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Advances in robotics have resulted in increases both in the availability

of robots and also their complexity—a situation that necessitates automating

both the execution and acquisition of robot behaviors. For this purpose, multi-

ple machine learning frameworks have been proposed, including reinforcement

learning and imitation learning. Imitation learning in particular has the ad-

vantage of not requiring a human engineer to attempt the difficult process of

cost function design necessary in reinforcement learning. Moreover, compared

to reinforcement learning, imitation learning typically requires less exploration

time before an acceptable behavior is learned. These advantages exist because,

in the framework of imitation learning, a learning agent has access to an expert

agent that demonstrates how a task should be performed. Broadly speaking,

this framework has a limiting constraint in that it requires the learner to have

access not only to the states (e.g., observable quantities such as spatial loca-

tion) of the expert, but also to its actions (e.g., internal control signals such

vi



as motor commands). This constraint is limiting in the sense that it prevents

the agent from taking advantage of potentially rich demonstration resources

that do not contain action information, e.g., YouTube videos. To alleviate

this restriction, Imitation Learning from Observation (IfO) has recently been

introduced as an imitation learning framework that explicitly seeks to learn

behaviors by observing state-only expert demonstrations.

The IfO problem has two main components: (1) perception of the

demonstrations, and (2) learning a control policy. This thesis focuses primar-

ily on the second component, and introduces multiple algorithms to solve the

control aspect of the problem. Each of the proposed algorithms has certain

advantages and disadvantages over the others in terms of performance, stabil-

ity and sample complexity. Moreover, some of the algorithms are model-based

(i.e., a model of the dynamics of the environment is learned in the imitation

learning process), and some are model-free. In general, model-based algo-

rithms are more sample-efficient, whereas model-free algorithms are known for

their performance. Though the focus of this thesis is on the control aspect of

IfO , two algorithms are introduced that do integrate a perception module into

one of the control algorithms. By doing so, the adaptability of that control

algorithm to the general IfO problem is shown.

The work in this thesis is evaluated primarily in simulation, though

in some cases experiments were carried out using real-world robots as well.

The performance of the proposed algorithms is compared against well-known

baselines and it is shown that they outperform the baselines in most cases.
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Chapter 1

Introduction

As the number and availability of robots increases, it is becoming more

and more vital that they be able to exhibit at least basic levels of autonomy.

Driven by decreasing production costs, we are now starting to see the be-

ginnings of a dramatic increase in the number of robots being deployed in a

number of application areas. For example, it is estimated that sales of indus-

trial robots reached a record of 380, 550 in 2017, 29% higher than the previous

year.1 While the number of robots is increasing, we do not expect the number

of human controllers to scale accordingly, and so the ratio of people available to

control the robots is decreasing. Therefore, with this increase in the numbers

of robots that exhibit increasing diversity in capability, and the subsequent

decrease in the ratio of people available to control these robots, it is becoming

more and more vital that we devise general schemes that enable these robots

to act and learn tasks autonomously.

Recent advances in technology have enabled robot manufacturers to

produce more complex and sophisticated types of robots that are capable of

performing many different types of tasks. As humans are prone to mistakes,

1https://www.businesswire.com/news/home/20180621005453/en/IFR%C2%A0Industrial-
Robot-Sales-Increase-Worldwide-29-Percent/
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letting them control these sophisticated robots may result in disaster. One

well-studied way in which artificially-intelligent agents are currently able to

learn to perform tasks autonomously is via reinforcement learning (RL) [128]

techniques. Using these techniques, if agents are able to interact with the

world and receive feedback (known as reward) based on how well they are

performing with respect to a particular task, they are able to use their own

experience to improve their future behavior. However, designing a proper

feedback mechanism for complex tasks can sometimes prove to be extremely

difficult for system designers. Moreover, learning based solely on one’s own

experience can be exceedingly slow.

Concerns such as the ones above have given rise to the study of im-

itation learning [112, 12, 3], where agents, instead, attempt to learn a task

by observing another, more expert agent perform that task. Because the in-

formation about how to perform the task is communicated to the imitating

agent via a demonstration, this paradigm does not require the explicit design

of a reward function. Furthermore, because the demonstrations directly pro-

vide rich information regarding how to perform the task correctly, imitation

learning typically learns faster (less exploration) than RL. Imitation learning

methods have been used to successfully learn a variety of tasks such as navi-

gation for quadrotors [38] and autonomous ground vehicles [14], and in-home

service robots [33].

Importantly, most of the imitation learning literature has thus far con-

centrated only on situations in which the imitator not only has the ability to
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observe the demonstrating agent’s states (e.g., observable quantities such as

spatial location), but also the ability to observe the demonstrator’s actions

(e.g., internal control signals such as motor commands). While this extra in-

formation can make the imitation learning problem easier, requiring it is also

limiting. In particular, requiring action observations makes a large number of

valuable learning resources – e.g., vast quantities of online videos of humans

performing different tasks [158] – useless. For the demonstrations present in

such resources, the actions of the expert are unknown. This limitation has

recently motivated increased interest in the area of imitation from observa-

tion (IfO) [125, 77], in which agents seek to perform imitation learning using

state-only demonstrations.

It is worth mentioning that this idea of imitation learning from observa-

tional data is extremely intuitive to most people. Humans and other animals

have a natural ability to learn skills from observation, i.e., seeing the effects

of these skills without direct knowledge of the underlying actions being taken.

For example, after observing an actor doing a jumping jack, a human child

can typically imitate this behavior despite not knowing anything about what’s

going on inside the actor’s brain and nervous system. The main focus of this

thesis is extending this ability to artificial autonomous agents.

Imitation learning from observation is especially relevant now due to the

rise of deep learning and increasing number of freely-accessible online videos.

As an example, 300 hours of video are uploaded to YouTube every minute2,

2http://videonitch.com/2017/12/13/36-mind-blowing-youtube-facts-figures-statistics-
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many of which include diverse types of tasks being performed. At the same

time, recent breakthroughs in visual recognition due to advances in computa-

tional capability and deep learning have resulted in advanced techniques for

object detection [159, 134], semantic segmentation [157, 60], etc. Take, for

example, recent advances in pose estimation [89, 23, 22, 126], where previous

approaches necessitated the use of extra equipment such as motion capture

suits. New algorithms—based on deep learning—can extract skeletal joint

positions from pictures or videos of people alone, allowing the community to

extract rich information from existing video in which subjects were not outfit-

ted with special equipment. The availability and accuracy of these tools has

made it possible to study visual imitation in new ways.

