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Success of  Imitation Learning
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Action Information is needed.



Humans Mostly Learn by Observation
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Example: Watching YouTube
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Imitation Learning from Observation

Perception Control
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Visual observations States Policy



Perception Module

Sensors Motion Capture Pose Estimation
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Focus of  My Research is on the …

Control
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Research Question

In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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Reinforcement Learning

• Goal:

• Learn how to make decisions by minimizing the cumulative cost feedback.

• 𝑀 =< 𝑆, 𝐴, 𝑃, 𝑐 >
• S: Set of states

• A: Set of actions

• P: Transition function

• c: Cost function

• Learn a policy 𝜋: 𝑆 → 𝐴
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Reinforcement Learning

• Algorithms:

• Model-based:

• Known model (planning): LQR, MCTS, etc.

• Unknown model: PILQR, PLATO, etc.

• Model-free:

• Policy-based: Reinforce, TRPO, PPO, etc.

• Value-based: SARSA, Q-learning, etc.
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Imitation Learning

• Goal:

• Learn how to make decisions by trying to imitate another agent.

• 𝑀\c:
• Provided: 𝜏!" = { 𝑠#", 𝑎#" , 𝑠#", 𝑎#" , … , 𝑠$" , 𝑎$" }!
• Learn: 𝜋: 𝑠% → 𝑎%

• Algorithms:

• Behavioral Cloning (BC)

• Inverse Reinforcement Learning (IRL)

• Adversarial Imitation Learning (AIL)
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Imitation Learning

• Observations of other agent (demonstrations) consist of state-action pairs.

• Limitation:

• Precludes using a large amount of demonstration data where action sequences are not given.
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Scott Niekum et al. “Learning and generalization of complex tasks from unstructured demonstrations”. In: Intelligent Robots and Systems (IROS), 2012 



Imitation Learning from Observation

• Goal:

• Learn how to perform a task by visually observing an expert.

• 𝑀\c:
• Provided: 𝜏!" = 𝑜#", 𝑜&", … , 𝑜$" !

• Learn:              𝜋 ∶ 𝑠% → 𝑎%

𝜏!" = 𝑠#", 𝑠&", … , 𝑠$" !
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In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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Behavioral Cloning from Observation

• Goal:

• Propose a Model-based Algorithm for Imitation from Observation.

• Imitation Learning (IL):                    𝜏!" = { 𝑠#" , 𝑎#" , 𝑠#" , 𝑎#" , … , 𝑠$" , 𝑎$" }!

• Imitation from Observation (IfO):    𝜏!" = 𝑠#" , ? , (𝑠%" , ? ), … , (𝑠$" , ? ) !

Learn an inverse model 
of the environment

Perform a conventional 
IL method

Infer the missing 
actions

A Model-based Approach
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Behavioral Cloning from Observation

START

Initialize Policy 
𝜋&

State-only 
Demonstrations 𝜏!"

Run 
Policy 𝜋&

Append State-Action 
pairs to 𝜏!!

Update 
Model 𝑀'

Infer 
Actions

Update 
Policy 𝜋&!

Behavioral Cloning from Observation (BCO)
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Experiments

• Tasks:
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Experiments

• Ant
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In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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Generative Adversarial Imitation from Observation

• Goal:
• Propose a Model-free Algorithm for Imitation from Observation.

• IfO problem:

• Which is a composition of:

• It is equivalent to solving:

• 𝑐 𝑠, 𝑠! : Cost as a function of state transition
• 𝜋": Expert policy
• ∏: Set of all possible policies
• 𝜓(𝑐): Regularizer

IRLFO!(𝜋") = argmax
#∈%!×!

−𝜓 𝑐 + (min
&∈∏

𝐸& 𝑐 𝑠, 𝑠( ) − 𝐸&#[𝑐 𝑠, 𝑠( ] 𝑅𝐿(𝑐̃) = argmin
&∈∏

𝐸&[𝑐̃ 𝑠, 𝑠( ]
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𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂!(𝜋") = argmin
&∈∏

argmax
#∈%!×!

