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Success of Imitation Learning
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Humans Mostly Learn by Observation
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Example: Watching YouTube
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Imitation Learning from Observation
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Perception Module
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Focus of My Research is on the ...
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Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Research Question

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]
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Imitation Learning from Observation

Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]




Reinforcement Learning

® Goal:

® Learn how to make decisions by minimizing the cumulative cost feedback.

M =<S5,4,P,c>

p

Vv

® S: Set of states d Agent
4
® A: Set of actions
.. . State Cost,
® P: Transition function
St Ct

® ¢: Cost function

: Ct+1 o

® Learnapolicy T: S — A 8141 Environment

Action



Reinforcement Learning

® Algorithms:
® Model-based:

® Known model (planning): LQR, MCTS, etc.
® Unknown model: PILQR, PLATO, etc.
® Model-free:

® Policy-based: Reinforce, TRPO, PPO, etc.
® Value-based: SARSA, Q-learning, etc.



Imitation Learning

® Goal:

® Learn how to make decisions by trying to imitate another agent.
« M\c:

® Provided: 7§ = {(s§, ag), (5§, ag), .., (sg, ax)}i

® Learn: T:5¢ — a;

® Algorithms:
® Behavioral Cloning (BC)
® Inverse Reinforcement Learning (IRL)

® Adversarial Imitation Learning (AIL)



Imitation Learning

® Observations of other agent (demonstrations) consist of state-action pairs.

® Limitation:

4

® Precludes using a la— es are not given.

Scott Niekum et al. “Learning and generalization of complex tasks from unstructured demonstrations”. In: Intelligent Robots and Systems (IROS), 2012
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Cwibdtod Moshuiring from Observation

o .
Goal: from state-only demonstrations of

® Learn how to perform a task by-visually-ebserving an expert.

« M\c:
.1 1, e _ (.e e e € _ (e e e
® Provided: = O r T; = {S§,S1, SN}
® Learn: T:Se > Qg
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]
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Imitation Learning from Observation

Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]
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Behavioral Cloning from Observation

® Goal:

® Propose a Model-based Algorithm for Imitation from Observation.
® Imitation Learning (IL): 7 ={(s§,ag), (s§,ag), ..., (sy, ax)}i

® Imitation from Observation (IfO): 77 = {(s§,?),(s{,?), ... (S5, D) }i

d Perform a conventional
IL method

A Model-based Approach

Learn an inverse model R Infer the missing
of the environment actions
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Behavioral Cloning from Observation

START
l / Behavioral Cloning from Observation (BCO) \

Initialize Policy 1 ( Run Append State-Action
T ) | Policy mg, pairs to T;

Update 1 ( Infer | [ Update
Policy mg | | Actions | | Model Mg
J \

State-only 1 N J
Demonstrations 77 ) ~— ! j




Experiments

® Tasks:

(a) CartPole (b) MountainCar (¢) Reacher

4/26/21

Imitation Learning from Observation
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Experiments

® Ant
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]
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Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]
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Generative Adversarial Imitation from Observation

® Goal:

® Propose a Model-free Algorithm for Imitation from Observation.
® IfO problem:

RL o IRLf Oy (m®) = argmin argmax —(c) + (mlnE [c(s,s)]) — Ege[c(s,s)]
€[]  ceRS*S
® Which is a composition of:

IRLFOy,(m®) = argmax —(c) + (mlnE [c(s,s)]) — Eqelc(s,s')] RL(¢) = argmin E;[¢(s,s)]
CERSX Tel]
It is equivalent to solving:

argmin ar%ftww%@)gﬁw@(l — D(s,s")]

€[] De(
* c¢(s,s") : Cost as a function of state transition
* m¢: Expert policy
* J]: Set of all possible policies
* Y(c): Regularizer



Generative Adversarial Imitation from Observation

® Algorithm:
® Initialize T g and Dg Demonstrator Imitator

® While 1ty improves do:

® Execute T and store state transitions Tl-i = {(Si)}i

® Update Dy using loss:

—(E,T[log(D (s, S’))] + E e [log(l — D(s, S’))])
® Update 1y by performing TRPO updates with cost function:

E.|log(D(s,s")]
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Experiments

® Tasks:

U

InvertedDoublePendulum InvertedPendulumSwingup Hopper Walker2D
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Experiments

® Hopper:

4/26/21
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Theoretical Contribution

® IfO problem:

RL o IRLf Oy, (m®) = argmin argmax —(c) + (gleiﬁl E;[c(s,s)]) — Eqel[c(s,s")]

Difficult to Solve

argmin argmax E [log(D(s, S’))] + E e [log(l — D(s, S’))]
m€]] De(0,1)S%S

How are they equivalent?