The imitation learning from observation problem can be decomposed

into two main components: (1) perception of the demonstrations, and (2)

learning an autonomous control policy. While extensive current work can be

directly applied to the perception part of the problem [110, 42, 126], there

remains much work to be done to address the control component. The bulk of

this thesis is concerned with new algorithms for this particular control problem;

however, in some cases, the perception problem is also considered in the course

of integration so as to demonstrate the overall capability of imitation from raw

video inputs.

2017-re-post/
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1.1 Research Question

The goal of this thesis research is to answer the following question:

In what ways can autonomous agents learn to imitate experts using state-only
observations?

More specifically, this thesis is focused on developing algorithms for

imitation learning from observation. As a means by which to answer this

question, this thesis focuses on developing and evaluating two sets of new

algorithms for learning controllers in the course of imitation from observation.

One set of algorithms can be characterized as model-based, in which a model

of the environment must be learned during the process of imitation. The

other set of introduced algorithms can be characterized as model-free, where

the agent attempts to directly imitate the demonstrator without learning any

explicit model.

1.2 Contributions

This thesis provides the following contributions:

1. One model-free algorithm for imitation learning from observa-

tion, and two extensions: Model-free algorithms directly learn tasks

without having explicit access to—or a learned model of—the environ-

ment. In this thesis, a model-free algorithm for imitation learning from

observation, called Generative Adversarial Imitation from Observation
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(GAIfO), is introduced (Chapter 5). Furthermore, two extensions of

this algorithm are presented, allowing the approach to imitate directly

from visual data (Chapter 6).

2. Three model-based algorithms for imitation learning from ob-

servation: Model-based algorithms are the algorithms that, during the

process of task learning, rely upon a model of the environment. This

model could either be known or learned. In this thesis, three model-

based algorithms for imitation learning from observation are introduced:

Behavioral Cloning from Observation (BCO) – introduced in Chapter 4 –

Reinforced Inverse Dynamics Modeling (RIDM ) – introduced in Chapter

7 – Data-Efficient Adversarial Learning for Imitation from Observation

(DEALIO) – introduced in Chapter 8.

3. Theory on applicability of the introduced model-free algorithm:

In this thesis, theoretical results that establish the applicability of GAIfO to

the general model-free imitation from observation framework formulation

are presented.

4. Empirical evaluation of the developed algorithms on problems

both in simulation and in the real world: In this thesis, all of the

algorithms are thoroughly tested either in simulation, in the real world,

or both, and the performance of the algorithms is compared against

well-known baselines.
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Chapter 2: Preliminaries

Reinforcement Learning

Imitation Learning Learning

Chapter 4: Behavioral
Cloning from Observation

Chapter 5: Generative
Adversarial Imitation from

Observation

Chapter 8: Data-Efficient
Adversarial Learning for

Imitation from Observation

Chapter 7: Reinforced
Inverse Dynamics Modeling

Chapter 6: Adversarial
Imitation Learning from

Video

Figure 1.1: A block diagram showing the dependencies of the chapters to each
other. The arrow shows the direction of the order in which the chapters should
be read.

1.3 Dissertation Overview

The remainder of this document is organized as follows (for the ease of

navigation, a flow chart of the dependencies of the chapters of this thesis is

shown in Figure 1.1):

• Chapter 2 - Preliminaries: This chapter provides the notation and

background information required for understanding subsequent chapters.

It gives an overview of model-based reinforcement learning that is neces-

sary for Chapter 8. It also provides background information about two

categories of imitation learning algorithms: 1) behavioral cloning which

is required for understanding Chapter 4, and 2) inverse reinforcement
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learning which is needed for Chapters 5, 6 and 8.

• Chapter 3 - Problem Definition: This chapter defines the problem of

imitation learning from observation and formulates it with the notation

provided in Section 2.

• Chapter 4 - Behavioral Cloning from Observation: A model-based

algorithm, Behavioral Cloning from Observation (BCO), is introduced

and studied, where missing actions are first inferred from state observa-

tions and then a policy is learned using both the states and inferred ac-

tions. This algorithm partially addresses Contribution 2. Furthermore,

this algorithm is evaluated in multiple MuJoCo domains to partially

cover Contribution 4.

• Chapter 5 - Generative Adversarial Imitation from Observa-

tion: This chapter first proposes a formulation of a general model-free

framework for imitation from observation and then, introduces a specific

model-free algorithm, Generative Adversarial Imitation from Observa-

tion (GAIfO), to partially address Contribution 1. The approach en-

courages the imitator’s state transition distribution to match that of the

demonstrator. The theory of the derivation of this algorithm from the

introduced model-free framework is presented to address Contribution 3.

The algorithm is also evaluated in multiple MuJoCo domains to partially

cover Contribution 4.
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• Chapter 6 - Adversarial Imitation Learning from Video: Two

extensions of GAIfO that incorporate perception modules are introduced

which partially address Contribution 1. These algorithms would enable

an agent to imitate directly from visual observation. These algorithms

are evaluated in the MuJoCo simulator and results of experiments on

multiple domains are provided to partially cover Contribution 4.

• Chapter 7 - Reinforced Inverse Dynamics Modeling: In this chap-

ter, imitation learning from observation and reinforcement learning are

combined to introduce another model-based algorithm. This algorithm

requires fewer samples compared to BCO and partially addresses Con-

tribution 2. Moreover, this algorithm is thoroughly evaluated in the

MuJoCo simulator [135], in the 3D SimSpark simulator [13, 152], and on

a UR5 robot to partially cover Contribution 4.

• Chapter 8 - Data-Efficient Adversarial Learning for Imitation

from Observation: This chapter introduces another extension of the

algorithm presented in Chapter 5 with much lower sample complexity

that would enable agents to imitate in the real world. This chapter also

partially addresses Contribution 2. This chapter provides experiments

and results of this algorithm in the MuJoCo simulator to partially cover

Contribution 4.

• Chapter 9 - Related Work: This chapter discusses work related to

this thesis. At the beginning, a short overview of categories of imita-
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tion learning and related algorithms are given. Then, a categorization

of imitation learning from observation algorithms is introduced and a

thorough survey of the works in IfO is provided and how they can be

placed in each category.

• Chapter 10 - Conclusion and Future Work: This chapter presents

ideas for future work and concludes the thesis.
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Chapter 2

Preliminaries

We now review some preliminary concepts and notation. Section 2.1

discusses the reinforcement learning (RL) framework and the two broad cate-

gories of existing RL approaches. Afterwards, Section 2.2 briefly describes the

imitation learning (IL) framework and two of its main existing approaches.

Finally, at the end of this section, the state of the art approach in imitation

learning is briefly mentioned.