−𝜓 𝑐 + (min
&∈∏

𝐸& 𝑐 𝑠, 𝑠( ) − 𝐸&#[𝑐 𝑠, 𝑠( ]

argmin
&∈∏

argmax
)∈(+,-)!×!

𝐸& log 𝐷 𝑠, 𝑠( + 𝐸&#[log 1 − 𝐷 𝑠, 𝑠( ]Difficult to Solve



Generative Adversarial Imitation from Observation

• Algorithm:

• Initialize 𝜋/ and D0
• While 𝜋/ improves do:

• Execute 𝜋! and store state transitions 𝜏"" = 𝑠" "

• Update D# using loss:

• Update 𝜋! by performing TRPO updates with cost function:

−(𝐸$ log 𝐷 𝑠, 𝑠% + 𝐸$#[log 1 − 𝐷 𝑠, 𝑠% ])

𝐸$ log 𝐷 𝑠, 𝑠%
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Experiments

• Tasks:

InvertedDoublePendulum InvertedPendulumSwingup Hopper Walker2D
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Experiments

• Hopper:
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Theoretical Contribution

• IfO problem:

• Equivalent to:

Where 𝜌12 𝑠!, 𝑠3 = ∑4𝑃 𝑠3 𝑠!, 𝑎 𝜋(𝑎|𝑠!)∑%5#6 𝛾%𝑃(𝑠% = 𝑠!|𝜋)

𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋') = argmin
$∈∏

argmax
*∈+$×$

−𝜓 𝑐 + (min
$∈∏

𝐸$ 𝑐 𝑠, 𝑠% ) − 𝐸$#[𝑐 𝑠, 𝑠% ]

Difficult to Solve

Proposition 5.4.1. 𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋') and argmi𝑛
$∈∏

𝜓∗(𝜌$- − 𝜌$#
- ) induce policies that have 

the same state transition occupancy measure, 𝜌.$- .
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argmin
$∈∏

argmax
/∈(1,3)$×$

𝐸$ log 𝐷 𝑠, 𝑠% + 𝐸$#[log 1 − 𝐷 𝑠, 𝑠% ]

How are they equivalent?



Proposition 5.4.1. 𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋') and argmi𝑛
$∈∏

𝜓∗(𝜌$- − 𝜌$#
- ) induce policies that have 

the same state transition occupancy measure, 𝜌.$- .

𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋')

𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋') argmi𝑛
5&'∈6'

𝜓∗(𝜌$- − 𝜌$#
- )

argmi𝑛
$∈∏

𝜓∗(𝜌$- − 𝜌$#
- )

Proof:

Lemma 5.4.1

Lemma 5.4.2

Lemma 5.4.3Same 𝜌.$-

Same 𝜌.$-
Same 𝜌.$-

Proposition 5.4.1

Same 𝜌.$-

𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋') = argmin
$∈∏

argmax
*∈+$×$

−𝜓 𝑐 + (min
$∈∏

𝐸$ 𝑐 𝑠, 𝑠% ) − 𝐸$#[𝑐 𝑠, 𝑠% ]

𝑅𝐿 ∘ 𝐼𝑅𝐿𝑓𝑂&(𝜋') = argmin
5&'∈6'

argmax
*∈+$×$

−𝜓 𝑐 + ( min
5&'∈6'

C
-,-(

𝜌$- 𝑠, 𝑠% 𝑐(𝑠, 𝑠%)) − C
-,-%

𝜌$#
- 𝑠, 𝑠% 𝑐(𝑠, 𝑠%)
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Theoretical Contribution

• New IfO problem:

• Specifying 𝜓:

• The optimization problem becomes [proposition A.1.1]:

argmi𝑛
$∈∏

𝜓∗(𝜌$- − 𝜌$#
- )

𝜓 𝑐 = D𝐸$# 𝑔 𝑐 𝑠, 𝑠% 𝑖𝑓 𝑐 < 0
+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑔 𝑥 = D−𝑥 − log 1 − 𝑒
7 𝑖𝑓 𝑥 < 0

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

argmin
$∈∏

argmax
/∈(1,3)$×$

𝐸$ log 𝐷 𝑠, 𝑠% + 𝐸$#[log 1 − 𝐷 𝑠, 𝑠% ]

Similar to the Generative Adversarial Loss
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In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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GAIfO with Self-observation

4/26/21 Imitation Learning from Observation 28

• Goal:

• Incorporate the perception module into GAIfO using self-observation.



