Imitation Learning from Observation

PhD Defense

Faraz Torabi

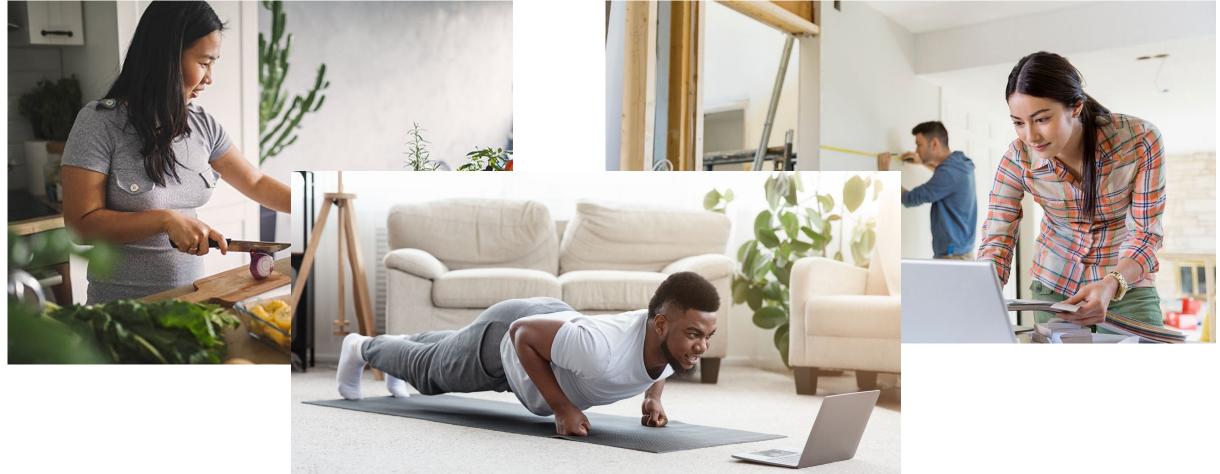
Supervisor: Peter Stone University of Texas at Austin faraztrb@cs.utexas.edu

1

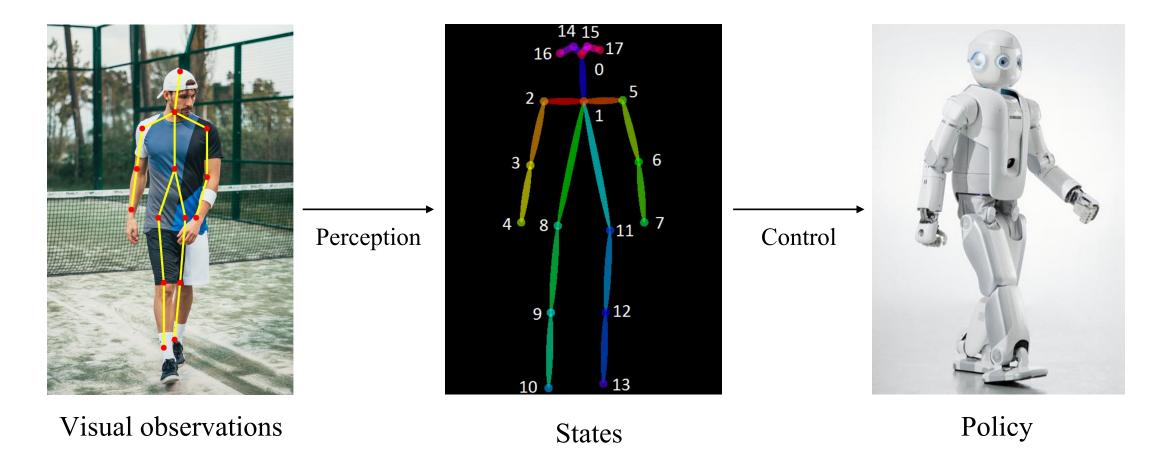
Success of Imitation Learning

Humans Mostly Learn by Observation

Example: Watching YouTube



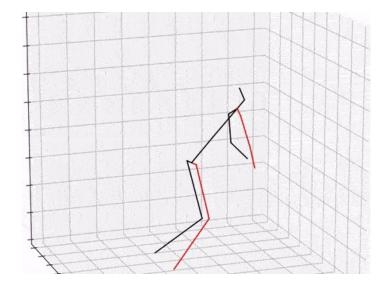
Imitation Learning from Observation



Perception Module

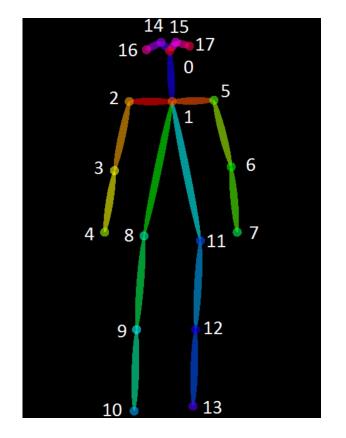
Sensors

Motion Capture



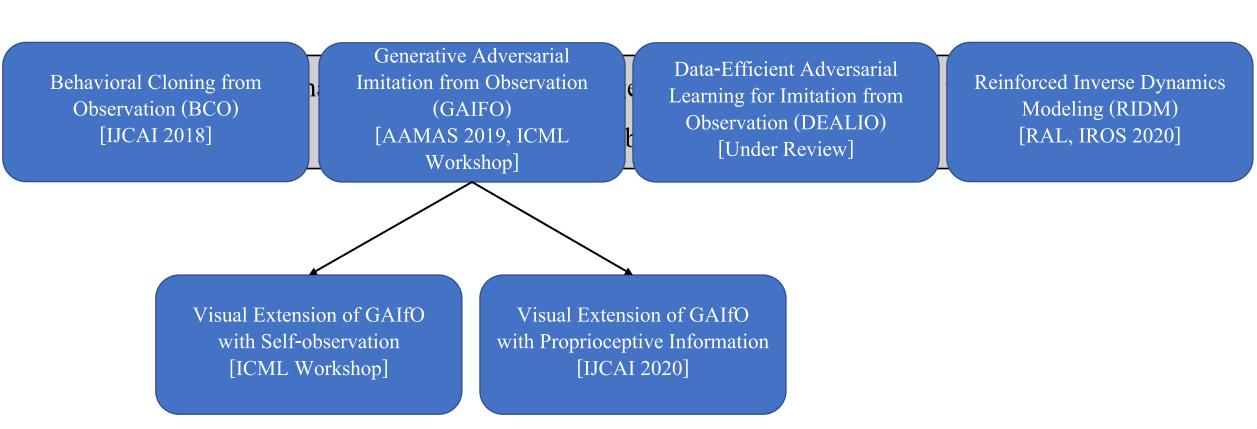
Pose Estimation

Focus of My Research is on the ...