2.1 Reinforcement Learning (RL)

Reinforcement learning [128] refers to a class of techniques that enable

artificial agents to learn tasks through their own experience by minimizing a

predefined cost function. RL problems are usually considered in the frame-

work of Markov Decision Processes (MDPs) in which agents make decisions

at discrete time intervals in an environment with the goal of minimizing their

long-term cost. Given the current state of the environment, the agent takes

an action that subsequently results in a change in state, where this next state

is drawn from a particular distribution. Additionally, taking the action and

transitioning to a new state also results in the agent receiving feedback, usu-
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ally called cost (or reward), and the objective of the agent is to minimize this

cost (or maximize the reward).

An MDP is denoted by the tuple M = 〈S,A, P, c〉 where S and A denote

the state and action spaces, respectively. An agent at a particular state s ∈ S,

chooses an action a ∈ A, based on a policy π : S → A, which results in the

agent moving to new state s′ with probability P (s′|s, a) which is specified by

the environment’s transition dynamics. As a result of taking an action, the

agent receives feedback c(s, a) specified by a cost function c : S×A→ R. The

typical objective for learning agents operating in an MDP is to find the best

policy that results in minimum overall cost. This cost is calculated by taking

the expectation over the trajectories that a policy generates. For the sake

of brevity, in this thesis, the expectation over the trajectories that a policy

generates is referred as the expectation over that policy:

Eπ[c(s, a)] , E(st,at)∼π[
∞∑
t=0

γtc(st, at)], (2.1)

where γ is a discount factor that determines how to weight future costs relative

to the current cost, s0 ∼ p0, at ∼ π(.|st), and st+1 ∼ P (.|st, at). Using this

notation, the objective of a reinforcement learning agent can be written as

argmin
π∈Π

Eπ[c(s, a)] . (2.2)

Alternatively, an entropy-regularized version of this problem can be written as

argmin
π∈Π

Eπ[c(s, a)]− λHH(π) , (2.3)
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at

ct+1

st+1

Cost
ct

State
st

Figure 2.1: A block diagram of the agent-environment interaction in a Markov
decision process (MDP). At each time-step (t), an agent observes a state (st),
and takes an action (at). Consequently, it moves to another state (st+1) and
receives feedback in the form of a cost (ct).

where H(π) and λH are the entropy function of the policy π and its weighting

parameter, respectively. This statement aims to find a policy that minimizes

the cost function and maximizes the entropy. Entropy maximization helps with

exploration in the process of policy learning by encouraging a more stochastic

policy and therefore improves policy optimization.

In general, there are two main categories of reinforcement learning al-

gorithms: (1) model-free, and (2) model-based which are discussed in Sections

2.1.1 and 2.1.2, respectively.

2.1.1 Model-free Algorithms

Model-free reinforcement learning algorithms aim to allow agents to

learn tasks without explicitly representing or learning the environment dy-

namics model. Two sets of algorithms exist in this category: (1) value-based

methods, and (2) policy-based methods.
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Value-based methods: Value-based methods for model-free reinforcement

learning rely on functions known as value functions. For a given policy, a

state-value function is defined as the negative of the expected sum of costs

when starting from a given state:

vπ(s) = −
∞∑
k=0

Eπ[c(st+k, at+k)|st = s] (2.4)

Given a policy and a state, the higher the value, the better the state. The

process of determining the value function for a given policy is called policy

evaluation. Using the value function for a given policy, a better policy can

be found using a process known as policy improvement. Policy improvement

modifies the policy in such a way that, at each state, an action is selected that

is expected to result in a transition of the agent to a state with a higher value.

Policy evaluation and policy improvement can be repeated until the optimal

value function is found, i.e.,

v∗(s) = min
π

Eπ[
∞∑
k=0

c(st+k, at+k)|st = s] for ∀s ∈ S (2.5)

Usually the environment’s transition dynamics are not known, and so it is

hard to figure out what state the agent transitions into after taking an action.

Therefore, even though state-values are enough to define optimality, state-

action-values are defined which are more useful:

qπ(s, a) = −
∞∑
k=0

Eπ[c(st+k, at+k)|st = s, at = s] (2.6)

in which the higher the value, the better the state-action pair. Two popular

value-based approaches are Q-learning [149, 148] and SARSA [108].
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Policy-based methods: Policy-based methods for model-free RL seek to

directly learn a parametrized mapping from states to actions (ie., a policy, πθ)

that maximizes the return [129]:

J(θ) = vπθ(s0) (2.7)

where J(θ) is the value of the initial state under policy πθ. Policy-based meth-

ods typically use numerical optimization techniques such as gradient descent.

By taking the gradient of this return and moving a step in the direction of the

gradient, the parametrized policy can be improved.

Many policy-based algorithms have been developed. Some popular ones

are REINFORCE [150], Trust Region Policy Optimization (TRPO) [115] and

Proximal Policy Optimization (PPO) [116].

2.1.2 Model-based Algorithms

In contrast to model-free algorithms, model-based reinforcement learn-

ing algorithms involve the agent learning or having access to explicit represen-

tations of the transition dynamics model. If the dynamics model is available,

then the problem of finding a policy is called planning, and it can be solved

using different derivative-based or derivative-free methods such as stochastic

optimization [122] or Monte-Carlo tree search (MCTS ) [18]. One popular

derivative-based method is linear quadratic regulator (LQR) [75, 121] which

will be used in Chapter 8. Therefore, LQR is discussed in more detail in the

following.
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Linear quadratic regulator (LQR): LQR makes several strict assump-

tions regarding the features of the system such as the environment’s model

and the cost function. Specifically, LQR assumes that both the environment

model and the policy can be represented as linear functions (in this thesis,

the word policy, denoted π, is used when the policy is modeled with a neural

network and the word controller, denoted p, is used when the policy is modeled

with a linear function. This distinction is made to avoid confusion because of

the frequent switching between these two models later in this chapter and in

Chapter 8. These terms are used in previous work as well to refer to these

types of policy modelings [24].). LQR is a trajectory-centric reinforcement

learning algorithm, meaning that this algorithm results in a local controller,

p(a|s), for a very specific task with a specific initial state and goal. In the case

of deterministic dynamics:

st+1 = f(st, at) = Ft

[
st
at

]
+ ft (2.8)

where Ft and ft are known matrices and vectors, respectively. Furthermore,

the cost function is considered to be quadratic:

c(st, at) =
1

2

[
st
at

]T
Ct

[
st
at

]
+

[
st
at

]T
ct (2.9)

where Ct and ct are also known matrices and vectors, respectively.

