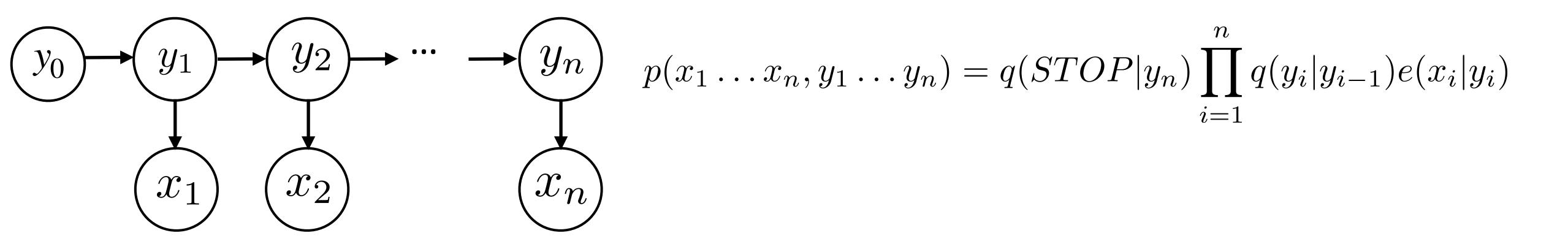
- Sequence Modeling Problems in NLP
- Generative Model: Hidden Markov Models (HMM)

Discriminative Model:
 Maximum Entropy Markov Models (MEMM)
 Conditional Random Fields

Unsupervised Learning: Expectation Maximization

Recall: HMMs

Observations (X) generated from hidden states (Y).



- Training: maximum likelihood estimation
- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})}$

Recall: The Viterbi Algorithm

Dynamic program for computing (for all i)

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

the max score of a sequence of length i ending in tag y_i

Iterative Computation:

$$\pi(0, y_0) = \begin{cases} 1 \text{ if } y_0 == START \\ 0 \text{ otherwise} \end{cases}$$

- For I = 1... n:
 - Store score

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

Store back-pointer

$$bp(i, y_i) = \arg\max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

The Viterbi Algorithm: Runtime

- Linear in sentence length (n)
- Polynomial in the number of possible tags (|K|)

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i) q(y_i|y_{i-1}) \pi(i - 1, y_{i-1})$$

$$O(n|\mathcal{K}|) \text{ entries in } \pi(i, y_i)$$

$$O(|\mathcal{K}|) \text{ time to compute each } \pi(i, y_i)$$

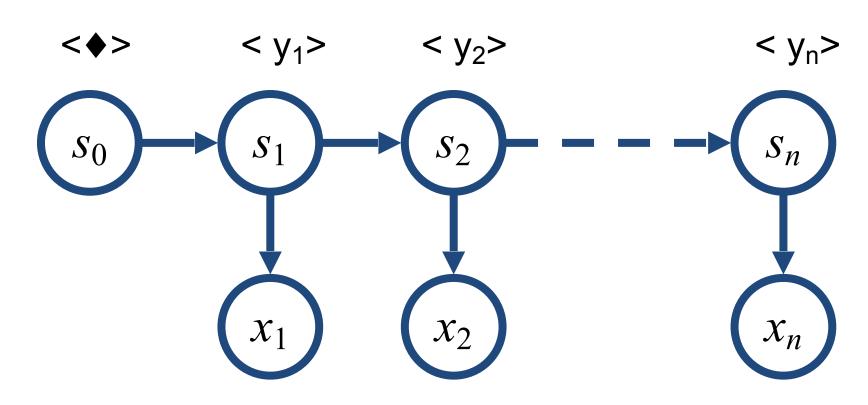
- ▶ Total Runtime: $O(n|\mathcal{K}|^2)$
- Would there any scenarios where we would choose beam search?

