
1 Introduction

Consider the following problem: you are given a closed curve γ(t) in the plane representing a thin elastic
ribbon that resists stretching and bending. We will assume that the arc-length parameterization of γ is
its rest state, so that the strain of the curve in the tangent direction is ‖γ′‖, and that the curve has some
(not necessarily flat) rest curvature κ0(s). We are told that there is some unknown pressure difference ∆P
between the area inside and outside γ, and that γ is in static equilibrium; we want to calculate this pressure
difference ∆P .

Here is how I would approach discretizing and solving the problem, using the DDG techniques from the
course.

2 Step 1: Identify the Smooth Principles

We can think of the pressure difference ∆P as the Lagrange multiplier of an area-preservation constraint
on the region enclosed by γ; this suggests that the guiding smooth principle we will need for solving the
problem is the principle of virtual work: if γ is in static equilibrium under pressure difference λ = ∆P ,
then the virtual work done on the system by the elastic forces and the area constraint must be zero for any
variation in γ or λ. In other words, (γ, λ) extremize the Lagrangian

L(γ∗, λ∗) = Eelastic(γ
∗) + λ∗[A(γ∗)−A(γ)]

where Eelastic(γ
∗) is the curve’s elastic energy and A(γ∗) is the area enclosed by γ∗.

Why did we start from this variational principle, instead of writing down a bunch of force equations or
PDEs and discretizing those? This is a central theme in DDG and there are several motivating reasons:

1. Expressions for energies tend to be integrated quantities which are straightforward to discretize. Solv-
ing the variational problem gives you a recipe for always getting the right formulas for the (more
complicated) forces;

2. To discretize a PDE, you have to make a lot of choices about how to discretize each term, and these
choices may or may not be self-consistent. Discretizing the Lagrangian involves making fewer, and
more intuitive, choices;

3. Solutions that come from variational principles automatically satisfy several important symmetries,
such as Noether’s theorem. This is particularly important when doing dynamics, where discrete equa-
tions of motion that come from Hamilton’s principle are guaranteed to conserve momentum, the sym-
plectic form, etc. if the discrete energies have the appropriate symmetries.

3 Step 2: Write Down the Needed Smooth Terms

In this case the equation we need is for the elastic energy in the Lagrangian above. If ks and kb are stretching
and bending moduli, the Lagrangian is

L(γ∗, λ∗) = ks

∫
(‖γ∗t (s)‖−1)2 ds+ kb

∫
(κ∗(s)− κ0(s))2 ds+ λ [A(γ∗)−A(γ)]

where κ∗(s) is the curvature of γ∗. Notice that these energies are evaluated on a deformed curve γ∗ but
integrated over the rest, arc-length parameterization s.

4 Step 3: Discretize the Smooth Terms

First, we must choose how to represent our curve. One easy approach is to discretize it as a set of N vertices
vi ∈ R2 connected by straight segments. Call ei+1/2 = vi+1− vi the edge vector between vertices i and i+ 1,
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and Li+1/2 the rest length of edge ei+1/2. We can define two kinds of discrete functions F over γ: those that
assign a scalar Fi to each vertex vi and those that assign a scalar to each edge ei+1/2. We need to discretize
the L2 inner product over γ0 for each of these. For the former, we do this as we did in class using Voronoi
areas:

〈F,G〉 =
∑
i

FiGiAi, Ai =
Li−1/2 + Li+1/2

2
.

The inner product for edge-based functions is even simpler:

〈F,G〉 =
∑
i

Fi+1/2Gi+1/2Li+1/2.

We now have all of the pieces needed to discretize the stretching energy:

Es = ks

〈‖ei+1/2‖
Li+1/2

− 1,
‖ei+1/2‖
Li+1/2

− 1

〉
= ks

∑
i

Li+1/2

L2
i+1/2

(‖ei+1/2‖−Li+1/2)2 = ks
∑
i

(‖ei+1/2‖−Li+1/2)2

Li+1/2
.