LQR attempts to solve an optimization problem that returns the ac-

tions that have the highest return in the course of an episode. Assuming that

the episode has T time-steps, the optimization problem becomes:

min
a1,...,aT

c(st, at) + c(f(s1, a1), a2) + ...+ c(f(f(...)...), aT ) (2.10)
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Solving this optimization problem, results in optimal actions in the form of:

at = Ktst + kt (2.11)

where Kts and kts are matrices and vectors which are combinations of Fts, Cts,

fts, and cts that can be computed for each time-step. This optimization prob-

lem can be solved efficiently in terms of the number of interactions required

with the environment since everything is defined explicitly (no approxima-

tion is needed). This feature has made the algorithm particularly popular in

robotics, where environment interaction can be very expensive.

Kt and kt in Equation 2.11 are computed using an algorithm known

as LQR backward recursion. First, starting from time T (terminal), the

algorithm takes the derivative of the return, QT (which is just the cost for

the last time-step), with respect to the parameters of aT , i.e. KT and kT .

Setting the expression for the gradient to zero and solving for KT and kT

yields expressions for these parameters as functions of CT and cT . Then,

going backwards, for time T − 1, again the return, QT−1 (sum of cost from

T − 1 to T ), is computed, and expressions for KT−1 and kT−1 are found using

the same procedure as at time step T . This backward recursion process which

is presented in Algorithm 1 continues until time 0. Finally, Kt and kt are

used, either in an open-loop or a closed-loop fashion, to generate at according

to Equation 2.11. This process is called forward recursion.

LQR can also be used under the assumption of linear Gaussian dy-
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Algorithm 1 LQR Backward Recursion

1: for t = T to 1 do
2: Qt = Ct + F T

t Vt+1Ft
3: qt = ct + F T

t Vt+1ft + F T
t vt+1

4: Q(st, at) = 1
2

[
st
at

]T
Qt

[
st
at

]
+

[
st
at

]T
qt

5: at ← argminat Q(st, at) = Ktst + kt
6: Kt = −Q−1

at,atQat,st

7: kt = −Q−1
at,atqat

8: Vt = Qst,st +Qst,atKt +KT
t Qat,st +KT

t Qat,atKt

9: vt = qst +Qst,at +KT
t Qat +KT

t Qat,atkt
10: V (st) = 1

2
sTt Vtst + sTt vt

namics, i.e.,

st+1 ∼ P (s′|s, a) = N(f(st, at),Σt) = N(Ft

[
st
at

]
+ ft,Σt) (2.12)

regardless of what the covariance is, the solution is exactly the same as the

deterministic case:

at = Ktst + kt

where Kt and kt can again be calculated following LQR backward recursion.

Note that to compute the controllers as described above, one must

know the dynamics model parameters F and f . If the model is known but

non-linear or the cost function is known but non-quadratic, one can use the

iterative Linear Quadratic Regulator (iLQR) method [75], which employs Tay-

lor expansion. In brief, at each iteration, iLQR generates linear and quadratic

estimates of the dynamics and cost, respectively, using the Taylor expansion

of each function about some fixed points. LQR backward recursion is then
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used to find the controller, which is then used to generate new rollouts and

subsequently update the fixed points used for expansion. The entire process

is repeated until convergence.

To use LQR in cases where the dynamics model is unknown, the agent

must try to learn that model through experience [73]. Because full dynam-

ics models are typically complex and non-local, typical approaches to model-

learning attempt to fit a set of local, linear Gaussian dynamics models to the

available data at each iteration. However, with such local models, if the agent

deviates drastically from the trajectory that the dynamics is learned on, the

learned model will not be able to produce accurate predictions. Therefore, at

each LQR iteration, the current trajectory distribution should be kept close

to the previous one. To achieve this, the KL-divergence of two distributions is

kept below a threshold, i.e., DKL(p(τ)||p̄(τ)) < ε, where p(τ) and p̄ are the tra-

jectory distributions of the new and old controllers, respectively. Accordingly,

the optimization problem becomes:

min
∑T

t=1 Ep(xt,ut)[c(xt, ut)] s.t. DKL(p(τ)||p̄(τ)) < ε

This optimization problem can be solved, e.g., by using the Lagrangian and

Dual Gradient Descent (DGD).

2.1.3 Combination of Model-based and Model-free Algorithms

As mentioned at the beginning of Section 2.1, reinforcement learning

algorithms are usually divided into two categories: model-free and model-
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based. Since model-free algorithms can deal with complex dynamics, they

typically perform better in the absence of any prior knowledge. However, they

also suffer from high sample complexity [67, 116]. Model-based algorithms, on

the other hand, are more sample-efficient [27], but add additional complexity

in that they require specific model estimates.

Combining the sample-efficiency of model-based algorithms and the

high final performance of model-free algorithms motivated the development of

PILQR [24]. This algorithm integrates model-based updates from the Linear

Quadratic Regulator using fitted linear models [73] with Policy Improvement

with Path Integrals (PI2) [133], which is a model-free reinforcement learning al-

gorithm based on stochastic optimal control. This is accomplished by forming

a quadratic approximation of the cost, using iLQR to find an optimal policy

with respect to the approximated cost, and performing a subsequent update

with PI2 on the residual cost [24]. This algorithm is later used in Chapter 8

2.2 Imitation Learning

Imitation learning is a more efficient learning framework compared to

reinforcement learning. In reinforcement learning, agents must interact with

the world and receive feedback (known as cost) based on how well they are

performing with respect to a particular task, and they use their own experi-

ence to improve their future behavior. However, designing a proper feedback

mechanism for complex tasks can sometimes prove to be extremely difficult for

system designers. Moreover, learning based solely on one’s own experience can
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be exceedingly slow. Concerns such as the ones above have given rise to the

study of imitation learning [112, 12, 3], where agents instead attempt to learn a

task by observing another, more expert agent perform that task. Because the

information about how to perform the task is communicated to the imitating

agent via demonstrations, this paradigm does not require the explicit design

of a cost function. Moreover, because the demonstrations directly provide rich

information regarding how to perform the task correctly, imitation learning

typically requires fewer interactions with the environment compared to RL.

Imitation learning is typically defined in the context of an MDP without an

explicitly-defined cost function, i.e., M \ c. The learning problem is for an

agent to determine an imitation policy, π : S → A that the agent may use

in order to behave like the expert, using a provided set of state-action ex-

pert demonstrations De = {τ ei } = {τ e1 , τ e2 , · · · } in which τ ei is a demonstrated

state-action trajectory {(se, ae)}i = {(se0, ae0), (se1, a
e
1), · · · , (seN , aeN)}i.

