FALL 2020 CS 395T

1

REFRAMING OTHER PROBLEMS AS QA

CS 395T: Topics in Natural Language Processing 11/19/2020

Ryo Kamoi and Yejin Cho, The University of Texas at Austin

Reframing other problems as QA

- 1) CorefQA: Coreference Resolution as Query-based Span Prediction (Wu et al., ACL 2020)
 - <u>Coreference resolution</u> \rightarrow Span prediction as in QA task
- 2) Zero-Shot Relation Extraction via Reading Comprehension (Levy et al, CoNLL 2017)
 - <u>Relation extraction</u> \rightarrow Reading comprehension QA task

CorefQA: Coreference Resolution as Query-based Span Prediction

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li

CorefQA: Overview

 CorefQA formulates the Coreference Resolution problem as a span prediction task, like in question answering **Original Passage** In addition, *many people* were poisoned when toxic gas was released. They were poisoned and did not know how to protect themselves against the poison. **Our formulation** Q1: Who were poisoned when toxic gas was released? A1: [*They, themselves*] Q2: What was released when many people were poisoned? A2: [the poison] Q3: Who were poisoned and did not know how to protect themselves against the poison? A3: [*many people, themselves*] Q4: Whom did they not know how to protect against the poison? A4: [many people, They] Q5: They were poisoned and did not know how to protect themselves against what? A5: [toxic gas]

Background: Coreference Resolution

Recent Approaches

- 1. Clustering for mentions from parsers and handengineered mention proposal algorithms
- 2. End-to-end fashion by jointly detecting mentions and predicting coreferences

Background: Coreference Resolution

Earlier Neural-based Models (e.g. Wiseman et al., 2016)

- Assume that a sequence of mentions are given (e.g. syntactic parser)
- Use representations from neural models for clustering

Background: Coreference Resolution

End-to-End method (e.g. Lee et al., 2017)

- Syntactic parsers are not required
- Jointly learns which spans are entity mentions and how to best cluster them
- 1. Computes embedding representations of spans
- 2. Low-scoring spans are pruned (mention proposal)
- 3. Compute clustering score

Background: Problems in Prior Work

- Mentions left out at the mention proposal stage can never be recovered
- Only based on mention representations from the output layer and lacks the connection between mentions and their contexts

CorefQA: Overview

 CorefQA formulates the Coreference Resolution problem as a span prediction task, like in question answering **Original Passage** In addition, *many people* were poisoned when toxic gas was released. They were poisoned and did not know how to protect themselves against the poison. **Our formulation** Q1: Who were poisoned when toxic gas was released? A1: [*They, themselves*] Q2: What was released when many people were poisoned? A2: [the poison] Q3: Who were poisoned and did not know how to protect themselves against the poison? A3: [*many people, themselves*] Q4: Whom did they not know how to protect against the poison? A4: [many people, They] Q5: They were poisoned and did not know how to protect themselves against what? A5: [toxic gas]

CorefQA

CorefQA: Mention proposal

- Similar to Lee et al. (2017)
- Use the SpanBERT to obtain input representations
- Considers all spans up to a maximum length L as potential mentions
- Prune the candidate spans by using calculated scores

$$s_{\mathrm{m}}(i) = \mathrm{FFNN}_{\mathrm{m}}([\boldsymbol{x}_{\mathrm{FIRST}(i)}, \boldsymbol{x}_{\mathrm{LAST}(i)}])$$

CorefQA: Span Prediction

- Similar to Li et al. (2019)
- Generates a BIO tag for each token
 - Beginning (B), inside (I) and outside (O) of a coreferent mention

CorefQA: Data Augmentation

- Hypothesis: the reasoning required for QA is also useful for coreference resolution
- Pretrain the mention linking network on
 - Quoref dataset (Dasigi et al., 2019b)
 - SQuAD dataset (Rajpurkar et al., 2016b).

CorefQA: Advantages

- Left-out mentions can still be retrieved at the span prediction stage
- Span prediction requires a more thorough and deeper examination of the lexical
- Allows us to take advantage of existing question answering datasets

CorefQA: Experiments - Metrics

MUC (Vilain et al., 1995)

• A link based metric

key entities. MUC recall is defined as:

• K is the key entity set

Recall =
$$\frac{\sum_{k_i \in K} (|k_i| - |p(k_i)|)}{\sum_{k_i \in K} (|k_i| - 1)}$$

where $p(k_i)$ is the set of partitions that is created by intersecting k_i with the corresponding response entities. *MUC* precision is computed by switching the role of the key and response entities.