® Equivalent to:

Proposition 5.4.1. RL o IRLf0,,(m®) and argminy*(p; — p,e) induce policies that have
me]]

the same state transition occupancy measure, ps.

Where p3(si,5;) = Sa P(sjls @)m(alsy) £2o ¥ P(se = sim)



4 )

Proposition 5.4.1. RL o IRLf0,,(7®) and argminy*(p; — pye) Induce policies that have
eE]]

the same state transition occupancy measure, p3.

- )

RL o IRLf 0y (m®) = argmin argmax —y(c) + (mlnE [c(s,s")]) — Eqelc(s,s")]

n€E[]]  cerS%S

PyEPS  cERSXS

RL o IRLfOy,(n®) = argmln argmax —y(c) + (mln Z pr(s,s")c(s,s")) — Zp;e(s,s’)c(s,s’)

Proof:

N Same p3

[ RL o IRLf Oy (mc®)

argmin ) (o5, ~ p;‘;e)}
Proposition 5.4.1  * el

J

Lemma 5.4.1 | Same p3 Same p5 | Lemma 5.4.3

Same p3

[ RL o IRLfO,(1®) } (argmmlp (o — Pne)]

PEPS

Lemma 5.4.2




Theoretical Contribution

® New IfO problem:
argmin V™ (p7 — Ppe)
® Specifying U:

»(c) = {En.e [g(c(s,s’))] if c < 0 where g(x) = {—x —log(1 — e*)
+00 otherwise oo

® The optimization problem becomes [proposition A.1.1]:

argmin argmax En[log(D (s,s’))] + E e [log(l — D(S,S'))]
n€]] De(0,1)S%S

Similar to the Generative Adversarial Loss
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otherwise
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]
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Imitation Learning from Observation

Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]

27



GAIfO with Self-observation

® Goal:

® Incorporate thé;: J
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Experiments

® Hopper:

Hopper
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]
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Imitation Learning from Observation

Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]
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GAIfO with Proprioceptive Information

® Goal:

® To improve the performance and sample-complexity of GAIfO with self-observation.

® Hypothesis:

Leveraging proprioceptive information will help with both issues



GAIfO with Proprioceptive Information

® Propose an algorithm that uses both proprioceptive and visual information in order to:

® Improver performance Proptioeepiine
1 1v
® Improve sample complexity ( features (Stf ) E Env
e.g. joint angles
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Experiments

® Tasks:
® OpenAl Gym Environments \/
® Visual Demonstrations:

(a) MountainCarCon- (b) InvertedPendulum (c) InvertedDou-
® 64*64 grayscale frames tinuous blePendulum

(e) Walker2d (f) HalfCheetah

4/26/21 Imitation Learning from Observation 33



Experiments

® Walker2D Expert:

4/26/21

Imitation Learning from Observation
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Experiments

® Walker2D

Expert Iteration 0

Iteration 100

4/26/21 Imitation Learning from Observation

Iteration 1942
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Experiments

® Walker2D
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]

4/26/21
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Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]
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Motivation

® Goal:

® Improve sample complexity of GAIfO to enable application on physical robots.

® Integrating
® Sample-efficient RL updates from PILQR [1] with
® High-performing GAIfO algorithm for IfO.

[1] Chebotar, Yevgen, et al. "Combining model-based and model-free updates for trajectory-centric reinforcement learning." International conference on machine learning. PMLR, 2017.



PILQR

® Combines:
® iterative Linear Quadratic Regulator iLQR)
® And, Path Integral Policy Improvement (PI°)

® iLQR constraints:

® Linear dynamics Sey1 = F; [ at] + ft
® Quadratic cost function  c(sg, a;) ——[at] Ct[ ] [ ] Ct
® PILQR:

® Twice differentiable-cost function
® iLQR on quadratic approximation of the cost
® PI” policy update on the residual cost

® Returns a Gaussian controller p(a|s)



TT(‘DA no_ oot “"111’\/‘\"‘:1\“
Uovu uao vUOL 1uliviiivll

PILQR
PPO used to update

Demonstrator Imitator
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Some constraints on the cost [ Twice-differentiable ]

[ A function of both states and actions ]