There are three main imitation learning approaches: (1) behavioral

cloning, (2) approaches based on inverse reinforcement learning, and (3) ad-

versarial methods. These methods are described in Sections 2.2.1, 2.2.2, and

2.2.3, respectively.

2.2.1 Behavioral Cloning (BC)

Behavioral cloning (BC ) [9, 107, 26] is a common approach to imitation

learning. The agent receives as training data both the encountered states

and actions of the demonstrator, and then uses a regressor to replicate the
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expert’s policy [106]. To be more precise, these methods require access to

some state-action demonstrated trajectories, {τ ei }, and then learn a direct

mapping from states to actions using a supervised learning algorithm such as

maximum likelihood estimation (MLE )

θ∗ = argmax
θ

∏
(s,a)∈{τei }

πθ(a|s) (2.13)

where π is a policy with parameter θ that takes state as input and outputs

a Gaussian distribution that the action can be sampled from. This method

is powerful in the sense that it is capable of imitating the demonstrator im-

mediately without having to interact with the environment. However, the

disadvantage of this algorithm is that it requires large amounts of data be-

cause of the well-known compounding error problem caused by covariate shift

[106, 107]

2.2.2 Inverse Reinforcement Learning (IRL)

Another general approach to imitation learning is based on inverse re-

inforcement learning (IRL). The first step of this approach is exactly IRL, i.e.,

one seeks to learn a cost function based on the given state-action demonstra-

tions. This cost function is learned such that it is minimal for the trajectories

demonstrated by the expert and maximal for every other policy [1]. However,

since the problem is underconstrained — many policies can lead to the same

(demonstrated) trajectories — additional constraints are typically imposed as

regularizers, e.g., encouraging policies with high entropy (MaxEnt IRL) [162].
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IRL problems can be formulated as the following optimization problem

IRLψ(πe) = argmax
c∈RS×A

− ψ(c) + (min
π∈Π
− λHH(π) + Eπ[c(s, a)])− Eπe [c(s, a)] ,

(2.14)

where ψ(c) : RS×A → R is a convex cost function regularizer, πe is the expert

policy, Π is the space of all the possible policies, and H(π) and λH are the

entropy function of the policy π and its weighting parameter respectively. The

output here is the desired cost function. The second step of this framework

is to input the learned cost function into a standard reinforcement learning

problem as formulated in Equation 2.3.

2.2.3 Adversarial Imitation Learning (AIL)

Recently, Ho and Ermon [49] have developed an algorithm, Generative

Adversarial Imitation Learning (GAIL), showing that, by considering a specific

function as the cost regularizer ψ(c), the pipeline described in Section 2.2.2

can be solved instead as

min
π∈Π

max
D∈(0,1)S×A

− λHH(π) + Eπ[log(D(s, a)] + Eπe [log(1−D(s, a))] , (2.15)

where D : S × A → (0, 1) is a classifier trained to discriminate between the

state-action pairs that arise from the demonstrator and the imitator. Ex-

cluding the entropy term, the loss function in (2.15) is similar to the loss of

generative adversarial networks [40]. Instead of first learning the cost func-

tion and then learning the policy on top of that, this method directly learns
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the optimal policy by bringing the distribution of the state-action pairs of the

imitator as close as possible to that of the demonstrator. In order to do so,

it uses a neural network structure depicted in Figure 2.2. On the right, the

imitator uses policy π that gets state s as input and outputs action a. Then

a discriminator D is trained to discriminate between the data that is coming

from the imitator and the demonstrator by outputing values close to one and

zero for the demonstrator and the imitator, respectively. After the discrimina-

tor is updated, when it outputs a value for a given state-action pair, that value

represents the closeness of the data to that of the demonstrator. Therefore,

the output value can be used as a cost indicating how good the state-action

pair is. Using this feedback, the policy can be learned by an RL method. Re-

cently, there has been research on methods that seek to improve on GAIL by,

e.g., increasing sample efficiency [69, 111] and improving reward representation

[35, 102].

The imitation learning algorithms described thus far are concentrated

on situations that the learning agents have access to both the demonstrators’

states and actions. Requiring access to the demonstrators’ actions is restrictive

in the sense that it precludes using a large amount of demonstration data

where action sequences are not given. For instance, there is a great number of

tutorial videos on YouTube that only provide the observer knowledge of the

demonstrators state trajectory. This limitation has motivated the research

described in the rest of this thesis to develop algorithms for imitation learning

from observation (IfO), in which agents seek to perform imitation learning
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. . . s

. . . π

. . .s . . . a
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v ↓ 0

. . .s . . . a

. . .D

v ↑ 1

Figure 2.2: A diagrammatic representation of GAIL. On the left, s (dark blue)
and a (red) are the state and action features in a demonstration transition,
respectively. On the right, dark blue neurons represent the imitator’s states.
Based on policy π (green), it performs action a (red) in the environment.
GAIL aims to find a policy that generates state-action close to the demonstra-
tions. To this end, it iteratively train the discriminator and the policy. The
discriminator is trained in a way to output values v (brown) close to one for
the data coming from the expert (left) and close to zero for the data coming
from the imitator (right). The policy is trained to generate state-action pairs
close to the demonstrations so that the discriminator is not able to distinguish
them from the demonstrations.

using state-only demonstrations.
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Chapter 3

Problem Definition

In this chapter, the problem of interest, Imitation from Observation

(IfO), and the experimental settings in which it will be studied will be fully

discussed. More specifically, the IfO problem problem setting is described

in Section 3.1 using the notations introduced Chapter 2. In Section 3.2, the

environments used for experiments throughout this thesis will be described.

3.1 Imitation from Observation

Imitation from Observation is the problem faced by autonomous agents

attempting to learn tasks by observing state-only demonstrations of those

tasks. In traditional imitation learning, these demonstrations consist of both

states and actions, and the goal for the imitator at each state is to take an

action that is as close as possible to what the expert would take. As described

in Chapter 2, there are multiple categories of approaches developed for imi-

tation learning such as behavioral cloning and inverse reinforcement learning.

In the case of imitation from observation, however, the demonstrations that

the agent receives are limited to the expert’s state-only trajectories. In this

framework, the goal is for the actions of the demonstrator and imitator to have
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the same effect on the environment (performing the task), rather than taking

exactly the same actions. Thus, in imitation from observation, the goal is for

the imitator to learn behaviors that allow it to exhibit state transitions that

look like the state transitions exhibited by the demonstrator.