Tagsets in Different Languages

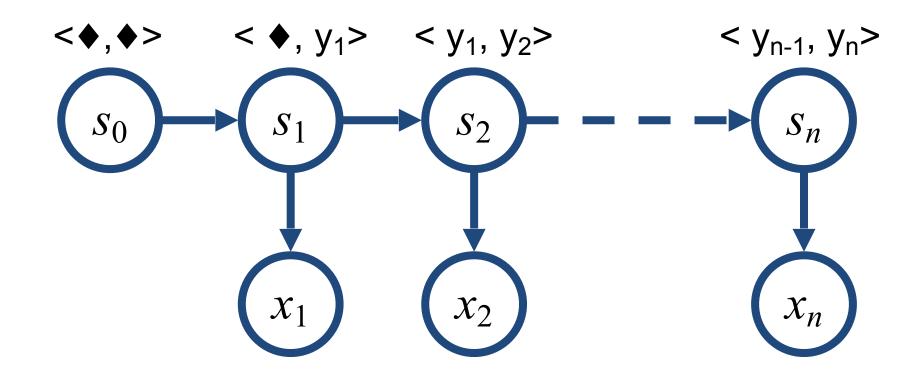
Language	Source	# Tags	
Arabic	PADT/CoNLL07 (Hajič et al., 2004)	21	
Basque	Basque3LB/CoNLL07 (Aduriz et al., 2003)	64	
Bulgarian	BTB/CoNLL06 (Simov et al., 2002)	54	
Catalan	CESS-ECE/CoNLL07 (Martí et al., 2007)	54	
Chinese	Penn ChineseTreebank 6.0 (Palmer et al., 2007)	24	
Chinese	Sinica/CoNLL07 (Chen et al., 2003)	294	$294^2 = 86436$
Czech	PDT/CoNLL07 (Böhmová et al., 2003)	63	
Danish	DDT/CoNLL06 (Kromann et al., 2003)	25	
Dutch	Alpino/CoNLL06 (Van der Beek et al., 2002)	10	
English	PennTreebank (Marcus et al., 1993)	45	$45^2 = 2045$
French	FrenchTreebank (Abeillé et al., 2003)	30	
German	Tiger/CoNLL06 (Brants et al., 2002)	54	
German	Negra (Skut et al., 1997)	54	
Greek	GDT/CoNLL07 (Prokopidis et al., 2005)	38	
Hungarian	Szeged/CoNLL07 (Csendes et al., 2005)	43	
Italian	ISST/CoNLL07 (Montemagni et al., 2003)	28	
Japanese	Verbmobil/CoNLL06 (Kawata and Bartels, 2000)	80	
Japanese	Kyoto4.0 (Kurohashi and Nagao, 1997)	42	
Korean	Sejong (http://www.sejong.or.kr)	187	
Portuguese	Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002)	22	
Russian	SynTagRus-RNC (Boguslavsky et al., 2002)	11	$11^2 = 121$
Slovene	SDT/CoNLL06 (Džeroski et al., 2006)	20	
Spanish	Ancora-Cast3LB/CoNLL06 (Civit and Martí, 2004)	47	
Swedish	Talbanken05/CoNLL06 (Nivre et al., 2006)	41	
Turkish	METU-Sabanci/CoNLL07 (Oflazer et al., 2003)	31	

Trigram HMM Taggers

• Bigram model: $y_1 = NNP$, $y_2 = NNP$, ...



• Trigram model: $y_1 = (<S>, NNP), y_2 = (NNP, VBZ), ...$



P((VBZ, NN) | (NNP, VBZ)) — more context! Noun-verb-noun S-V-O

- Tradeoff between model capacity and data size (sparsity)
 - Trigrams are a "sweet spot" for POS tagging

HMM POS Tagging

- Baseline: assign each word its most frequent tag: ~90% accuracy
- Trigram HMM: ~95% accuracy / 55% on unknown words
- ► TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks

Slide credit: Dan Klein

Can we do better?

- HMM is a generative model, estimation relies on counting!
 - Reminds you of something?

Can we build a discriminative model, incorporating rich features?