Experiments

• Hopper:
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In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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GAIfO with Proprioceptive Information 

• Goal:

• To improve the performance and sample-complexity of GAIfO with self-observation.

• Hypothesis:

Leveraging proprioceptive information will help with both issues 
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GAIfO with Proprioceptive Information 

• Propose an algorithm that uses both proprioceptive and visual information in order to:

• Improver performance

• Improve sample complexity
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Experiments

• Tasks:

• OpenAI Gym Environments

• Visual Demonstrations:

• 64*64 grayscale frames
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Experiments

• Walker2D Expert:
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Experiments

• Walker2D

Expert Iteration 0 Iteration 100 Iteration 1942
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Experiments

• Walker2D
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In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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Motivation

• Goal:

• Improve sample complexity of GAIfO to enable application on physical robots.

• Integrating

• Sample-efficient RL updates from PILQR [1] with

• High-performing GAIfO algorithm for IfO.

[1] Chebotar, Yevgen, et al. "Combining model-based and model-free updates for trajectory-centric reinforcement learning." International conference on machine learning. PMLR, 2017.

4/26/21 Imitation Learning from Observation 38



PILQR

• Combines:
• iterative Linear Quadratic Regulator (iLQR)
• And, Path Integral Policy Improvement (PI2)

• iLQR constraints:
• Linear dynamics                  𝑠/0- = 𝐹/

𝑠/
𝑎/ + 𝑓/

• Quadratic cost function       𝑐 𝑠/ , 𝑎/ = -
1

𝑠/
𝑎/

2
𝐶/

𝑠/
𝑎/ +

𝑠/
𝑎/

2
𝑐/

• PILQR:
• Twice differentiable-cost function
• iLQR on quadratic approximation of the cost
• PI2 policy update on the residual cost
• Returns a Gaussian controller 𝑝(𝑎|𝑠)
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GAIfO
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Used as cost function

PPO used to update

DEALIO

PILQR

Some constraints on the cost

• We consider:

A function of both states and actions

Twice-differentiable

𝑐 𝑠8 , 𝑎8 =
1
2
𝑠8
𝑎8

9
𝐶8

𝑠8
𝑎8 +

𝑠8
𝑎8

9
𝑐8 + 𝑐𝑐8

Quadratic approximation
ImitatorDemonstrator



• Having the dynamics model

• Substitute 𝑠%7& in 𝐷0 𝑠%, 𝑠%7& to find

• And finally:

DEALIO
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𝑣 ↓ 0 𝑣 ↑ 1𝐶-- 𝑠8 , 𝑠8:3 , 𝑐-- 𝑠8 , 𝑠8:3 , 𝑐𝑐-- 𝑠8 , 𝑠8:3