Control

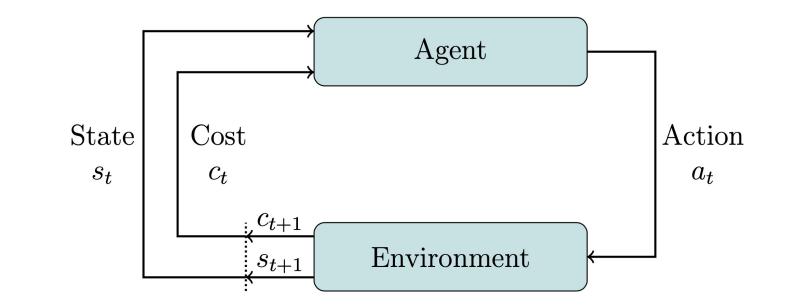
Research Question



Reinforcement Learning

- Goal:
 - Learn how to make decisions by minimizing the cumulative cost feedback.
- *M* = < *S*, *A*, *P*, *c* >
 - S: Set of states
 - A: Set of actions
 - P: Transition function
 - c: Cost function

• Learn a policy $\pi: S \to A$



Reinforcement Learning

- Algorithms:
 - Model-based:
 - Known model (planning): LQR, MCTS, etc.
 - Unknown model: PILQR, PLATO, etc.
 - Model-free:
 - Policy-based: Reinforce, TRPO, PPO, etc.
 - Value-based: SARSA, Q-learning, etc.

Imitation Learning

- Goal:
 - Learn how to make decisions by trying to imitate another agent.
- *M*\c:
 - Provided: $\tau_i^e = \{(s_0^e, a_0^e), (s_0^e, a_0^e), \dots, (s_N^e, a_N^e)\}_i$
 - Learn: $\pi: s_t \to a_t$
- Algorithms:
 - Behavioral Cloning (BC)
 - Inverse Reinforcement Learning (IRL)
 - Adversarial Imitation Learning (AIL)

Imitation Learning

- Observations of other agent (demonstrations) consist of state-action pairs.
- Limitation:
 - Precludes using a la_____

a la

es are not given.

Scott Niekum et al. "Learning and generalization of complex tasks from unstructured demonstrations". In: Intelligent Robots and Systems (IROS), 2012

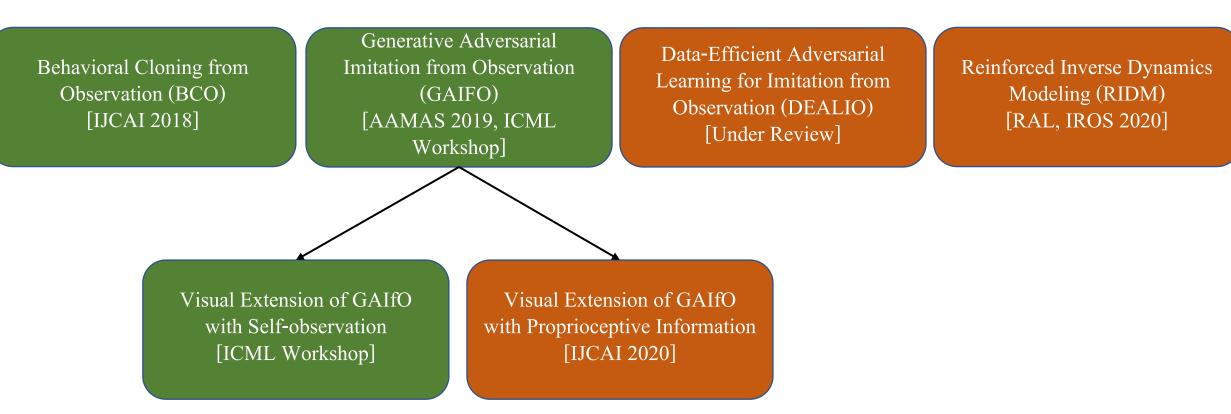
Contated Moetaneing from Observation

• Goal: from state-only demonstrations of

- Learn how to perform a task by visually observing an expert.
- *M*\c:
 - Provided: $\tau_i^e = \{o_0^e, o_1^e, \dots, o_N^e\}_i \ \tau_i^e = \{s_0^e, s_1^e, \dots, s_N^e\}_i$
 - Learn: $\pi: s_t \to a_t$

In what ways can autonomous agents learn to imitate experts using

state-only observations?



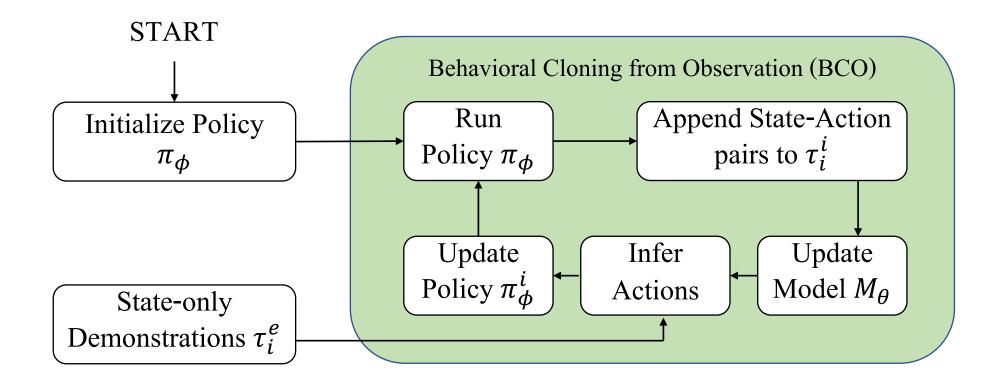
Behavioral Cloning from Observation

• Goal:

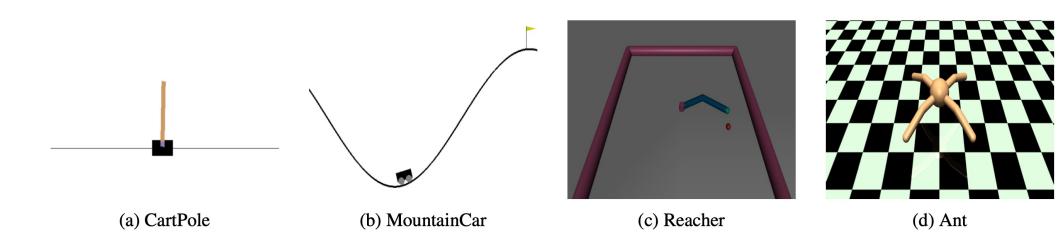
- Propose a *Model-based Algorithm* for Imitation from Observation.
- Imitation Learning (IL): $\tau_i^e = \{(s_0^e, a_0^e), (s_0^e, a_0^e), \dots, (s_N^e, a_N^e)\}_i$
- Imitation from Observation (IfO): $\tau_i^e = \{(s_0^e, ?), (s_1^e, ?), \dots, (s_N^e, ?)\}_i$

A Model-based Approach

Behavioral Cloning from Observation



• Tasks:



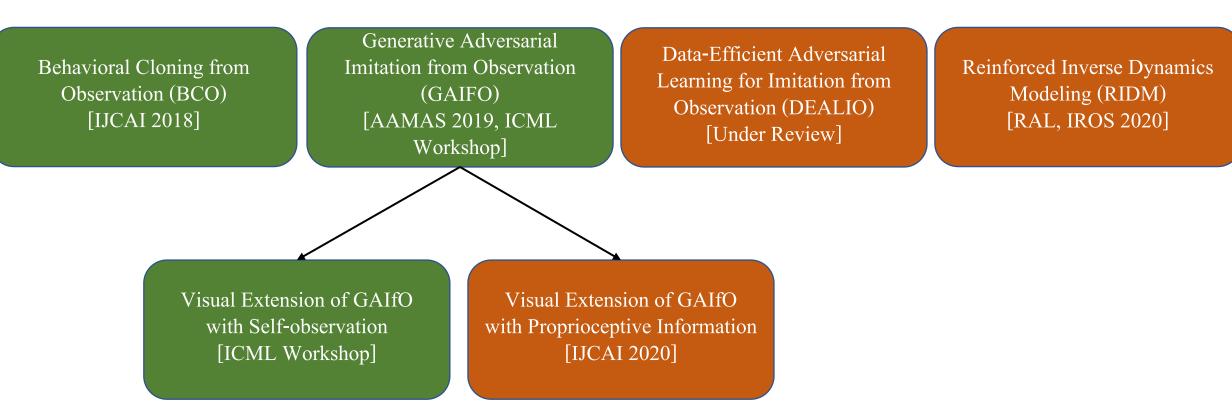
Ant 1.0 Final Avg Normalized Score -1.0-1.5 10 15 20 5 GAIL --- Random Number of demonstrated trajectories BCO(0) - Expert BC FEM

• Ant

25

In what ways can autonomous agents learn to imitate experts using

state-only observations?



Generative Adversarial Imitation from Observation

• Goal:

- Propose a *Model-free Algorithm* for Imitation from Observation.
- IfO problem:

$$RL \circ IRLfO_{\psi}(\pi^{e}) = \operatorname*{argmin}_{\pi \in \prod} \operatorname*{argmax}_{c \in R^{S \times S}} - \psi(c) + (\min_{\pi \in \prod} E_{\pi}[c(s,s')]) - E_{\pi^{e}}[c(s,s')]$$

• Which is a composition of:

• It is equivalent to solving:

 $\underset{\pi \in \prod}{\operatorname{argmin}} \underset{D \in (0,T)}{\operatorname{argmin}} \underset{s \in [0,T)}{\operatorname{argmin}} \underset{s \in [0$

- c(s, s'): Cost as a function of state transition
- π^e : Expert policy
- \prod : Set of all possible policies
- $\psi(c)$: Regularizer

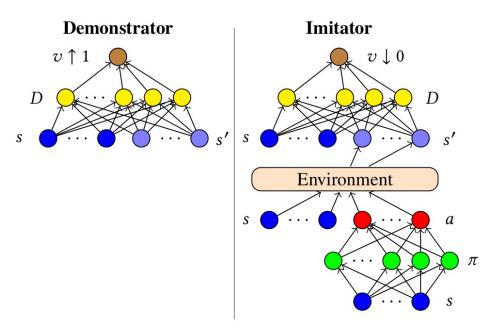
Generative Adversarial Imitation from Observation

- Algorithm:
 - Initialize π_{ϕ} and D_{θ}
 - While π_{ϕ} improves do:
 - Execute π_{ϕ} and store state transitions $\tau_i^i = \{(s^i)\}_i$
 - Update D_{θ} using loss:

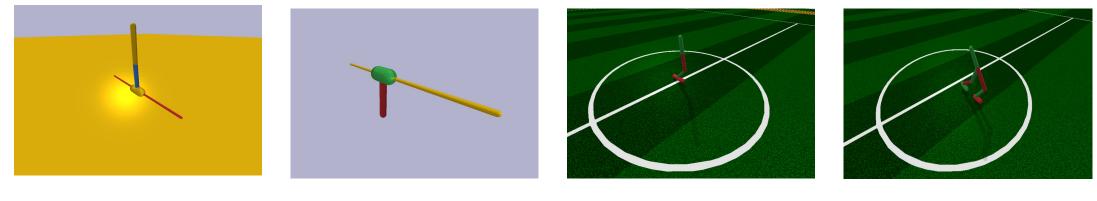
 $-(E_{\pi}\left[\log(D(s,s'))\right] + E_{\pi^{e}}\left[\log(1 - D(s,s'))\right])$

• Update π_{ϕ} by performing TRPO updates with cost function:

 $E_{\pi}\left[\log(D(s,s'))\right]$



• Tasks:

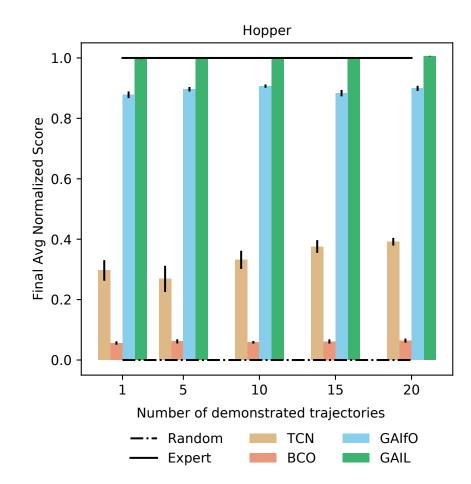


InvertedDoublePendulum

InvertedPendulumSwingup

Hopper

Walker2D



• Hopper:

Theoretical Contribution

• IfO problem:

 $RL \circ IRLfO_{\psi}(\pi^{e}) = \operatorname*{argmin}_{\pi \in \prod} \operatorname*{argmax}_{c \in R^{S \times S}} - \psi(c) + (\min_{\pi \in \prod} E_{\pi}[c(s,s')]) - E_{\pi^{e}}[c(s,s')]$

• Equivalent to:

Difficult to Solve $\underset{\pi \in \prod \ D \in (0,1)^{S \times S}}{\text{Difficult to Solve}} E_{\pi}[\log(D(s,s'))] + E_{\pi^{e}}[\log(1 - D(s,s'))]$

How are they equivalent?

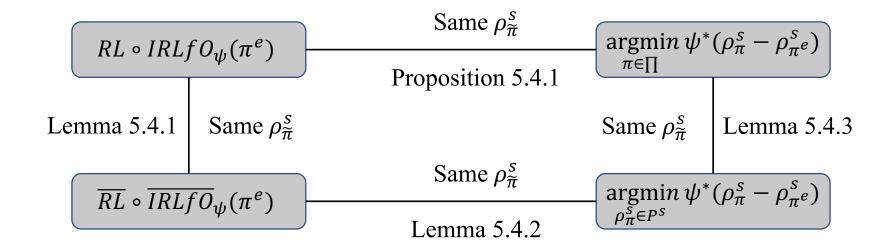
Proposition 5.4.1. *RL* \circ *IRLf* $O_{\psi}(\pi^{e})$ and $\underset{\pi \in \prod}{\operatorname{argmin}} \psi^{*}(\rho_{\pi}^{s} - \rho_{\pi^{e}}^{s})$ induce policies that have the same state transition occupancy measure, ρ_{π}^{s} .