CorefQA: Experiments - Metrics

- B³ (Bagga and Baldwin, 1998)
- A mention based metric

 K is the key entity set and R is the response entity set recall/precision of the individual mentions. For each mention m in the key entities, B^3 recall considers the fraction of the correct mentions that are included in the response entity of m. B^3 recall is computed as follows:

$$\text{Recall} = \frac{\sum_{k_i \in K} \sum_{r_j \in R} \frac{|k_i \cap r_j|^2}{|k_i|}}{\sum_{k_i \in K} |k_i|}$$

Similar to MUC, B^3 precision is computed by switching the role of the key and response entities.

CorefQA: Experiments - Metrics

 $CEAF_{\varphi 4}$ (Luo, 2005)

 K is the key entity set and R is the response entity set

vice versa. *CEAF* uses a similarity measure (ϕ) to evaluate the similarity of two entities. It uses the Kuhn-Munkres algorithm to find the best one-toone mapping of the key to the response entities (g^*) using the given similarity measure. Assuming K^* is the set of key entities that is included in the optimal mapping, recall is computed as:

$$\operatorname{Recall} = \frac{\sum_{k_i \in K^*} \phi(k_i, g^*(k_i))}{\sum_{k_i \in K} \phi(k_i, k_i)}$$
(1)

For computing *CEAF* precision, the denominator of Equation 1 is changed to $\sum_{R_i \in R} \phi(r_i, r_i)$.

			MU	С		B	3		CEA	F_{ϕ_4}	
		Р	R	F1	Р	R	F1	Р	R	F1	Avg. F1
	e2e-coref(Lee et al., 2017)	78.4	73.4	75.8	68.6	61.8	65.0	62.7	59.0	60.8	67.2
EZE	c2f-coref + ELMo (Lee et al., 2018)	81.4	79.5	80.4	72.2	69.5	70.8	68.2	67.1	67.6	73.0
· •	EE + BERT-large (Kantor and Globerson, 2019)	82.6	84.1	83.4	73.3	76.2	74.7	72.4	71.1	71.8	76.6
Methods	c2f-coref + BERT-large (Joshi et al., 2019b)	84.7	82.4	83.5	76.5	74.0	75.3	74.1	69.8	71.9	76.9
	c2f-coref + SpanBERT-large (Joshi et al., 2019a)	85.8	84.8	85.3	78.3	77.9	78.1	76.4	74.2	75.3	79.6
	CorefQA + SpanBERT-base CorefQA + SpanBERT-large	85.2 88.6	87.4 87.4	86.3 88.0	78.7 82.4	76.5 82.0	77.6 82.2	76.0 79.9	75.6 78.3	75.8 79.1	79.9 (+0.3) 83.1 (+3.5)

Table 1: Evaluation results on the English CoNLL-2012 shared task. The average F1 of MUC, B³, and CEAF_{ϕ_4} is the main evaluation metric. Ensemble models are not included in the table for a fair comparison. *P*, *R* and *F*1 in the first row represent precision, recall and F1 score respectively.

		Avg. F1	Δ
	CorefQA	83.4	
BERT	—– SpanBERT	79.6	-3.8
	Mention Proposal Pre-train	75.9	-7.5
Lee et al. (2018)	Question Answering	75.0	-8.4
	— Quoref Pre-train	82.7	-0.7
	—— SQuAD Pre-train	83.1	-0.3

Table 3: Ablation studies on the CoNLL-2012 development set. SpanBERT token representations, the mention-proposal pre-training, and the question answering pre-training all contribute significantly to the good performance of the full model.

Speaker modeling strategies

- This paper: Speaker as input directly concatenates the speaker's name
- Previous work: Speaker as feature converts speaker information into binary features indicating whether two mentions are from the same speaker

Figure 3: Performance on the development set of the CoNLL-2012 dataset with various number of speakers. F1(Speaker as feature): F1 score for the strategy that treats speaker information as a mention-pair feature. F1(Speaker as input): F1 score for our strategy that treats speaker names as token input. Frequency: percentage of documents with specific number of speakers.

- Keep up to λn (where n is the document length) spans with the highest mention scores
- The proposed method is less sensitive to smaller values of λ because missed mentions can still be retrieved later

Figure 4: Change of mention recalls as we increase the number of spans λ kept per word.