𝑐 𝑠8 , 𝑎8 =
1
2
𝑠8
𝑎8

9
𝐶8

𝑠8
𝑎8 +

𝑠8
𝑎8

9
𝑐8 + 𝑐𝑐8

𝐷#(𝑠8 , 𝑠8:3) =
1
2

𝑠8
𝑠8:3

9
𝐶-- 𝑠8 , 𝑠8:3

𝑠8
𝑠8:3 +

𝑠8
𝑠8:3

9
𝑐-- 𝑠8 , 𝑠8:3 + 𝑐𝑐-- 𝑠8 , 𝑠8:3

𝑣 ↑ 1𝑣 ↓ 0

𝑠8:3 = 𝐹8
𝑠8
𝑎8 + 𝑓8

𝐶-- 𝑠8 , 𝑠8:3 , 𝑐-- 𝑠8 , 𝑠8:3 , 𝑐𝑐-- 𝑠8 , 𝑠8:3

𝐷#(𝑠8 , 𝑠8:3) =
1
2

𝑠8
𝑠8:3

9
𝐶-- 𝑠8 , 𝑠8:3

𝑠8
𝑠8:3 +

𝑠8
𝑠8:3

9
𝑐-- 𝑠8 , 𝑠8:3 + 𝑐𝑐-- 𝑠8 , 𝑠8:3

𝑣 ↑ 1𝑣 ↓ 0

1
2
𝑠8
𝑎8

9
𝐶-; 𝑠8 , 𝑠8:3

𝑠8
𝑎8 +

𝑠8
𝑎8

9
𝑐-; 𝑠8 , 𝑠8:3 + 𝑐𝑐-- 𝑠8 , 𝑠8:3

𝐶8 = 𝐶-; Z𝑠8 , 𝑠8:3

𝑐8 = 𝑐-; Z𝑠8 , 𝑠8:3

𝑐𝑐8 = 𝑐𝑐-- Z𝑠8 , 𝑠8:3



DEALIO

Initialize Linear 
Gaussian  Controller 

𝑝(𝑎|𝑠)

Update Linear 
Gaussian Controller 

𝑝(𝑎|𝑠)

Collect Trajectory 
Samples {𝜏"}

Fit Gaussian 
Dynamics 𝑃(𝑠%|𝑠, 𝑎)

Sampled 
Trajectories {𝜏"}

Demonstration 
Trajectories {𝜏'}

Update 
Discriminator   𝐷#

Extract Cost 
Function 𝑐(𝑠8 , 𝑎8)
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𝐷#(𝑠8 , 𝑠8:3) =
1
2

𝑠8
𝑠8:3

9
𝐶-- 𝑠8 , 𝑠8:3

𝑠8
𝑠8:3 +

𝑠8
𝑠8:3

9
𝑐-- 𝑠8 , 𝑠8:3 + 𝑐𝑐-- 𝑠8 , 𝑠8:3𝑐 𝑠8 , 𝑎8 =

1
2
𝑠8
𝑎8

9
𝐶8

𝑠8
𝑎8 +

𝑠8
𝑎8

9
𝑐8 + 𝑐𝑐8



Experiments

• MuJoCo Simulation Domains:

Disc                      PegInsertion GripperPusher DoorOpening

• Hypothesis:
• DEALIO is able to learn tasks efficiently compared to GAIfO

• DEALIO is able to perform better compared to GAIfO
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Experiments

• Our experiments on MuJoCo show DEALIO is faster in learning and has higher performance compared to GAIfO.
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• PegInsertion:

Demonstration GAIfO DEALIO
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In what ways can autonomous agents learn to imitate experts using 

state-only observations? 

Behavioral Cloning from 
Observation (BCO)

[IJCAI 2018]

Generative Adversarial 
Imitation from Observation 

(GAIFO)
[AAMAS 2019, ICML 

Workshop]

Reinforced Inverse Dynamics 
Modeling (RIDM)
[RAL, IROS 2020]

Data-Efficient Adversarial 
Learning for Imitation from 

Observation (DEALIO)
[Under Review]

Visual Extension of GAIfO
with Self-observation

[ICML Workshop]

Visual Extension of GAIfO
with Proprioceptive Information

[IJCAI 2020]
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Motivation

• Goal:
• Combine “imitation from observation” and “reinforcement learning” to enable learning when:

• The demonstrator is sub-optimal

• Not many demonstration trajectories are available

• Given:
• A single state-only (sub-optimal) demonstration:  𝐷" = 𝑠%"

• A cost function:   𝑐"89
• Learn:
• A policy to perform the task

RL
IfO

IL
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RIDM: Reinforced Inverse Dynamics Modeling

Expert Trajectory
Learner Actual Trajectory

Model Trajectory Correction

M✓(s0, s
e
1) = ã0 M✓(s1, s

e
2) = ã1

s0 = se0

s1

se1

se2

s2
st

set

• Steps:

1. Initialize an inverse dynamics model (IDM)

2. Pre-train the IDM by collecting data using an 
exploration policy

3. Use IDM on the current state of the agent and 
next state of the expert to calculate the next action

4. Execute the action and collect the cost

5. Train the IDM to minimize the cost and go back 
to step 3

47

• RIDM represents a new paradigm for combining IL and RL in that the agent's behavior is 
driven directly by the fixed demonstration trajectory coupled with a parameterized 

inverse dynamics model.