More formally, similar to imitation learning, the imitating agents are

considered to operate in the context of an MDP without an explicitly-defined

cost function, i.e., M\c. Instead of a cost function, the agent instead has access

to state-only expert demonstrations De = {τ ei } = {τ e1 , τ e2 , · · · }, in which each

τ ei denotes a demonstrated state-only trajectory {(se)}i = {se0, se1, · · · , seN}i. In

this context, the imitation from observation learning problem is for the agent

to learn an imitation policy, π : S → A that the agent may use to replicate

the behavior of the demonstrator for the purposes of having the same effect

on the environment and, ultimately, successfully performing the demonstrated

task.

3.2 Experimental Environments

Throughout this thesis, multiple algorithms for imitation learning from

observation will be designed, each of which will be tested in multiple exper-

imental domains. Depending on the algorithm, these may be simulation do-

mains, real-world domains, or both. Each of the experimental environments

that will be used in this thesis are described in the remainder of this section.
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3.2.1 Simulation Environments

The algorithms proposed in this thesis are tested in simulation environ-

ments which approximately model the physics of the real world. Leveraging

simulation as an experimental domain has several advantages over real-world

domains. One such advantage is that evaluation in simulation domains is less

time consuming in that a higher number of experiments can be run in paral-

lel on different machines and that the experiments can be run at speeds that

are faster than real time. Another advantage is that simulation domains are

relatively cheaper than real world experiments, both in the sense that there is

no need for the purchase of equipment (such as robots), and also in the sense

that expensive accidents and collisions can be avoided. Moreover, simulated

experiments require less supervision than experiments done in the real world.

3.2.1.1 OpenAI Gym Environments

Most of the simulation domains used in this thesis are developed by

OpenAI, an AI research company.1 The toolkit developed by this company for

developing and comparing RL algorithms is called OpenAI Gym. Gym main-

tains a collection of environments that are easy to interact with in Python.

One set of these environments consists of classic control domains which have

been very popular in control theory literature such as the cartpole problem

where the goal is to balance a pole on a car. The state space, action space,

or both are discrete for most of these domains. Another set of domains have

1https://openai.com
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continuous state or action spaces, and they utilize a physics engine called Mu-

JoCo [135] (Multi-Joint dynamics with Contact). MuJoCo has been developed

to facilitate research in different areas of science, one of which is reinforcement

learning. MuJoCo enables researchers to develop their own experiment do-

mains, and the Gym library provides multiple environments of this kind such

as the Reacher task, in which the goal is for a 2D arm robot to reach a ran-

domly specified target point.

One other popular module in RL that is used in this thesis is Pybullet

[25]. This module uses a physics engine called Bullet Physics2 which is open

source and freely available to public. Pybullet has adapted most of the Mu-

JoCo environments developed by OpenAI Gym for use with the Bullet physics

engine. In the following, the domains that are used in thesis are described in

detail.

• CartPole: This environment is one of Gym’s classic control domains in

which the goal is to balance a pole on a car as shown in Figure 3.2(a).

The state space is four dimensional and continuous, and the action space

is two dimensional and discrete. This domain is used in the experiments

in Chapter 4.

• MountainCar: Similar to the CartPole domain, MountainCar is also

a Gym classic control domain. In this domain, there is a car between

two mountains as shown in Figure 3.2(b) and the goal is to drive the car

2https://github.com/bulletphysics/bullet3
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.1: Representative screenshots of the MuJoco domains considered in
the thesis. The environments are as following: (a) InvertedPendulum, (b)
InvertedDoublePendulum, (c) Reacher, (d) HalfCheetah, (e) Swimmer, (f)
Hopper, (g) Ant, (h) Walker2d, (i) Disc, (j) PegInsertion, (k) GripperPusher,
(l) DoorOpening.
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(a) (b) (c) (d)

(e) (f)

Figure 3.2: Representative screenshots of the simulation domains (other than
MuJoCo) considered in the thesis. The environments are as following: (a)
CartPole, (b) MountainCar, MountainCarContinuous, (c) InvertedDoublePen-
dulumBulletEnv, (d) InvertedPendulumSwingupBulletEnv, (e) HopperBul-
letEnv, (f) Walker2DBulletEnv.
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up to the top of one of them. The state space is two dimensional and

continuous, and the action space is three dimensional and discrete. This

domain is used in the experiments in Chapter 4.

• MountainCarContinuous: This domain is the same as MountainCar

except that in MountainCarContinuous, the action space is one dimen-

sional and it is continuous. This domain is used in the experiments in

Chapter 6.

• InvertedPendulum: This environment is one of Gym’s domains devel-

oped for MuJoCo in which the goal is to balance a pole on a cart (shown

in Figure 3.1(a)). In this domain, the state space and the action space

are four and one dimensional, respectively, and they both are continuous.

This domain is used in the experiments in Chapter 6.

• InvertedDoublePendulum: This environment is another MuJoCo do-

main in which two poles are connected to each other and the bottom one

is connected to a cart as shown in Figure 3.1(b). The goal is to balance

the poles on the cart. The state and action spaces are eleven and one

dimensional, respectively, and they both are continuous. This domain is

used in the experiments in Chapter 6.

• Reacher: This MuJoCo domain has a 2D arm robot and randomly

specified target point (Figure 3.1(c)) and the goal is to have the fingertip

of the arm reach the target point. The continuous state space and the
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action space are eleven and two dimensional, respectively. This domain

is used in the experiments in Chapters 4 and 7.

• HalfCheetah: This MuJoCo domain includes a 2D cheetah robot as

shown in Figure 3.1(d) and the goal is for the robot to run as fast as

possible. The state and action spaces are seventeen and six dimensional,

respectively. This domain is used in the experiments in Chapters 6 and

7.

• Swimmer: This domain is also a MuJoCo environment in which there is

a swimming robot that has three links as shown in Figure 3.1(e) and the

goal is for the agent to move forward as fast as possible. The state and

action spaces are eight and two dimensional, respectively. This domain

is used in the experiments in Chapter 7.

• Hopper: This MuJoCo domain includes a 2D one legged robot as shown

in Figure 3.1(f) and the goal is for the robot to run as fast possible.

This domain’s continuous state and action spaces are eleven and three

dimensional, respectively. This domain is used in the experiments in

Chapters 6 and 7.

• Ant: The goal is to have the ant to run as fast as possible (Figure

3.1(g)). This domain has a continuous action space. The state and

action space are 111 and 8 dimensional, respectively. This domain is

used in the experiments in Chapters 4 and 7.
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• Walker2d: This domain is a MuJoCo environment in which there is a

two dimensional bipedal robot as shown in Figure 3.1(h) and the goal is

for it to walk forward as fast as possible. The state and action spaces

are seventeen and six dimensional, respectively. This domain is used in

the experiments in Chapters 6 and 7.