- Successful examples of the proposed method
- 1: The answer from a longer distance
- 3: The use of speaker information

[**Freddie Mac**] is giving golden parachutes to two of its ousted executives. ... Yesterday

¹ Federal Prosecutions announced a criminal probe into [**the company**].

[A traveling reporter] now on leave and joins

2 us to tell [her] story. Thank [you] for coming in to share this with us.

Paula Zahn: [Thelma Gutierrez] went inside the forensic laboratory where scientists are trying to solve this mystery.

- , Thelma Gutierrez: In this laboratory alone
- ⁵ [I] 'm surrounded by the remains of at least twenty different service members who are in the process of being identified so that they too can go home.

Table 4: Example mention clusters that were correctly predicted by our model, but wrongly predicted by c2f-coref + SpanBERT-large. Bold spans in brackets represent coreferent mentions. Italic spans represent the speaker's name of the utterance.

Discussion

- Error Analysis
 - mentions left out at the mention proposal stage
 - distant mentions
- Are results without ``Speaker as Input" better than baseline methods?
- Evaluation on other datasets

Zero-Shot Relation Extraction via Reading Comprehension

[CoNLL 2017] Omer Levy, Minjoon Seo, Eunsol Choi, Luke Zettlemoyer

Relation Extraction

- Task: Given some **unstructured text**, predict relations between entities
 - Ultimate goal: Fill in the **information gap** (missing links) in a knowledge base (KB)
- Challenge
 - Intractability: How many relations exist in language/world?
 - Not all relations can be seen during training
 - If we only care about a fixed set of **pre-defined** relation types, data collection and supervised learning for such specific relations are feasible
 - However, we want to go beyond by generalizing to **unseen relations**
 - ➡ Zero-shot setting relation extraction

Proposed Idea

Relation extraction as reading comprehension QA

Relation Extraction as QA

- The **biggest charm** of reducing RE as QA?
 - Enables zero-shot learning
 - i.e., Generalizing to new relations unobserved during training
- Specifically, this paper proposes to:
 - **Train** a reading comprehension QA model with labeled data of N relation types (**R**₁-**R**_N)
 - **Test** with <u>unseen</u>, <u>unspecified</u> (zero-shot) relation types (**R**_{N+1})
 - No additional data feeding for new relations
 - Instead, simply use the QA model trained with R_N to answer adequate questions in natural language

Approach

• Task: **Slot-filling** for relation extraction

	KB relation R	<i>occupation</i> (e, ?)
Given information	Entity e	Steve Jobs
	Sentence s	"Steve Jobs was an American <u>businessman</u> , <u>inventor</u> , and <u>industrial designer</u> ." Collected from WikiReading _{Hewlett et al. (2016)}
Querification	Question q	Q: What did Steve Jobs do for a living?
Answer prediction	Answer text span set A	A: { <u>businessman</u> , <u>inventor</u> , <u>industrial designer</u> } (A=Ø, if not answerable from the given sentence s)

Approach

Schema Querification

- Idea: No fixed schema used as in previous relation extraction studies
 - Instead, any schema (or any relation) can be asked as a **question**
- Convert a relation **R(e, ?)** to natural language **questions**

• Transforms relation extraction dataset to reading comprehension dataset

Approach

- Reading comprehension QA using querified schemas
 - **Train** a reading comprehension model with the transformed dataset
 - Input: sentence **s** and question **q**
 - Output: a set of answer spans in sentence **s** (**A**)
 - Test phase: <u>zero-shot</u> scenario
 - Input sentence:
 - "<u>Turing</u> and colleagues came up with a method for efficiently <u>deciphering</u> the <u>Enigma</u>."
 - Input relation: <u>deciphered(e, ?)</u>
 - Question: "Which code did x break?" (x instantiated with 'Turing')
 - Answer: Enigma

Dataset

	Schema questions	<u>Slot</u> -filling data
Relation	Question	Sentence & Answers
$educated_at$	What is Albert Einstein 's alma mater?	Albert Einstein was awarded a PhD by the University of Zürich, with his dissertation titled
occupation	What did Steve Jobs do for a living?	Steve Jobs was an American <u>businessman</u> , <u>inventor</u> , and industrial designer .
spouse	Who is Angela Merkel married to?	Angela Merkel's second and current husband is quantum chemist and professor Joachim Sauer, who has largely

- Each instance consists of:
 - A relation, a question, a sentence, and a set of answer spans (underlined in the figure)
- 1) Slot-filling data: collected using distant supervision on existing QA dataset (WikiReading)
- 2) Schema questions: <u>crowdsourced</u> data collection and verification