Naive Bayes:

HMM:

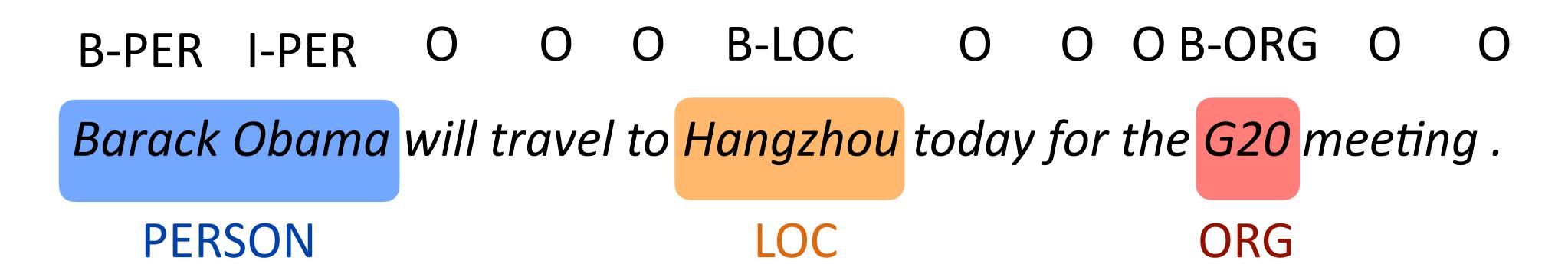
$$P(y_1, \ldots, y_n)P(x_1, \ldots, x_n | y_1, \ldots, y_n)$$

Logistic Regression:

Maximum Entropy Markov Model:

$$P(y_1,\ldots,y_n\,|\,x_1,\ldots,x_n)$$

Named Entity Recognition (NER)



- BIO tagset: begin, inside, outside
- Sequence of tags can we use an HMM?
- Would it do well?
 - Lots of O's
 - Insufficient features/capacity with multinomials (especially for unks)

Emission Features for NER

LOC

Leicestershire is a nice place to visit...

PER

Leonardo DiCaprio won an award...

LOC

I took a vacation to Boston

ORG

Apple released a new version...

LOC

PER

Texas governor Greg Abbott said

ORG

According to the New York Times...

Emission Features for NER

- Word features
 - Capitalization
 - Word shape
 - Prefixes/suffixes
 - Lexical indicators
- Context features
 - Words before/after
- Word clusters

Leicestershire

Boston

Apple released a new version...

According to the New York Times...

Maximum Entropy Markov Models (MEMM)

$$p(y_1\dots y_n|x_1\dots x_n)=\prod_{i=1}^n p(y_i|y_1\dots y_{i-1},x_1\dots x_n)$$
 Chain rule $=\prod_{i=1}^n p(y_i|y_{i-1},x_1\dots x_n)$ Independence assumption

- Log linear model for sequence tagging problem
- Learning:
 - ► Train $p(y_i | y_{i-1}, x_1, ..., x_n)$ as a discrete log-linear model
- Scoring:

$$p(y_i|y_{i-1},x_1...x_n) = \frac{e^{w \cdot \phi(x_1...x_n,i,y_{i-1},y_i)}}{\sum_{y'} e^{w \cdot \phi(x_1...x_n,i,y_{i-1},y')}}$$

Learning for MEMM

Scoring:

$$p(y_i|y_{i-1},x_1...x_n) = \frac{e^{w \cdot \phi(x_1...x_n,i,y_{i-1},y_i)}}{\sum_{y'} e^{w \cdot \phi(x_1...x_n,i,y_{i-1},y')}}$$

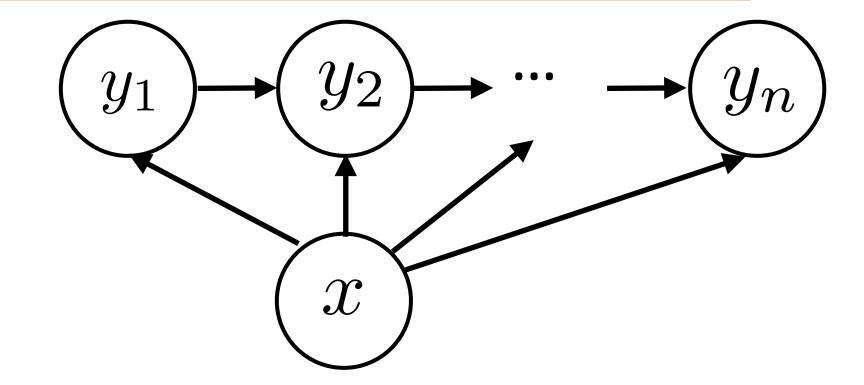
Learning Objective: log likelihood of training data

$$L = \sum_{i=1}^{n} \log P(y_i | y_1, \dots, y_{i-1}, x_1, x_2 \dots x_n)$$

- Gradient ascent: same as logistic regression
 - Compute gradients with respect to weight w and update

Basic Features for NER

$$p(y_i|y_{i-1},x_1...x_n) = \frac{e^{w\cdot\phi(x_1...x_n,i,y_{i-1},y_i)}}{\sum_{y'} e^{w\cdot\phi(x_1...x_n,i,y_{i-1},y')}}$$



Barack Obama will travel to Hangzhou today for the G20 meeting.