® We consider:

c(sgap) = % lzr Ct lfli] + lZZ]T c; + cct

L J

Quadratic approximation

40



DEALIO - cen LT el ] aver |

}7 L0 ;‘T}}aving the dynamics model

]T CSS(St’ St+1) [Sf_lt_ll 4 lStS_:llT CSS(St: Seaq ) + CCSS(StrS§EI'+11): F; l;i] + ft

1 s¢
Do (st, St+1) = P [St+1

! ® Substitute sy, 1 in Dg(s¢, S¢41) to find
C5 (s, 3210, 55 (sg, Sp41 ), €FA(s¢, 5¢44)

se1’ sa St Se1” sa SS
. C5%(St) St+1) a; + a c54(St, Ser1 ) + €c*3(St, Sea1)

Ce = C°%(S¢,5¢41)

ce = ¢**(5¢, S¢+1)

cce = cc™ (8¢, Sev1)
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DEALIO

Dg(st,St+1) = %lsi c(sp,ar) = % lfli]T Ct [flz] i lZlT C¢ + CCy }CSS(SD St+1)

h ( Update Linear
Extract Cost . :
_ » Gaussian Controller
Function c(s¢, ar) | L
y p(als)
: Initialize Linear
Update Collect Trajectory .
Discriminator Dy Samples {t'} Gaussian Controller
L p(als)
Demonstration Sampled Fit Gaussian
Trajectories {7°} Trajectories {7'} Dynamics P(s’|s, a)




Experiments

® MuJoCo Simulation Domains:

Disc Peglnsertion GripperPusher DoorOpening

® Hypothesis:
® DEALIO is able to learn tasks efficiently compared to GAIfO
® DEALIO is able to perform better compared to GAIfO

4/26/21 Imitation Learning from Observation
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Experiments

® Our experiments on MuJoCo show DEALIO is faster in learning and has higher performance compared to GAIfO.

® Peglnsertion:

ot Disc Peglnsertion GripperPusher DoorOpening

c 1.25 A

£ |
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g 075 T .. - AN ‘

©

o 0.50 |
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o 0.00

= DEALIO

?{’ —0.25 1 EAIFO
t

T 0501 | | | xper

ic 0 1000 2000 3000  4( 4000

Demonstration GAIfO DEALIO
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

Behavioral Cloning from
Observation (BCO)
[IJCAI 2018]

Generative Adversarial
Imitation from Observation
(GAIFO)
[AAMAS 2019, ICML
Workshop]

Data-Efficient Adversarial
Learning for Imitation from
Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO Visual Extension of GAIfO
with Self-observation with Proprioceptive Information
[ICML Workshop] [IJCAI 2020]

4/26/21

Imitation Learning from Observation

Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]
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Motivation

® Goal:
® Combine “imitation from observation” and “reinforcement learning” to enable learning when:
® The demonstrator is sub-optimal

® Not many demonstration trajectories are available

® Given:

® A single state-only (sub-optimal) demonstration: D€ = {sf}

® A cost function: Cepy

® Learn:
® A policy to perform the task

4/26/21 Imitation Learning from Observation
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RIDM: Reinforced Inverse Dynamics Modeling

S RIDMFEFELRIES Y New paradigm for combigitg}gSIL and RL in that the agent's behavior is
—p -

» Learner Actual Trajectoay . b . .
driven directly by the fixed demonstration trajectory coupled with a parameterized

o = ModelT dJe tory Correction 1.  Initialize an inverse dynamics model IDM) .
inverse dynamics model.

4. Execute theaction and ceflect the cost

5.  Train the IDM to minimize the cost and go back

So =S¢ to step 3

Mg (so,51) = @o Mg(sy,53) = @y
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Experiments

® Robot control domains:
®* MuJoCo Simulator

® SimSpark Simulator

® UR5 Arm Robot

® Hypothesis:
® RIDM is able to learn tasks efficiently with comparable performance compared to the demonstrator

® If the demonstrator is sub-optimal, RIDM is potentially able to outperform the demonstrator
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Experiments

® Computationally challenging:
® Hopper: 4.5 days
® Nao’s Fast Walk: 2.5 days

R F
N 2
" =
g ¥
2 :
a . [
- . L]
2\ ’
3 %

- =

'-..
NTw

Parallelized Over 50 Machines

=

FPRS W Sl
- '1 " - -
TY W W W)

2-3 hours each experiment
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Experiments: SimSpark Robot Soccer

® Used in 3D Simulation RoboCup

® Developing skills such as walk and kick is challenging

UTAustinVilla 0:0 FUT-K

® Tasks:

® Fast Walk
® Long Kick

P

® Demonstrators:
® FUT-K
® FC Portugal

gifs.com

® Demonstrators are sub-optimal with respect to the designed cost.
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Experiments: SimSpark Robot Soccer

® Our experiments on SimSpark 3D simulator show learned behavior outperforms the suboptimal experts.