Where $\rho_{\pi}^{s}(s_{i}, s_{j}) = \sum_{a} P(s_{j}|s_{i}, a)\pi(a|s_{i})\sum_{t=0}^{\infty} \gamma^{t}P(s_{t}=s_{i}|\pi)$

Proposition 5.4.1. $RL \circ IRLfO_{\psi}(\pi^e)$ and $\underset{\pi \in \prod}{\operatorname{argmin}} \psi^*(\rho_{\pi}^s - \rho_{\pi^e}^s)$ induce policies that have the same state transition occupancy measure, ρ_{π}^s .

$$RL \circ IRLfO_{\psi}(\pi^{e}) = \underset{r \in \Pi}{\operatorname{argmin}} \underset{c \in R^{S \times S}}{\operatorname{argmin}} - \psi(c) + (\underset{\pi \in \Pi}{\min} E_{\pi}[c(s,s')]) - E_{\pi^{e}}[c(s,s')]$$
$$\overline{RL} \circ \overline{IRLfO}_{\psi}(\pi^{e}) = \underset{\rho_{\pi}^{S} \in P^{S}}{\operatorname{argmin}} \underset{c \in R^{S \times S}}{\operatorname{argmin}} - \psi(c) + (\underset{\rho_{\pi}^{S} \in P^{S}}{\min} \sum_{s,s'} \rho_{\pi}^{s}(s,s')c(s,s')) - \sum_{s,s'} \rho_{\pi^{e}}^{s}(s,s')c(s,s')$$

Proof:



Theoretical Contribution

• New IfO problem:

 $\underset{\pi\in\prod}{\operatorname{argmin}}\,\psi^*(\rho_{\pi}^s-\rho_{\pi}^s)$

• Specifying ψ :

 $\psi(c) = \begin{cases} E_{\pi^e}[g(c(s,s'))] & \text{if } c < 0 \\ +\infty & \text{otherwise} \end{cases} \quad \text{where} \quad g(x) = \begin{cases} -x - \log(1 - e^x) & \text{if } x < 0 \\ +\infty & \text{otherwise} \end{cases}$

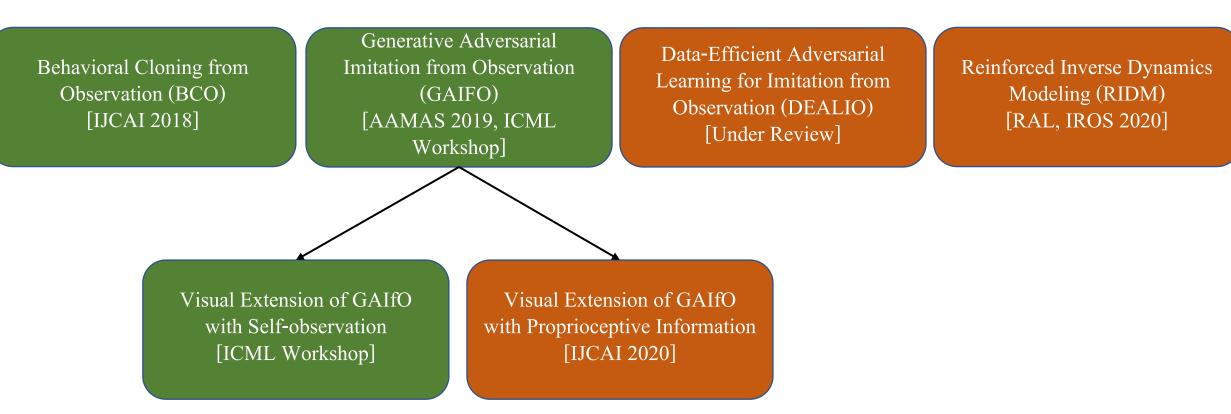
• The optimization problem becomes [proposition A.1.1]:

$$\underset{\pi \in \prod}{\operatorname{argmax}} \operatorname{argmax}_{D \in (0,1)^{S \times S}} E_{\pi} \left[\log (D(s,s')) \right] + E_{\pi^{e}} \left[\log (1 - D(s,s')) \right]$$

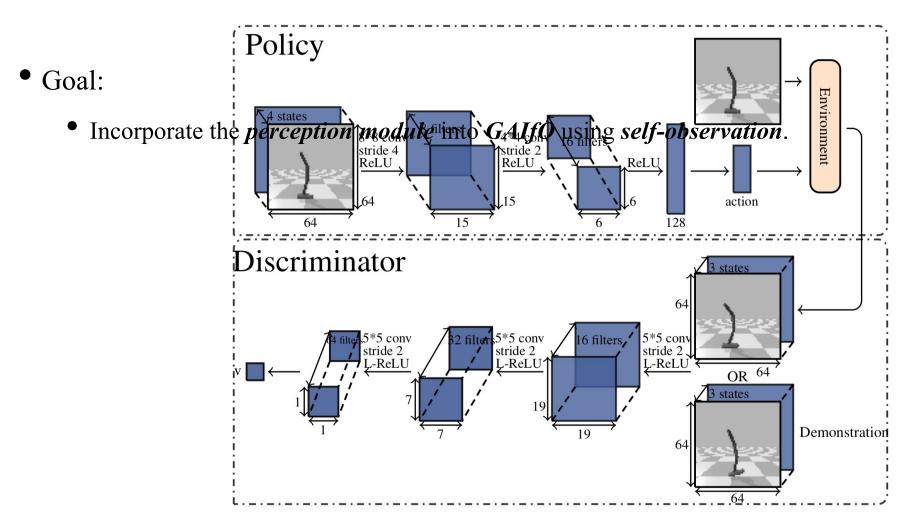
Similar to the Generative Adversarial Loss

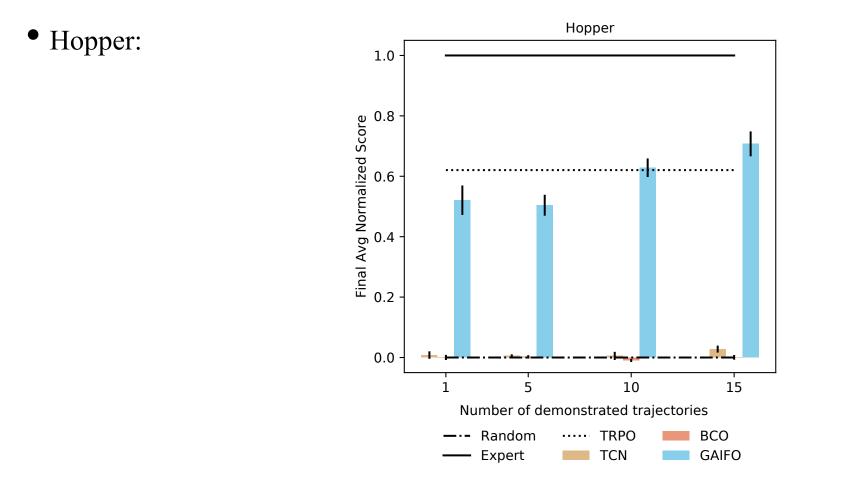
In what ways can autonomous agents learn to imitate experts using

state-only observations?