Data Collection (1) Slot-Filling Data

- WikiReading (Hewlett et al. 2016):
 - Reading comprehension dataset
 - Collected by aligning Wikipedia article to each relation R(e,a)
 - Each instance consists of document D, relation R, entity e, and answer a
- Distant supervision on WikiReading:
 - From each document, select the **first sentence s** that contains the entity **e** and the specified answer **a**
 - Merge all answers for R(e, ?) given s into a set of answer spans A

Data Collection (2) Schema Querification

- Collected by crowdsourced workers on Amazon Mechanical Turk
- Two phases: Collection + Verification
 - a. Collection
 - Given 4 **example sentences**, each annotator should come up with **3 questions** about **X** whose answer is the <u>underlined span</u>, considering each sentence.
 - (1) The wine is produced in the **X** region of **<u>France</u>**.
 - (2) **X**, the capital of <u>Mexico</u>, is the most populous city in North America.
 - (3) X is an unincorporated and organized territory of <u>the United States</u>.
 - (4) The X mountain range stretches across the United States and Canada.

Data Collection (2) Schema Querification

- b. Verification
 - **Quality control** for the collected question templates
 - **Reverse** setting:
 - Given a question (instantiated with entity e), annotators **find the answer** from sentence s
 - If their answer **matches with A**, then the question template is verified as **valid**
 - Discard the template if not matched for less than 6 out of 10 times
- **Collected data size:** 1.2k verified question templates with 120 relations
 - After combining with the slot-filling data and instantiation with entities: >30M examples

Data Collection: **Negative** Examples

- **Negative examples**: Unanswerable question-sentence pairs (A=Ø)
 - Additionally collected to help relation extraction (c.f., deviation from RC setting)
 - Idea: Intentionally mismatch a question q and a sentence s (Morales et al., 2016)
 - Both of them mention the same entity e
 - However, q should be **unanswerable from s**
 - q: "Who is Angela Merkel married to?"
 - s: "Angela Merkel is a German politician who is currently the Chancellor of Germany."
 - Created >2M negative samples
 - All training and testing sets had 1:1 ratio of positive and negative examples

Data Collection: **Discussion**

- Limitation of data collection in several previous studies
 - SimpleQA (Bordes et al., 2015), QA-SRL (He et al., 2015), and more
 - High cost for data collection: the cost linearly grows with the number of instance
 - Thus, difficult to build large-scale dataset
- On the other hand, schema querification enables scaling up
 - Collected 300x larger dataset than SimpleQA
 - Main reason: annotates on the **relation**-level and abstracts each entity as a variable
 - The first approach to robustly collect QA dataset using schema-level crowdsourcing

Model: Modified BiDAF (Seo et al., 2016)

- Adapted a reading comprehension model <u>BiDAF (Seo et al., 2016)</u> to the current task
 - **Difference** between reading comprehension (RC) and current task
 - RC: Always assumes the answer to be some span of a given sentence
 - Current: Model should decide <u>whether the question is answerable or not</u> from the given sentence (i.e., whether the answer exists in the sentence)

Model: Modified BiDAF

- **BiDAF** (Seo et al., 2016)
 - Input: sentence **s**, question **q**
 - Pretrained GloVe word embeddings without finetuning
 - Output: z^{start} , $z^{\text{end}} \in R^{N (= \# \text{ of words in the sentence s})}$
 - **Confidence score** of the start and end positions **y**^{start}, **y**^{end} of the answer span in s
 - Apply softmax to convert to pseudo-probabilities **p**^{start}, **p**^{end}
 - Predicts the most probable answer span in s
 - Algorithm: Bi-LSTM with attention encodes and aligns s and q

Model: Modified BiDAF

- Modification of BiDAF
 - Added a bias b at the end of each confidence score vectors z^{start} , $z^{\text{end}} \in \mathbf{R}^{N}$
 - i.e., model's confidence that the answer has no start or end, respectively
 - Again, apply softmax to new score vectors ($\in \mathbf{R}^{N+1}$) to compute pseudo-probability distributions $\tilde{\mathbf{p}}^{start}$, $\tilde{\mathbf{p}}^{end}$
 - Use the probability of the two biases to compute **null answer probability** P(a=Ø)

$$P(a = \emptyset) = \tilde{\mathbf{p}}_{N+1}^{start} \tilde{\mathbf{p}}_{N+1}^{end}$$