® EastgWKilik (FUTFK): ® EostgWilik ((C Martiagge):
ERGHES <Right>
Learned
Learned Behavior:
Behavior:
<Right> FCPortugal 0:0 <Right>
Demo: Demo:
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Experiments: URS5 Arm Robot

® Our experiments on URS robots show learned behavior outperforms robot’s default PID performance.

® Pushing Task (10x):

[

Demonstration Default UR5 PID Learned Behavior
4/26/21 Imitation Learning from Observation
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Future Work

® Perception

® Application to Physical Robots

® Fully-intelligent Agents

3
S = a;.(fs
et = 54fes

$3+3461949 25 1X
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Future Work

® Perception Challenges

[ Integration of Perception and Control ]

[ Embodiment Mismatch ] [ Viewpoint Mismatch ]
CycleGAN [Zhu et al. 2017] Pose-estimation [Cao et al. 2017,
Pix2pix [Isola et al. 2017] Wang et al. 2019]
Dual GAN [Yi etal. 2017] Keypoint Detection

Disco GAN [Kim et al. 2017]
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Future Work

® Application to Physical Robots

[ Sample-efficiency ] [ Safe ]
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Future Work

$3+3461949 =5 1X

® Fully-intelligent Agents

{ Reinforcement learning ] [ Imitation Learning ] [ Imitation from Observation ]
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Related Work

[ IFO Control Algorithms J

:   :
[ Model-based J [ Model-free J

/\ /\

Inverse Model J [ Forward Model J [ Adversarial methods J [ Cost Engineering J

Self-supervised [Nair et al. 2017] ILPO [Edwards et al. 2019] Third Person [Stadie et al. 2018] TCN [Sermanet et al. 2018]
GSP [Pathak et al. 2018] Future Image Similarity OptionGAN [Henderson et al. 2018] IFO [Liu et al. 2020]
BCO* [Robertson et al. 2020] [Wu et al. 2020] FAIL [Sun et al. 2019] TDC [Aytar et al. 2018]
A hybrid method [Guo et al. 2019] IDDM [Yang et al. 2019] Invariant Feature Space

[Gupta et al. 2017]
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Summary

® Area A:

® Equivalency of solving the model-free IfO problem and solving the GANs like optimization problem.

® Area B:

® Implementation of the introduced algorithms.
® Training the models on hundreds of machines.

® Extensive hyperparameter search for each algorithm.

® Area C:

® Modeling the human ability of imitation from observation.

® Application of the developed algorithms to simulated and physical robots.
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In what ways can autonomous agents learn to imitate experts using

state-only observations?

START Behavioral Cloning from Observation (BCO(a))

Initialize Policy Run Append State-Action
T Policy 7y pairs to {7/}
Update Infer Update
policy 7 35 Actions model My

T

State-only

Demonstrations D¢ J

Behavioral Cloning from Observation
(BCO)

[IJCAI 2018]

JUGWUOIAUE

i
L 7 19 Demonstrationi
i
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Imitator

Demonstrator

Generative Adversarial Imitation from
Observation (GAIFO)
[AAMAS 2019, ICML Workshop]

Visual Extension of GAIfO with Self-
observation
[ICML Workshop]

Imitation Learning from Observation

Extract Cost Function Cgrlfr i'{fe A
(51, az) p(als) Sf
~—J» expert trajectory
Update Discriminator Collect 8 t
Dy=hog || Trajectory =3 learner actual trajectory
Samples
{r'} ) '
I = =» model trajectory correction
Fit
Gaussian | | | e
Dynamics S —_ S
= e ~
P(s|s,a) O O M0(81782) frnd al
I
GAIfO PILQR

Data-Efficient Adversarial Learning
for Imitation from Observation
(DEALIO)

[Under Review]

Reinforced Inverse Dynamics
Modeling (RIDM)
[RAL, IROS 2020]

Proprioceptive
features (s;)
(e.g. joint angles)

Env

Visual Extension of GAIfO with

Proprioceptive Information
[IJCAI 2020]