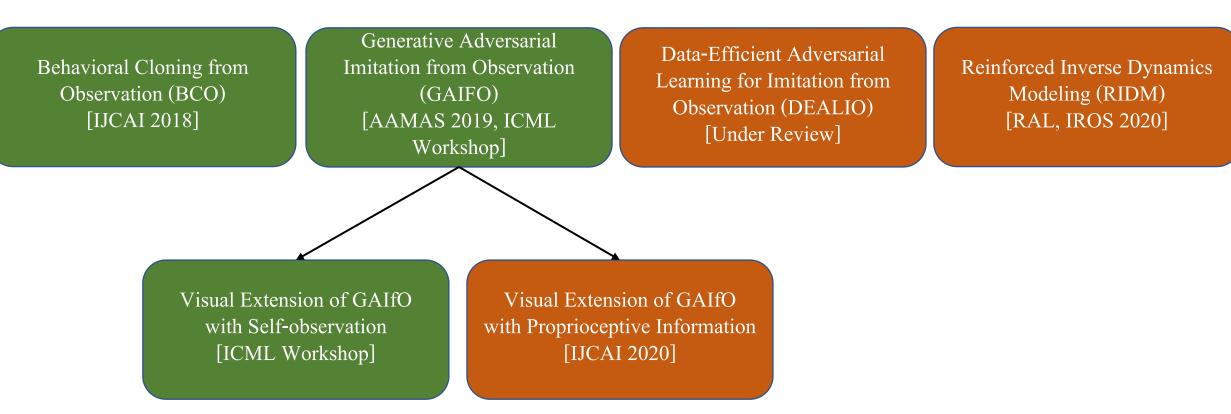
GAIfO with Self-observation





In what ways can autonomous agents learn to imitate experts using

state-only observations?



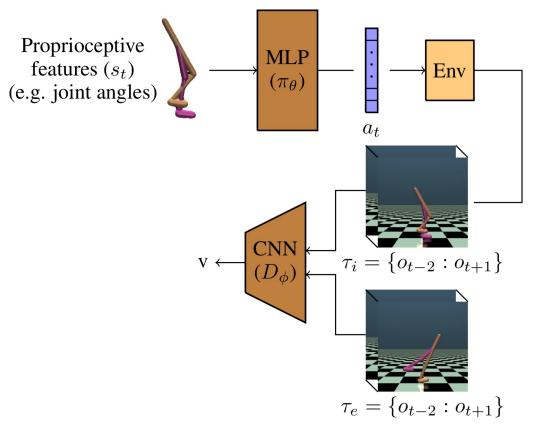
GAIfO with Proprioceptive Information

- Goal:
 - To improve the *performance* and *sample-complexity* of *GAIfO with self-observation*.
- Hypothesis:

Leveraging *proprioceptive information* will help with both issues

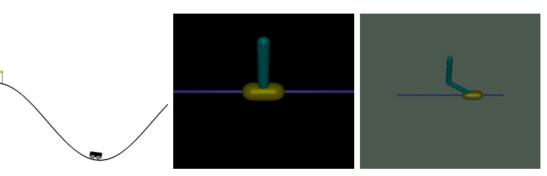
GAIfO with Proprioceptive Information

- Propose an algorithm that uses both proprioceptive and visual information in order to:
 - Improver performance
 - Improve sample complexity

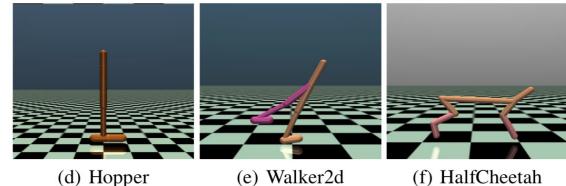


Tasks: •

- OpenAI Gym Environments
- Visual Demonstrations:
 - 64*64 grayscale frames



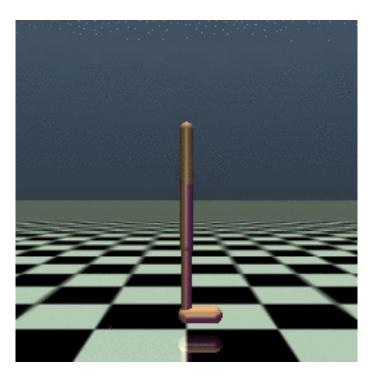
(a) MountainCarCon- (b) InvertedPendulum (c) InvertedDoublePendulum tinuous



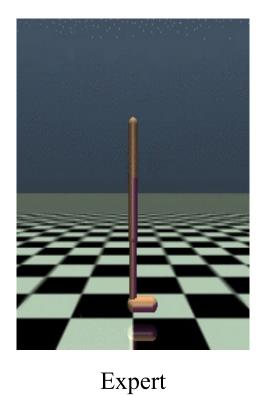
(d) Hopper

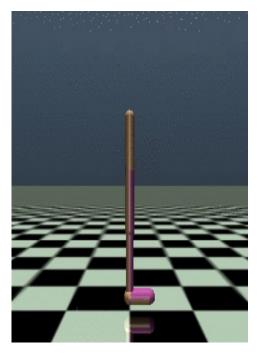
(f) HalfCheetah

• Walker2D Expert:

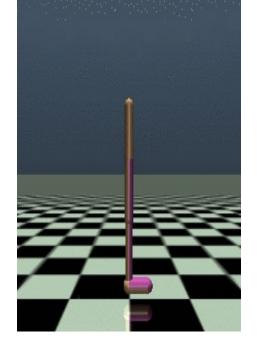


• Walker2D

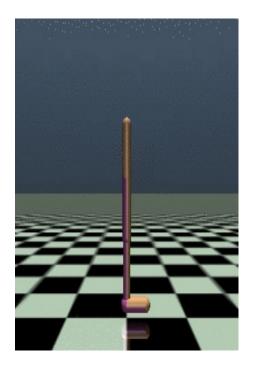




Iteration 0

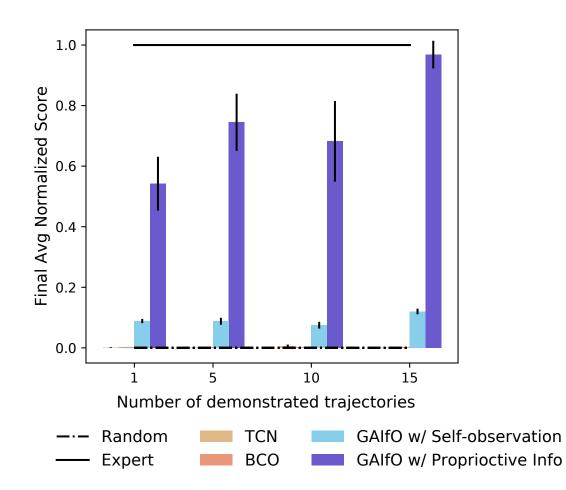


Iteration 100



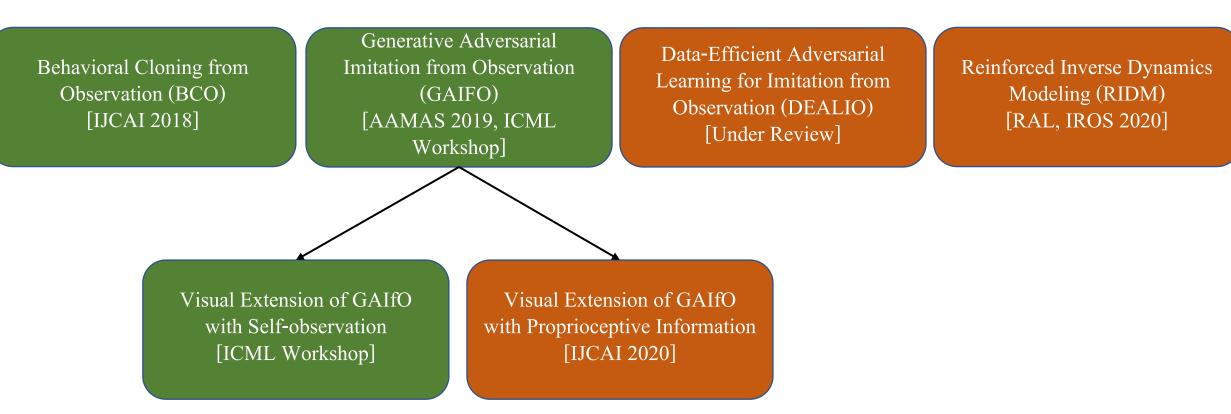
Iteration 1942

• Walker2D



In what ways can autonomous agents learn to imitate experts using

state-only observations?



Motivation

- Goal:
 - Improve *sample complexity* of *GAIfO* to enable *application on physical robots*.
- Integrating
 - Sample-efficient RL updates from PILQR [1] with
 - High-performing GAIfO algorithm for IfO.

[1] Chebotar, Yevgen, et al. "Combining model-based and model-free updates for trajectory-centric reinforcement learning." International conference on machine learning. PMLR, 2017.

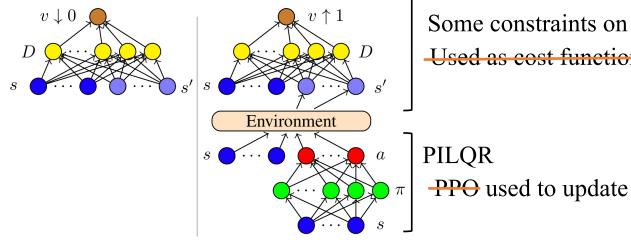
PILQR

• Combines:

- iterative Linear Quadratic Regulator (iLQR)
- And, Path Integral Policy Improvement (PI²)
- iLQR constraints:

 - Linear dynamics $s_{t+1} = F_t \begin{bmatrix} s_t \\ a_t \end{bmatrix} + f_t$ Quadratic cost function $c(s_t, a_t) = \frac{1}{2} \begin{bmatrix} s_t \\ a_t \end{bmatrix}^T C_t \begin{bmatrix} s_t \\ a_t \end{bmatrix} + \begin{bmatrix} s_t \\ a_t \end{bmatrix}^T c_t$
- PILQR:
 - Twice differentiable-cost function
 - iLQR on quadratic approximation of the cost
 - PI^2 policy update on the residual cost
 - Returns a Gaussian controller p(a|s)

GAIFO DEALIO



Demonstrator

Some constraints on the cost Used as cost function

Twice-differentiable

A function of both states and actions

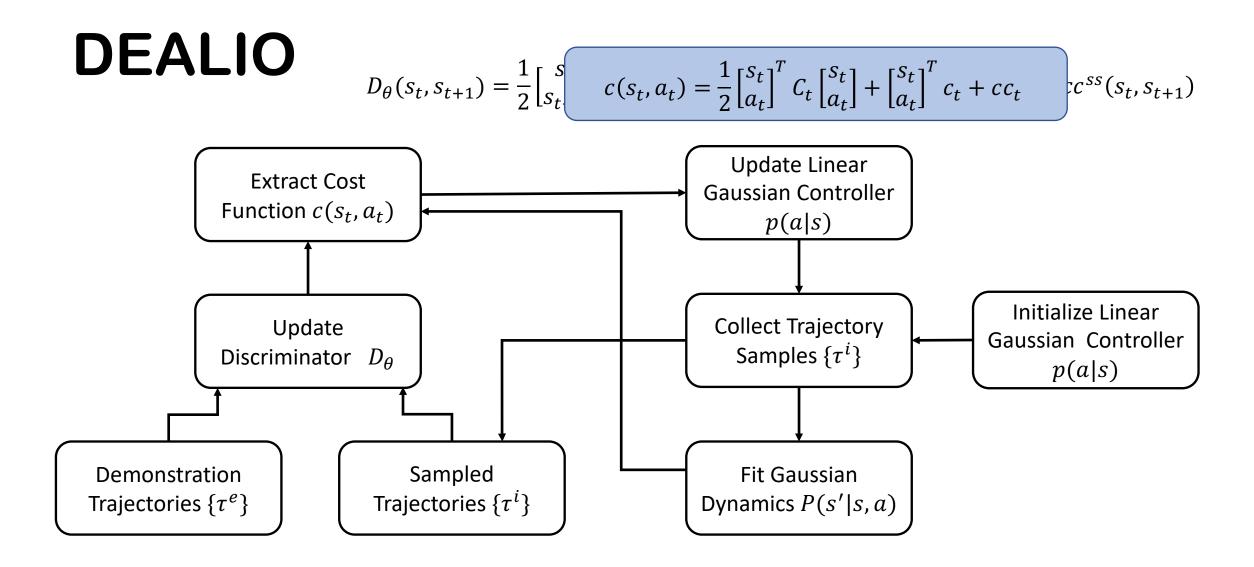
We consider:

$$c(s_t, a_t) = \frac{1}{2} \begin{bmatrix} s_t \\ a_t \end{bmatrix}^T C_t \begin{bmatrix} s_t \\ a_t \end{bmatrix} + \begin{bmatrix} s_t \\ a_t \end{bmatrix}^T c_t + cc_t$$

Quadratic approximation

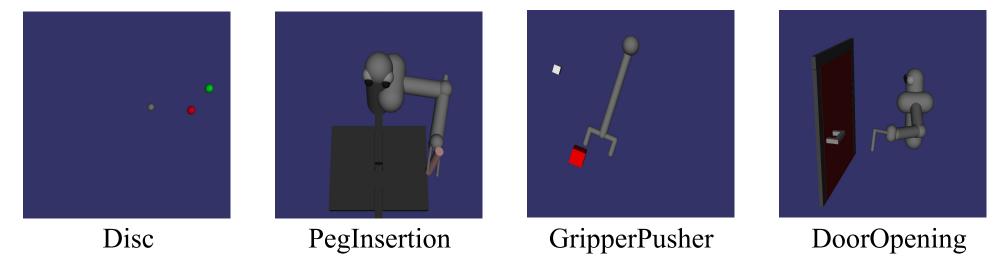
DEALIO

$$c(s_t, a_t) = \frac{1}{2} \begin{bmatrix} s_t \\ a_t \end{bmatrix}^T C_t \begin{bmatrix} s_t \\ a_t \end{bmatrix} + \begin{bmatrix} s_t \\ a_t \end{bmatrix}^T c_t + cc_t$$