• In RIDM, demonstration is treated as fixed and the RL is to select the IDM that causes 

*attempting* to follow the demonstration to lead to the lowest environmental cost.

𝑠# = 𝑠#"

𝑠&

𝑠%"

𝑠%

𝑠&"

𝑠:

𝑠:"

𝑀# 𝑠1, 𝑠3' = _𝑎0 𝑀# 𝑠3, 𝑠<' = _𝑎1

Expert Trajectory
Learner Actual Trajectory

Model Trajectory Correction

𝑀# 𝑠1, 𝑠3' = _𝑎0
𝑠# = 𝑠#" 𝑀# 𝑠3, 𝑠<' = _𝑎1

𝑠&

𝑠&"

𝑠:

𝑠:"

𝑠%

𝑠%"
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Experiments

• Robot control domains:

• MuJoCo Simulator

• SimSpark Simulator

• UR5 Arm Robot

• Hypothesis:

• RIDM is able to learn tasks efficiently with comparable performance compared to the demonstrator

• If the demonstrator is sub-optimal, RIDM is potentially able to outperform the demonstrator
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Experiments

• Computationally challenging:

• Hopper: 4.5 days

• Nao’s Fast Walk: 2.5 days
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Parallelized Over 50 Machines

2-3 hours each experiment



Experiments: SimSpark Robot Soccer

• Used in 3D Simulation RoboCup

• Developing skills such as walk and kick is challenging

• Tasks:
• Fast Walk

• Long Kick

• Demonstrators:
• FUT-K

• FC Portugal

• Demonstrators are sub-optimal with respect to the designed cost.
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Experiments: SimSpark Robot Soccer

• Our experiments on SimSpark 3D simulator show learned behavior outperforms the suboptimal experts.

• Fast Walk (FUT-K): • Fast Walk (FC Portugal):

Learned
Behavior:

Demo:

Learned
Behavior:

Demo:

• Long Kick (FUT-K): • Long Kick (FC Portugal):

Learned
Behavior:

Demo:Demo:

Learned
Behavior:
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Experiments: UR5 Arm Robot

• Our experiments on UR5 robots show learned behavior outperforms robot’s default PID performance.

• Pushing Task (10x):

Learned BehaviorDefault UR5 PIDDemonstration
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Future Work

• Perception

• Application to Physical Robots

• Fully-intelligent Agents
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Future Work

• Perception Challenges
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Integration of Perception and Control

Embodiment Mismatch Viewpoint Mismatch

CycleGAN [Zhu et al. 2017]

Pix2pix [Isola et al. 2017]

Dual GAN [Yi et al. 2017]

Disco GAN [Kim et al. 2017]

Pose-estimation [Cao et al. 2017,

Wang et al. 2019]

Keypoint Detection



Future Work

• Application to Physical Robots
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Sample-efficiency Safe



Future Work

• Fully-intelligent Agents
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Reinforcement learning Imitation from ObservationImitation Learning



Related Work
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IFO Control Algorithms

Model-based Model-free

Adversarial methods Cost EngineeringInverse Model Forward Model

ILPO [Edwards et al. 2019]

Future Image Similarity 

[Wu et al. 2020]

Self-supervised [Nair et al. 2017]

GSP [Pathak et al. 2018]

BCO* [Robertson et al. 2020]

A hybrid method [Guo et al. 2019]

Third Person [Stadie et al. 2018]

OptionGAN [Henderson et al. 2018]

FAIL [Sun et al. 2019]

IDDM [Yang et al. 2019]

TCN [Sermanet et al. 2018]

IFO [Liu et al. 2020]

TDC [Aytar et al. 2018]

Invariant Feature Space

[Gupta et al. 2017]



Summary

• Area A:
• Equivalency of solving the model-free IfO problem and solving the GANs like optimization problem.

• Area B:
• Implementation of the introduced algorithms.

• Training the models on hundreds of machines.

• Extensive hyperparameter search for each algorithm.

• Area C:
• Modeling the human ability of imitation from observation.

• Application of the developed algorithms to simulated and physical robots.
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