O B-LOC

Transitions:
$$\operatorname{Ind}[y_{i-1} \& y_i] = \operatorname{Ind}[O - B-LOC]$$

$$Ind[B-LOC \& Prev word = to]$$

Decoding for MEMM

- Given your model, finding the highest scoring y
- Not very different from decoding for HMMs
- Viterbi for HMMs

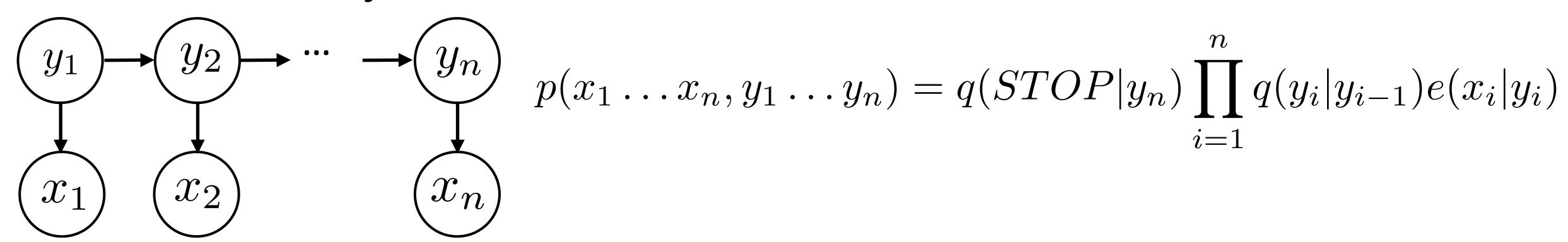
$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

Viterbi for MEMM

$$\pi(i, y_i) = \max_{y_{i-1}} p(y_i|y_{i-1}, x_1 \dots x_n) \pi(i-1, y_{i-1})$$

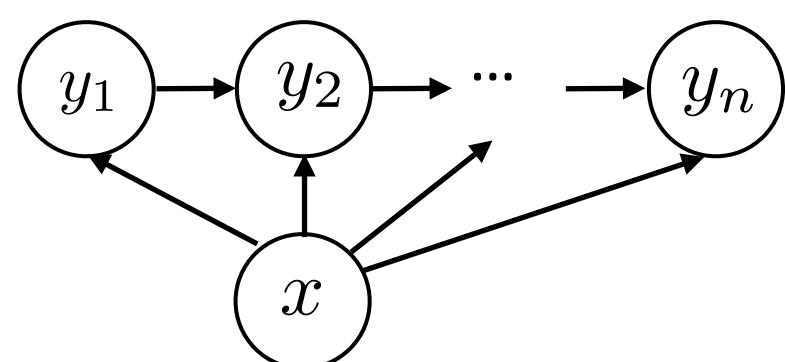
HMM vs. MEMM

HMM models joint distribution:



MEMM models conditional distribution:

$$p(y_1 \dots y_n | x_1 \dots x_n) = \prod_{i=1}^n p(y_i | y_{i-1}, x_1 \dots x_n)$$



POS Tagging Performances

- Baseline: assign each word its most frequent tag: ~90% accuracy
- Trigram HMM: ~95% accuracy / 55% on unknown words
- ► TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks
- MaxEnt: 93.7% accuracy / 82.6% on unks
- MEMM [Ratnaparkhi 1996]: 96.8% accuracy / 86.9% on unks