• InvertedDoublePendulumBulletEnv: A Bullet’s continuous control

domain in which the task is to keep a double pendulum upright (Figure

3.2(c)). This domain’s state and action spaces are nine and one dimen-

sional, respectively. This domain is used in the experiments in Chapters

5 and 6.

• InvertedPendulumSwingupBulletEnv: Another of Bullet’s contin-

uous control domain in which a pendulum is initially hanging downward,

and the task is to swing it in a way to cause it to become upward (Fig-

ure 3.2(d)). This environment’s state and action spaces are five and one

dimensional, respectively. This domain is used in the experiments in

Chapters 5 and 6.

• HopperBulletEnv: A continuous control domain developed for Bullet

Physics in which the task is to enable a two-dimensional one-legged robot

to hop forward as fast as possible (Figure 3.2(e)). The state and action

spaces are fifteen and three dimensional, respectively. This domain is

used in the experiments in Chapters 5 and 6.
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• Walker2DBulletEnv: A Bullet Physics continuous control domain in

which the task is to enable a two-dimensional bipedal robot walk for-

ward as fast as possible (Figure 3.2(f)). The state and action spaces are

twenty two and six dimensional, respectively. This domain is used in the

experiments in Chapter 5.

• Disc: A MuJoCo domain that includes a gray point particle on a disc

and two target points—one red and one green—as shown in Fig. 3.1(i).

The agent can push the particle in the x and y directions, and the task

is for the agent to first move the particle to the red target point, and

then move the particle to the green target point. The state and action

spaces are ten- and two-dimensional, respectively. This domain is used

in the experiments in Chapters 8.

• PegInsertion: Also MuJoCo domain that includes an arm with a grip-

per, a peg, and a plate with a hole in it as shown in Fig. 3.1(j). The

task is for the agent to manipulate the arm such that the peg is inserted

into the hole. The state and action spaces are twenty-six- and seven-

dimensional, respectively. This domain is used in the experiments in

Chapters 8.

• GripperPusher: This domain includes an arm with a gripper, a white

particle, and a red target point as shown in Fig. 3.1(k). The task is

for the agent to manipulate the arm such that it reaches the particle,

grabs it, and moves it to the target point. The state and action spaces
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are thirty-six- and four-dimensional, respectively. This domain is used

in the experiments in Chapters 8.

• DoorOpening: This domain includes a robot arm and a door with a

handle as shown in in Fig. 3.1(l). The task is for the agent to manipulate

the arm such that it reaches the handle and opens the door. The state

and action spaces are thirty-six- and six-dimensional, respectively. This

domain is used in the experiments in Chapters 8.

3.2.1.2 RoboCup3D Simulation

This thesis also uses the RoboCup 3D Simulator as an experimental

simulation domain. Both SimSpark [13, 13] and the Open Dynamics Engine

(ODE) are used within this simulation environment. The ODE library helps

model realistic simulation of rigid body dynamics, and the SimSpark software

models the simulated physical multiagent system.

The RoboCup 3D Simulator environment is mainly used as part of

the 3D simulation league of the annual RoboCup competition. Many teams

participate each year, each of which comprises eleven players (as in human

soccer), where each player is a simulated Nao humanoid robot as shown in

Figure 3.3. Each Nao has 22 degrees of freedom: the neck constitutes two

degrees of freedom, the arms eight, and the legs the additional 12. The state

space of the simulated Nao includes the angular measurements of these joints.

The games take place on a simulated soccer field similar to the one shown in

Figure 3.4, and each game has two halves, each of which takes five minutes.
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Figure 3.3: Representative screenshot the simulated Nao.

Figure 3.4: Coordinate system used in the RoboCup 3D simulation domain.
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In this competition, all of the players’ skills, such as walking and kicking, are

developed by the participating teams. Developing these skills is challenging,

and if a team finds a way to endow their simulated agents with a better walk

or kick, that team would have an advantage over the others. Additionally, at

the end of the competition, each of the teams is required to release a binary of

their approach which can be used to play against them. The only information

that other teams can glean from that binary is the joint angles (states) of the

simulated agents. The two tasks that are considered for training in this thesis

are a fast walk and a long kick. The tasks are described in more details in

Chapter 7.

3.2.2 Physical Robot Environment

Some of the algorithms developed in this thesis are evaluated in the real

world as well. While, as mentioned above, simulation environments are great

for testing algorithms in many ways, they are not sufficient as a means by

which to evaluate the applicability of a particular algorithm in real world. In

order for an algorithm to be useful in the real world, it should be both sample

efficient and safe. For these reason, in this thesis, we use a UR5 (Figure

3.5) arm robot to evaluate some of the proposed algorithms. This robot is a

collaborative industrial robot that is also popular in robotics research and has

six degrees of freedom3.

3https://www.universal-robots.com/products/ur5-robot/
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Figure 3.5: The UR5 arm robot.
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Chapter 4

Behavioral Cloning from Observation

In this chapter, a model-based imitation from observation algorithm

is introduced which is called Behavioral Cloning from Observation (BCO).

Two versions of this algorithm are presented, a zero-shot version BCO(0),

and an iterative version BCO(α). The latter ourperforms the former but it

is less sample-efficient. The proposed algorithm is evaluated in the MuJoCo

simulator, and the results of experiments on multiple domains are provided.

Work in this chapter is based on a paper, Behavioral Cloning from

Observation [136], published in the Proceedings of the 27th International Joint

Conference on Artificial Intelligence (IJCAI 2018).

4.1 Overview

As mentioned in Chapter 1, our goal is to present imitation learning

from observation algorithms. Meaning that we aim to propose algorithms for

autonomous agents to learn tasks by observing a demonstrator perform the

task. The challenge in this framework is that the agents only have access to

the states of the demonstrator (and not the actions).

Also another challenge that the imitation learning community faces is
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Behavioral Cloning from Observation (BCO(α))
START

Initialize Policy

πφ

State-only

Demonstrations De
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Policy πφ

Append State-Action

pairs to {τ ii }
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Actions

Update

policy πiφ

Figure 4.1: Behavioral Cloning from Observation (BCO(α)) framework pro-
posed in this chapter. The agent is initialized with a (random) policy which
interacts with the environment and collects data to to learn its own agent-
specific inverse dynamics model. Then, given state-only demonstration infor-
mation, the agent uses this learned model to infer the expert’s missing action
information. Once these actions have been inferred, the agent performs imita-
tion learning. The updated policy is then used to collect data and this process
repeats.
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the necessity of environment interaction, which can be expensive in several

regards. One is the amount of time it requires: executing actions, either in

the real world or in simulation, takes time. If a learning algorithm requires

that a large number of actions must be executed in order to find a good

imitation policy after a demonstration is presented, then there will be an

undesirable amount of delay before the imitating agent will be successful.