Experiments

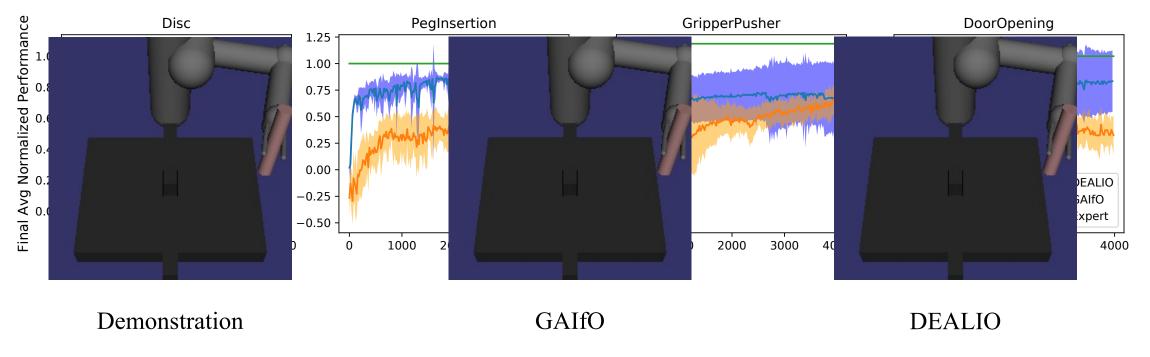
• MuJoCo Simulation Domains:



- Hypothesis:
 - DEALIO is able to learn tasks efficiently compared to GAIfO
 - DEALIO is able to perform better compared to GAIfO

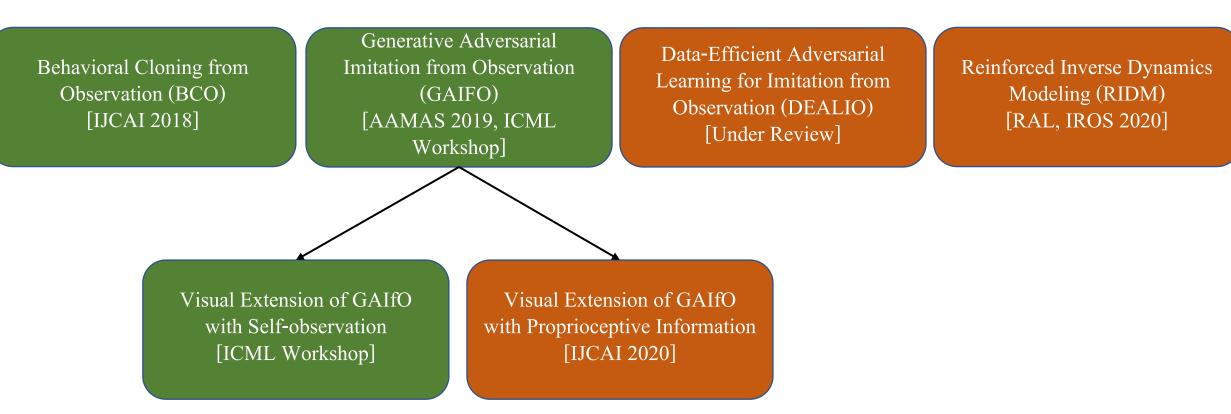
Experiments

- Our experiments on MuJoCo show DEALIO is faster in learning and has higher performance compared to GAIfO.
- PegInsertion:



In what ways can autonomous agents learn to imitate experts using

state-only observations?



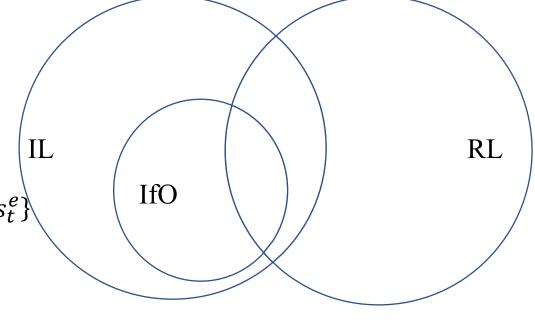
Motivation

• Goal:

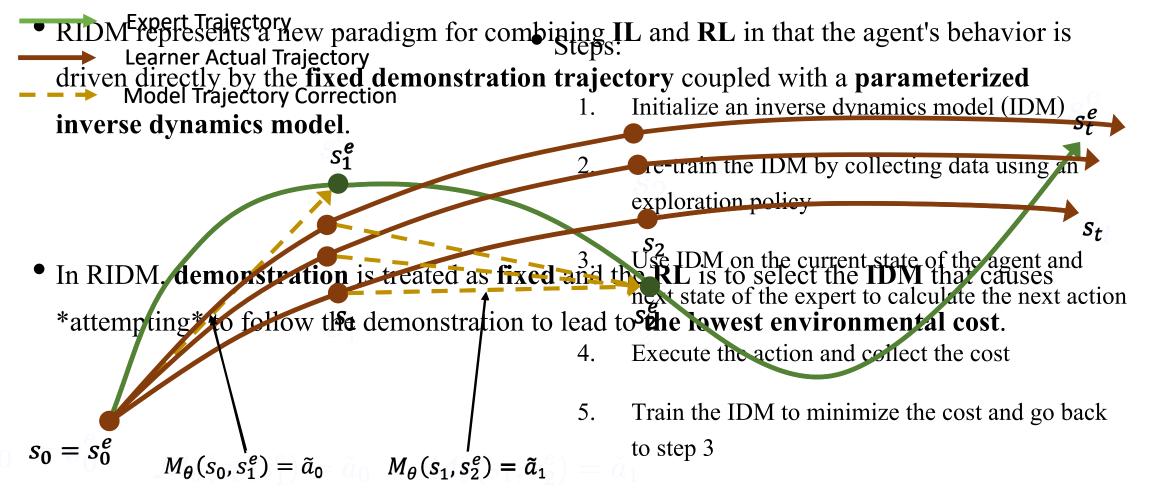
- Combine "**imitation from observation**" and "**reinforcement learning**" to enable learning when:
 - The demonstrator is sub-optimal
 - Not many demonstration trajectories are available

• Given:

- A single state-only (sub-optimal) demonstration: $D^e = \{s_t^e\}$
- A cost function: C_{env}
- Learn:
 - A policy to perform the task

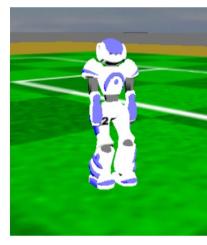


RIDM: Reinforced Inverse Dynamics Modeling



Experiments

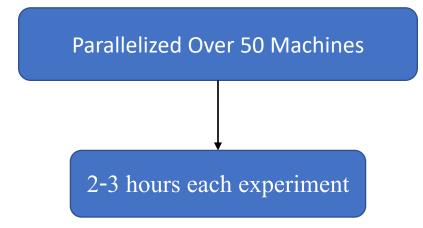
- Robot control domains:
 - MuJoCo Simulator
 - SimSpark Simulator
 - UR5 Arm Robot
- Hypothesis:



- RIDM is able to learn tasks efficiently with comparable performance compared to the demonstrator
- If the demonstrator is sub-optimal, RIDM is potentially able to outperform the demonstrator

Experiments

- Computationally challenging:
 - Hopper: 4.5 days
 - Nao's Fast Walk: 2.5 days



Experiments: SimSpark Robot Soccer

- Used in 3D Simulation RoboCup
- Developing skills such as walk and kick is challenging
- Tasks:
 - Fast Walk
 - Long Kick
- Demonstrators:
 - FUT-K
 - FC Portugal
- Demonstrators are sub-optimal with respect to the designed cost.