A few remarks are in order at this point. First, we should carefully keep track of what choices we’ve
made about how to discretize the problem, although so far all have been very natural:

• How to represent the geometry of γ;

• How to represent functions over γ and their inner product;

• How to discretize tangent strain ‖γ′‖.
Note also that Es looks exactly like a spring energy, where each edge is a spring of rest length Li+1/2, and
because we discretized the energy by first defining a discrete inner product, it scales correctly with both
length and refinement of the curve. A good sign!

Next, we need to discretize the bending term. In class (and the notes) we discussed several options for
this. I will propose using the discrete vertex-based curvature

κi =
4 tan(θ/2)

‖ei−1/2‖+‖ei+1/2‖
,

where θ is the angle between consecutive edges ei−1/2 and ei+1/2. Using 2θ instead of 4 tan(θ/2) is also
common (notice that the choices are equivalent to second order), but I prefer the above for two reasons:
first, it diverges as θ → ±π which makes it useful for simulations where you don’t want the curve to pass
through itself; and second, the “simplicity’ of θ is illusory as computing θ (and, eventually, its gradient)
requires dealing with inverse trigonometric functions, whereas

tan(θ/2) =
sin θ

1 + cos θ
=

ei−1/2 × ei+1/2

‖ei−1/2‖‖ei+1/2‖+ei−1/2 · ei+1/2
,

where × in the numerator is the signed two-dimensional cross-product.
We now have discrete bending energy:

Eb = kb〈κi − κ0i , κi − κ0i 〉 = kb
∑
i

(κi − κ0i )2Ai.

The last piece we need is the area constraint: the area of the polygon γ is simply

A(v) =
∑
i

vi+1 × vi
2

,

as can be seen by drawing a line from each vertex to the origin and computing the total signed area of the
resulting triangles, or, as we did in class, by applying Stokes’s theorem to the area integral∫

1 dA =

∫
1

2
∇ · (x, y) dA =

1

2

∫
γ

(x, y) · n̂ ds

and computing this integral over each edge.
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5 Step 4: Apply the Discretized Principle

Our discrete Lagrangian is L(v∗, λ∗) = Es(v
∗) + Eb(v

∗) + λ∗ [A(v∗)−A(v)] . Now we apply the discrete
principle of virtual work: the discrete system is in static equilibrium if and only if the equations

∂

∂v∗i
L = 0

∂

∂λ∗
L = 0

hold simultaneously. In the smooth cases, the principle of virtual work requires the calculus of variations:
the discrete calculus of variations is just elementary calculus! More explicitly, the equations are

∂

∂v∗j

kb∑
i

(
4(v∗i − v∗i−1)× (v∗i+1 − v∗i )(

‖v∗i − v∗i−1‖+‖v∗i+1 − v∗i ‖
) (
‖v∗i − v∗i−1‖‖v∗i+1 − v∗i ‖+(v∗i − v∗i−1) · (v∗i+1 − v∗i )

) − κ0i
)2

Ai +

ks
∑
i

(‖v∗i+1 − v∗i ‖−Li+1/2)2

Li+1/2
+ λ

∑
i

v∗i+1 × v∗i
2

 = 0

∑
i

v∗i+1 × v∗i
2

−A(v) = 0

and we want them to hold for v∗ = v and λ∗ equal to our unknown pressure difference ∆P . The derivative
in the first equation is elementary but laborious (a perfect task for Mathematica), with the bending term by
far the most involved. Note that for each index j almost all terms in the sums vanish.

The second equation will be automatically satisfied, but we will still have 2N equations and only one
unknown(λ∗. This is because for the vast majority of curves γ, it is not true that a single pressure difference
will perfectly balance the elastic forces at every point. If we know this must be true, we could in theory solve
only one of the equations above to find λ∗; since there might be some error, though, both due to discretization
and due to incorrect assumptions about static equilibrium, it is better to solve the simultaneous system for
λ∗ in the least squares sense: after differentiating and plugging in v∗ = v the first system of equations can
be written as λ∗a = b, where a and b are known 2N -vectors, and so

∆P ≈ a · b
‖a‖2

.
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