Slide credit: Dan Klein

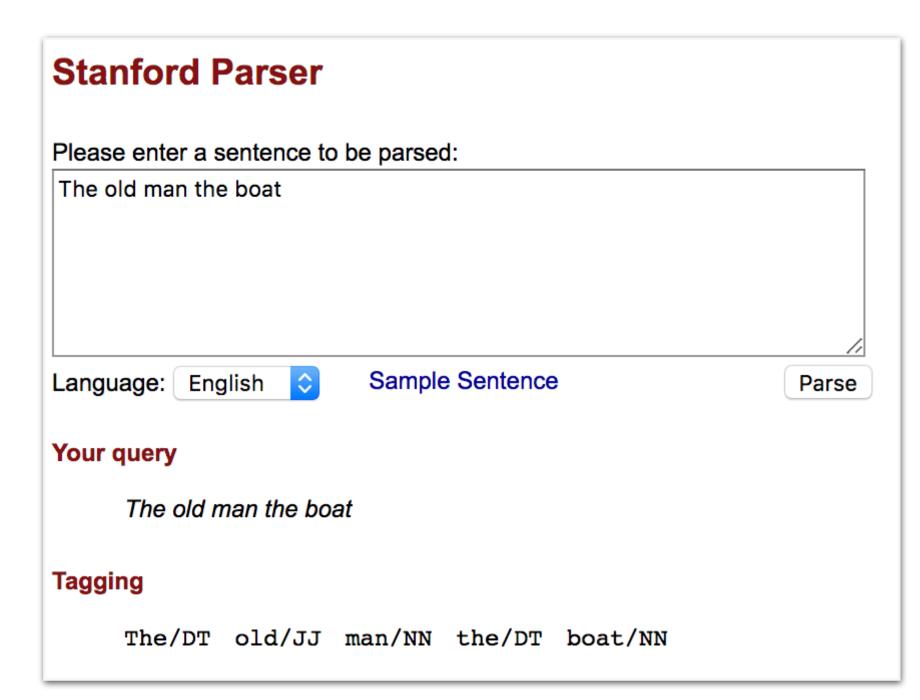
Problems with MEMM / HMM

Left-to-right assumption

The/? old/? man/?

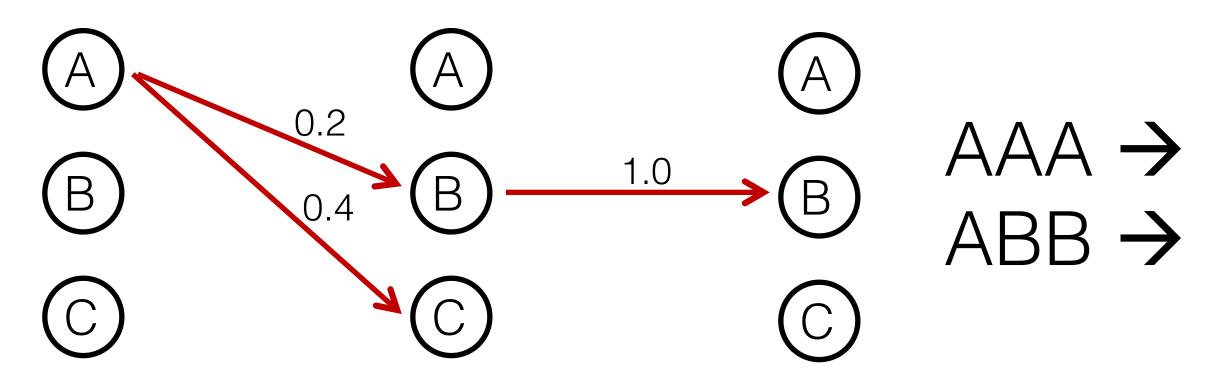
The/? old/? man/? the/? boat/?

 $P(\text{The} \mid DT)P(JJ \mid DT) \ P(\text{old} \mid JJ) \ P(NN \mid JJ) \ P(\text{man} \mid NN) \ P(DT \mid NN)$ $P(\text{The} \mid DT)P(NN \mid DT) \ P(\text{old} \mid NN) \ P(VB \mid NN) \ P(\text{man} \mid VB) \ P(DT \mid VB)$



Locally Normalized Model

- Probabilities are products of locally normalized probabilities
- Label bias:
 - States with fewer transitions are likely to be preferred.



from \ to	A	В	С
A	0.4	0.2	0.4
В	0.0	1.0	0.0
С	0.6	0.2	0.2

B -> B transitions are likely to take over even if rarely observed!