Experiments: SimSpark Robot Soccer

- Our experiments on SimSpark 3D simulator show learned behavior outperforms the suboptimal experts.
- EastgVKailkk((FUII-KK)):

• EostgVKabk ((FC Pontugal)):

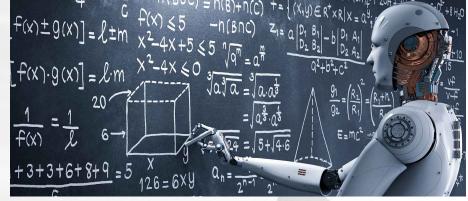
Experiments: UR5 Arm Robot

- Our experiments on UR5 robots show learned behavior outperforms robot's default PID performance.
- Pushing Task (10x):

Default UR5 PID Imitation Learning from Observation

Learned Behavior

- Perception
- Application to Physical Robots
- Fully-intelligent Agents



• Perception Challenges

Integration of Perception and Control

Embodiment Mismatch

CycleGAN [Zhu et al. 2017] Pix2pix [Isola et al. 2017] Dual GAN [Yi et al. 2017] Disco GAN [Kim et al. 2017] Viewpoint Mismatch

Pose-estimation [Cao et al. 2017, Wang et al. 2019]

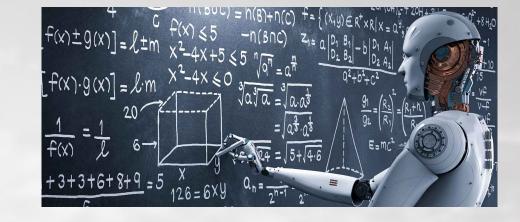
Keypoint Detection

• Application to Physical Robots

Sample-efficiency

Safe

• Fully-intelligent Agents

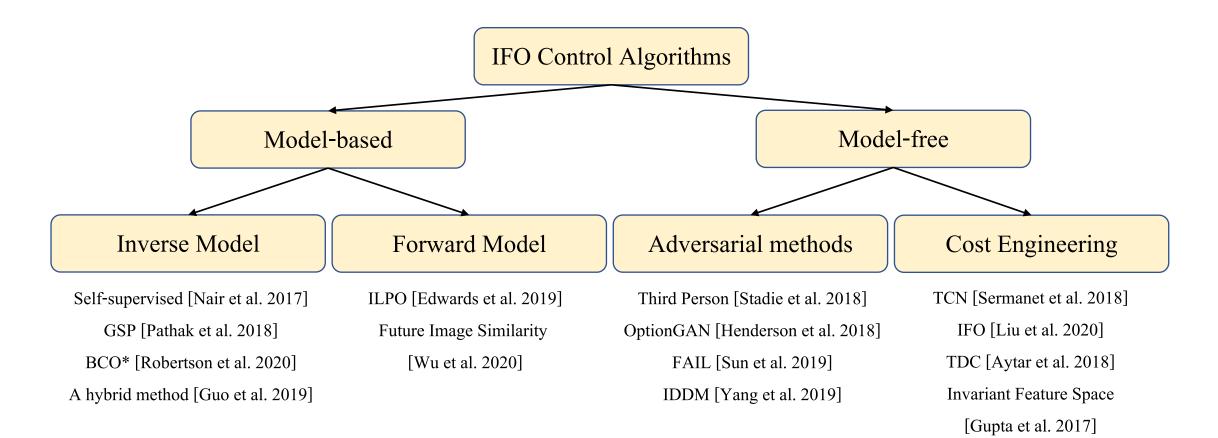


Reinforcement learning

Imitation Learning

Imitation from Observation

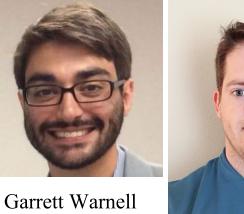
Related Work



Summary

- Area A:
 - Equivalency of solving the model-free IfO problem and solving the GANs like optimization problem.
- Area B:
 - Implementation of the introduced algorithms.
 - Training the models on hundreds of machines.
 - Extensive hyperparameter search for each algorithm.
- Area C:
 - Modeling the human ability of imitation from observation.
 - Application of the developed algorithms to simulated and physical robots.

Acknowledgements



Peter Stone

Patrick MacAlpine

Josiah Hanna

Brahma Pavse

Sean Geiger Ruohan Zhang

In what ways can autonomous agents learn to imitate experts using state-only observations? Demonstrator Imitator Update Extract Cost Function Controller $v \downarrow 0$ $v \uparrow 1$ $c(s_t, a_t)$ START p(a|s)Behavioral Cloning from Observation $(BCO(\alpha))$ $\cdots \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ expert trajectory Initialize Policy Run Append State-Action Update Discriminator Collect s_2 π_{ϕ} Policy π_{ϕ} pairs to $\{\tau_i^i\}$ earner actual trajectory $D_{\theta} = h \circ q_{\theta}$ Trajectory s_1^e Samples Environment $\{\tau^i\}$ model trajectory correction Update Infer Update Sampled policy π^i_{ϕ} Expert model \mathcal{M}_{θ} Actions Fit State-only Trajectories Demonstration Gaussian D^e $\{\tau^i\}$ Demonstrations DDynamics $s_0 = s_0^{\circ}$ $\mathcal{M}_{\theta}(s_1, s_2^e) = \widetilde{a_1}$ P(s'|s, a)GAIfO PILQR Data-Efficient Adversarial Learning Behavioral Cloning from Observation Generative Adversarial Imitation from **Reinforced Inverse Dynamics** for Imitation from Observation Modeling (RIDM) (BCO) **Observation (GAIFO)** (DEALIO) [IJCAI 2018] [AAMAS 2019, ICML Workshop] [RAL, IROS 2020] [Under Review] Policy Proprioceptive features (s_t) (e.g. joint angles) Visual Extension of GAIfO with Self-Visual Extension of GAIfO with observation **Proprioceptive Information** Discriminator [ICML Workshop] [IJCAI 2020] $\tau_i = \{o_{t-2} : o_{t+1}\}$ Demonstration $\tau_e = \{o_{t-2} : o_{t+1}\}$ 4/26/21 60 Imitation Learning from Observation