- If P(a=Ø) > P(the most likely span), then decide the instance as '**not answerable**'
- Works as a dynamic **per-example threshold** for decision (↔ global threshold)

Experiments

- Experimental settings with three test subjects:
 - A. Unseen entities
 - B. Unseen question templates
 - C. Unseen relations

Least challenging

Most challenging

- Evaluation metrics
 - <u>Precision</u>: (# true positives) / (# times a model returned non-null answers)
 - <u>Recall</u>: (# true positives) / (# instances which are answerable)

41

Experiments: Variations

- Five variations of our BiDAF systems
 - Vary on how a relation is represented/queried during train [#1-4] and test [#5] time

#	Variation	Question Template	Description	Example	Expectation
1	KB Relation	х	Provide relation indicator instead of question	R ₁₇	Will generalize well on unseen entities but will fail on unseen relations
2	NL Relation	х	Provide relation name instead of question	"educated at"	
3	Single Template	0	[Weak variant of proposed model] Allow only one question template for each relation during training	q: "Where did x study?"	
4	Multiple Template	0	[Full variant of proposed model] Allow multiple variants of questions for each relation during training	q: {"Where did x study?", "Which university did x graduate from?", }	Will have better paraphrasing skill than single template
5	Question Ensemble	0	Per test instance , ask three different forms relation and choose the answer with the high the second seco		

Experiments: Other baselines

- 1) Random NE
 - Random baseline
 - From the given sentence, simply choose an entity that is not present in the question
- 2) RNN Labeler
 - Answer extraction model in WikiReading (Hewlett et al. 2016)
 - At each timestep an RNN cell decides whether the current word is part of the answer or not
- 3) Miwa and Bansal (2016)
 - Off-the-shelf end-to-end relation extraction system that worked well on multiple benchmarks
 - Represent each relation as an indicator
 - Unseen relations cannot be extracted (as many other RE models)

Experiment A. Unseen Entities

•

	Precision	Recall	F1
Random NE	11.17%	22.14%	14.85%
RNN Labeler	62.55%	62.25%	62.40%
Miwa & Bansal	96.07%	58.70%	72.87%
KB Relation	89.08%	91.54%	90.29%
NL Relation	88.23%	91.02%	89.60%
Single Template	77.92%	73.88%	75.84%
Multiple Templates	87.66%	91.32%	89.44%
Question Ensemble	88.08%	91.60%	89.80%

Table 1: Performance on unseen entities.

- All five of our models generalize well to new entities and texts
 - All outperform both of the off-the-shelf relation extraction systems
 - Single Template < all four others
- Error analysis on Multiple Templates
 - Only a **small** portion (18%) of the sampled errors are **pure model errors**,
 - while the rest are mostly due to trivial annotation errors.

Experiment B. Unseen Question Templates

	Precision	Recall	F1
Seen	86.73%	86.54%	86.63%
Unseen	84.37%	81.88%	83.10%

Table 2: Performance on seen/unseen questions.

- For each relation, one question template is held-out for evaluation (one for dev, another for test)
 - e.g.,"What did **x** do for a living?" --> in *train* only "What is **x**'s job?" --> in *test* only
- Trained and tested Multiple Templates for each of 10-folds of dataset
 - Seen: Test performance when unseen templates replaced with templates seen during training
 - Unseen: Selectively measured performance on unseen question templates
- Result:
 - Our approach generalizes on unseen question templates

Experiment C. Unseen Relations

- Fully zero-shot environment
 - **None** of the evaluated relations is observed during training
- Results
 - Two RE baselines which represents each relation as an indicator (and not natural language) clearly fails in zero-shot setting
 - **Multiple** Templates show **big improvement** from others, including **Single** Template
 - Thanks to rich exposure to diverse phrasings of the same relation

	Precision	Recall	F1
Random NE	9.25%	18.06%	12.23%
RNN Labeler	13.28%	5.69%	7.97%
Miwa & Bansal	100.00%	0.00%	0.00%
KB Relation	19.32%	2.54%	4.32%
NL Relation	40.50%	28.56%	33.40%
Single Template	37.18%	31.24%	33.90%
Multiple Templates	43.61%	36.45%	39.61%
Question Ensemble	45.85%	37.44%	41.11%

Table 3: Performance on unseen relations.

Experiment C. Unseen Relations

Figure 4: Precision/Recall for unseen relations.