Can we build perceptrons - which wouldn't normalize?

- Perceptron:
 - Iteratively processes the data, reacting to training errors

- The (online structured) perceptron algorithm:
 - Start with zero weights
 - Visit training instances one by one
 - Make predictions: $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y} \in Y} w \cdot \phi(\mathbf{x}, \mathbf{y})$
 - If correct $(y^* = y_i)$, do nothing
 - If incorrect, adjust weights: $w = w + \phi(\mathbf{x_i}, \mathbf{y_i}) \phi(\mathbf{x_i}, \mathbf{y^*})$

How to find argmax efficiently??

Linear Perceptron Decoding

$$Y^* = \arg\max_{Y} w \cdot \phi(X, Y)$$

Local Features

$$\phi(X,Y) = \sum_{j=1}^{n} \phi(X,j,y_{j-1},y_j)$$

Define $\pi(i,y_i)$ to be the max score of a sequence of length i ending in tag y_i

$$\pi(i, y_i) = \max_{y_{i-1}} w \cdot \phi(X, i, y_{i-1}, y_i) + \pi(i - 1, y_{i-1})$$

HMM Decoding:

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

Viterbi for MEMM

$$\pi(i, y_i) = \max_{y_{i-1}} p(y_i | y_{i-1}, x_1 \dots x_n) \pi(i-1, y_{i-1})$$

POS Tagging Performances

- Baseline: assign each word its most frequent tag: ~90% accuracy
- Trigram HMM: ~95% accuracy / 55% on unknown words
- ► TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks
- MaxEnt: 93.7% accuracy / 82.6% on unks
- MEMM [Ratnaparkhi 1996]: 96.8% accuracy / 86.9% on unks
- Perceptron: 97.1% accuracy

Let's bring back probabilistic model again..

Conditional Random Fields

CRFs: discriminative models with the following globally-normalized form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_k \exp(\phi_k(\mathbf{x},\mathbf{y}))$$
 normalizer any real-valued scoring function of its arguments

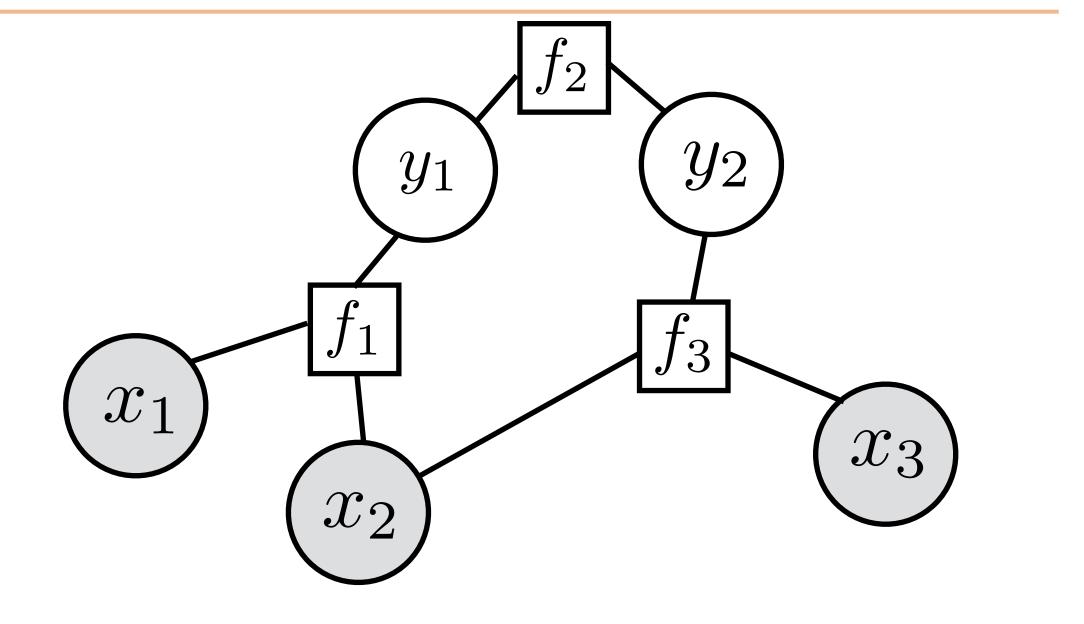
We look at linear feature-based potentials

$$\phi_k(\mathbf{x}, \mathbf{y}) = w^{\mathsf{T}} f_k(\mathbf{x}, \mathbf{y})$$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{k=1}^n w^\top f_k(\mathbf{x},\mathbf{y})\right) \quad \text{Looks like our single weight vector multiclass logistic regression model}$$