- **Precision-recall curve** when applied a varying range of **global threshold** p_{min} for confidence score
 - Whenever the best answer's score is lower than p_{min}, then decide '<u>not answerable from text</u>'
- Observation
 - Question Ensemble
 - > Multiple Templates
 - > Single Templates = NL Relation
 - >>>> KB Relation

Qualitative Analysis

- How does the proposed model extract **unseen relations**?
 - For better understanding they analyzed 100 random samples (60 pos, 40 neg)
- 1) **Negative** samples (i.e., not answerable from sentence)
 - 35% of them had a **distractor** in a sentence
 - 'Distractor': an incorrect answer of **correct answer entity type** (e.g., person, time)
 - Most negative samples are easy, but some with a distractor are non-trivial

Qualitative Analysis

• 2) **Positive** samples (i.e., answerable)

Part of the guestion			
literally appears in the		Relation	András Dombai plays for what team?
incertainy appears in the	Verhatim	Keration	András Dombaicurrently plays as a goalkeeper for FC Tatabánya.
sentence s	verbaum	Tuno	Which airport is most closely associated with Royal Jordanian?
		Type	Royal Jordanian Airlines from its main base at Queen Alia International Airport
Takes typical rephrasing)	Deletion	Who was responsible for directing Les petites fugues?
	Clabal	Relation	Les petites fugues is a 1979 Swiss comedy film directed by Yves Yersin.
methods used <u>across</u>	Giobai	Tuno	When was The Snow Hawk released?
different relations		Type	The Snow Hawk is a 1925 film
)	Delation	Who started Fürstenberg China?
	Specific	Relation	The Fürstenberg China Factory was founded by Johann Georg von Langen
lakes unique rephrasing	specific		What voice type does Étienne Lainez have?
method <u>closely tied to</u>		Type	Étienne Lainezwas a French operatic <i>tenor</i>
the specific relation		1	

Figure 5: The different types of discriminating cues we observed among positive examples.

Qualitative Analysis

- **Distribution** of cues (Table 4)
 - Analyzed the **most important** cues for solving each instance
 - Type cues > Relation cues
 - **Specific** (50%) > Global (33%) > Verbatim (17%)
- Accuracy by cue types (Table 5)
 - **Relation** column (left): No marked tendency (agnostic)
 - **Type** column (right): Catches **global cues** much better than others
 - Thus, the generalizability to new relations could be attributed to global type cues and relation paraphrase detection of all types (... balanced accuracy)

	Relation	Туре
Verbatim	12%	5%
Global	8%	25%
Specific	22%	28%

Table 4: The distribution of cues by type, based on a sample of 60.

	Relation	Type
Verbatim	43%	33%
Global	60%	73%
Specific	46%	18%

Table 5: Our method's accuracy on subsets of examples pertaining to different cue types. Results in *italics* are based on a sample of less than 10.

Takeaways

- The contributions of this work are as follows:
 - 1) Reframing as QA
 - Creatively repurposed relation extraction as reading comprehension (QA) problem using schema querification approach
 - Showed neural QA model (BiDAF) can effectively adapted for relation extraction
 - 2) Enabled **zero-shot** relation learning by adopting **span QA** framework
 - 3) Categorized and analyzed three **different types of discriminative cues** (Verbatim, Global, Specific) that can be used for relation extraction

More Recent Works

- Relation Extraction
 - Li et al. ACL 2019.
 - A follow-up work heavily motivated by the current paper
 - Entity and relation extraction tasks framed as a problem of multi-turn QA
 - Alt et al. AKBC 2019: a pre-trained Transformer based LM fine-tuned on the RE task
- QA application to other NLP tasks
 - Gardener et al. Question Answering is a Format; When is it Useful?, ArXiv 2019.
 - Argument: QA should be considered a *format* instead of a *task* in itself
 - Multiple values of QA: fills information needs in natural language, as a probing tool, and as a storage for transferrable linguistic knowledge

Discussions

- Some **assumptions** in the task
 - The task setup assumes three things: **s** (a sentence), **r** (a KB relation), **e** (an entity).
 - i.e., R(e, ?) and a sentence that mentions the entity e.
 - Is this a realistic assumption for RE? How do we retrieve the right sentence **s**?
 - How can we extend this approach to extract unseen relations from unstructured text alone (without **s**)?
- Question answering
 - Do you consider QA as a *task* or a *format*?
 - What are other problems in NLP that could also benefit from QA?

Questions?