Conditional Random Fields

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{k=1}^{n} w^{\mathsf{T}} f_k(\mathbf{x}, \mathbf{y})\right)$$



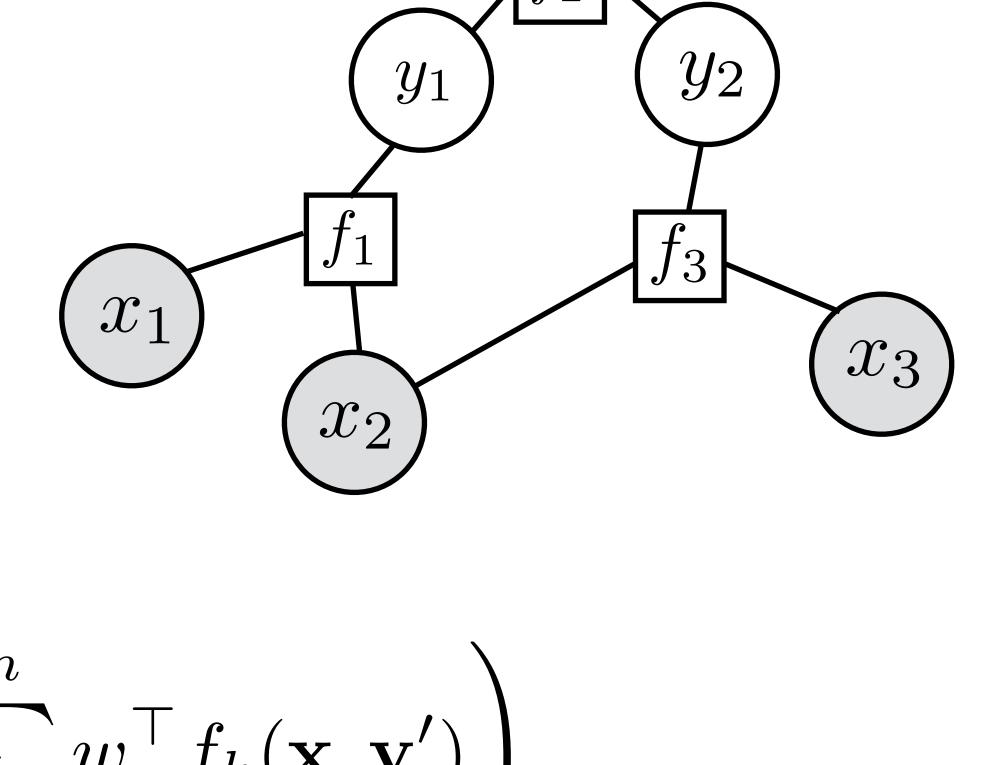
Conditional Random Fields

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y})\right)$$

Normalizing constant

$$Z = \sum_{\mathbf{y}'} \exp\left(\sum_{k=1}^{n} w^{\mathsf{T}} f_k(\mathbf{x}, \mathbf{y}')\right)$$

 $Z = \sum_{\mathbf{y}'} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y}')\right)$ Inference: $\mathbf{y}_{\text{best}} = \operatorname{argmax}_{\mathbf{y}'} \exp\left(\sum_{k=1}^{n} w^{\top} f_k(\mathbf{x}, \mathbf{y}')\right)$



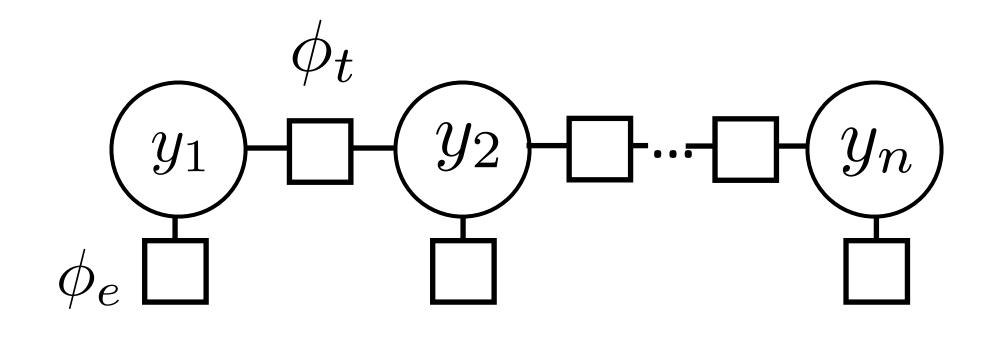
- Need to constrain the form of our CRFs to make it tractable:
 - Local features

Sequential CRFs

Sequential CRF: (one form)

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x}))$$

Notation: omit **x** from the factor graph entirely (implicit), but every feature function connects to it



• Two types of factors: $transitions \ \phi_t$ (look at previous y, but not x) and $emissions \ \phi_e$ (look at y and all of x)

Feature Functions

You can define features as you like (can be NN with 1B+ parameters).

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

CRFs Outline

• Model:
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{m} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{m} \exp(\phi_e(y_i, i, \mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- Inference
- Learning a bit more complex! revisit next week

Decoding

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x})) \underbrace{y_1}_{\phi_e} \underbrace{\psi_t}_{\Box} \underbrace{\psi_t}$$

- How to compute? $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})$
- Similar to Viterbi during linear perceptron!

$$\pi(i, y_i) = \max_{y_{i-1}} w \cdot \phi(X, i, y_{i-1}, y_i) + \pi(i - 1, y_{i-1})$$

CRF decoding:

$$\pi(i, y_i) = \max_{y_{i-1}} \phi(x, i, y_{i-i}, y_i) + \pi(i - 1, y_{i-1})$$

$$\pi(i, y_i) = \max_{y_{i-1}} \phi_t(y_{i-1}, y_i) + \phi_e(y_i, i, x) + \pi(i - 1, y_{i-1})$$

POS Tagging Performances

- Baseline: assign each word its most frequent tag: ~90% accuracy
- Trigram HMM: ~95% accuracy / 55% on unknown words
- ► TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks
- MaxEnt: 93.7% accuracy / 82.6% on unks
- MEMM [Ratnaparkhi 1996]: 96.8% accuracy / 86.9% on unks
- Perceptron: 97.1% accuracy
- CRF: 97.3% accuracy

State-of-the-art (neural model w/CRF): 97.5% / 89%+

Slide credit: Dan Klein

Errors

	IJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	177	56	0	61	2	5	10	15	108	0	488
NN	244	0	103	0	12	1	1	29	5	6	19	525
NNP	107	106	0	132	5	0	7	5	I	2	0	427
NNPS	1	0	110	0	0	0	0	0	0	0	0	142
RB	72	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	65	0	0	0	0	104
IN	11	0	1	0	169	103	0	1	0	0	0	323
VB	17	64	9	0	2	0	1	0	4	7	85	189
VBD	10	5	3	0	0	0	0	3	0	143	2	166
VBN	101	3	3	0	0	0	0	3	108	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

JJ/NN NN official knowledge

VBD RP/IN DT NN made up the story

RB VBD/VBN NNS recently sold shares

(NN NN: tax cut, art gallery, ...)

Slide credit: Dan Klein / Toutanova + Manning (2000)

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5%
- Could get right: 16%
- Difficult linguistics: 20%

```
VBD / VBP? (past or present?)

They set up absurd situations, detached from reality
```

Underspecified / unclear, gold standard inconsistent / wrong: 58%

adjective or verbal participle? JJ / VBN? a \$ 10 million fourth-quarter charge against discontinued operations

Manning 2011 "Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguistics?"

Remaining Questions

How to handle noisy text?

How to keep high accuracy when we go to new domains?

Can we incorporate domain specific lexicon? (List of protein names?)

How can we combine unlabeled data efficiently to labeled data?

Summary

- Sequence Modeling Problems in NLP
- Generative Model: Hidden Markov Models (HMM)
- Discriminative Model:
 Maximum Entropy Markov Models (MEMM)
 Conditional Random Fields