Furthermore, algorithms that require post-demonstration interaction typically

require it again and again for each newly-demonstrated task, which could

result in even more delay. Beyond delay, environment interaction can also

be risky. For example, when training autonomous vehicles, operating on city

streets while learning might endanger lives or lead to costly damage due to

crashes. Therefore, we desire an algorithm for which environment interactions

can be performed as a pre-processing step - perhaps in a safer environment -

and where the information learned from those interactions can be re-used for

a variety of demonstrated tasks.

In this chapter, we introduce an imitation learning algorithm called be-

havioral cloning from observation (BCO). BCO simultaneously addresses both

of the issues discussed above, i.e., it provides reasonable imitation policies al-

most immediately upon observing state-trajectory-only demonstrations. First,

it calls for the agent to learn a task-independent, inverse dynamics model in

a pre-demonstration, exploratory phase. Then, upon observation of a demon-

stration without action information, BCO uses the learned model to infer the

missing actions. Finally, BCO uses the demonstration and the inferred actions
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BCO(0)

BCO(α)

GAIL & FEM

Pre-demonstration Post-demonstration

|τ pre|

|τ pre| α|τ pre|α|τ pre|α|τ pre| ...α|τ
pre|

...
|τ IRL|

Figure 4.2: Learning timelines for BCO(0), BCO(α), and the IRL methods
we compare against in this paper. The horizontal axis represents time, gray
rectangles mark when each technique requires environment interactions. For
BCO , the white and gray circles denote the inverse model and policy learning
steps, respectively. For BCO , α|τ pre| is the number of post-demonstration en-
vironment interactions performed before each model- and policy-improvement

step and for IRL methods, |τIRL| represents the total number of interactions.

to find a policy via behavioral cloning. If post-demonstration environment in-

teraction is possible, BCO additionally specifies an iterative scheme where

the agent uses the extra interaction time in order to learn a better model

and improve its imitation policy. This iterative scheme therefore provides a

trade-off between imitation performance and post-demonstration environment

interaction. We experimentally test this algorithm in the MuJoCo simulator

on several domains and find that it results in comparable (and, in some cases,

better) performance to other algorithms that require either more information,

more environment interaction, or both.

4.2 Problem Setting

Recall that, as defined in Chapter 2, we consider agents acting within

the broad framework of Markov decision processes (MDPs). We denote an
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MDP using the 4-tuple M = {S,A, P, c}, where S is the agent’s state space,

A is its action space, P (s′|s, a) is a function denoting the probability of the

agent transitioning from state s to s′ after taking action a, c : S × A → R

is a function specifying the immediate cost that the agent receives for taking

a specific action in a given state. In this framework, agent behavior can be

specified by a policy, π : S → A, which specifies the action (or distribution

over actions) that the agent should use when in a particular state.

In this chapter, we will be interested in the inverse dynamics model,

M = P (a|s, s′), which is the probability of having taken action a given that

the agent transitioned from state s to s′. Moreover, we specifically seek task-

independent models. We assume that some of the state features are specifically

related to the task and others specifically to the agent, i.e., a given state s can

be partitioned into an agent-specific state, sa, and a task-specific state, st,

which are members of sets Sa and St, respectively (i.e., S = Sa × St) [68, 42].

Using this partitioning, we define the agent-specific inverse dynamics model

to be a function Mθ : Sa × Sa → A that maps a pair of agent-specific state

transitions, (sat , s
a
t+1), to a distribution of agent actions that is likely to have

given rise to that transition.

In the setting of imitation from observation, one seeks to find an im-

itation policy from a set of state-only demonstrations De = {τ ei } in which

each τ ei = {(se)}i. The specific problem that we are interested in is imita-

tion from observation under a constrained number of environment interac-

tions. By environment interactions we mean time-steps for which we require
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our agent to gather new data by executing an action in its environment and

observing the state outcome. We are concerned here in particular with the

cost of the learning process, in terms of the number of environment interac-

tions, both before and after the expert demonstrations are provided. Pre- and

post-demonstration environment interactions are represented by τ pre and τ post,

respectively, to denote sets of interactions (s, a) that must be executed by a

learner before and after a demonstration becomes available. In this context,

we are concerned here with the following specific goal: given a set of state-only

demonstration trajectories, De, find a good imitation policy using a minimal

number of post-demonstration environment interactions, i.e., |τ post|.

In pursuit of this goal, we introduce a new algorithm for imitation

learning that can operate both in the absence of demonstrator action infor-

mation and while requiring no or very few post-demonstration environment

interactions. Our framework consists of two components, each of which con-

siders a separate part of this problem. The first of these components considers

the problem of learning an agent-specific inverse dynamics model (Subsections

4.3.1 and 4.3.2), and the second one considers the problem of learning an

imitation policy from a set of demonstration trajectories (Subsection 4.3.3).

4.3 Behavioral Cloning from Observation

We now describe our imitation learning algorithm, BCO , which com-

bines inverse dynamics model learning with learning an imitation policy. We

are motivated by the fact that humans have access to a large amount of prior
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experience about themselves, and so we aim to also provide an autonomous

agent with this same prior knowledge. To do so, before any demonstration

information is observed, we allow the agent to learn its own agent-specific in-

verse dynamics model. Then, given state-only demonstration information, we

use this learned model to infer the expert’s missing action information. Once

these actions have been inferred, the agent performs imitation learning via a

modified version of behavioral cloning (Figure 4.1). The pseudo-code of the

algorithm is given in Algorithm 2.

4.3.1 Inverse Dynamics Model Learning

In order to infer missing action information, we first allow the agent

to acquire prior experience in the form of an agent-specific inverse dynamics

model. In order to do so, we let the agent perform an exploration policy,

π. In this work, we let π be a random policy (Algorithm 2, Line 2). While

executing this policy, the agent performs some number of interactions with the

environment, i.e., τ pre. Because we seek an agent-specific inverse dynamics

model as described in Section 4.2, we extract the agent-specific part of the

states in τ pre and store them as {(sat , sat+1)}, and their associated actions, {at}

(Algorithm 2, Lines 5-8). Given this information, the problem of learning an

agent-specific inverse dynamics model is that of finding the parameter θ for

which Mθ best describes the observed transitions. We formulate this problem

as one of maximum-likelihood estimation, i.e., we seek θ∗ as
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θ∗ = arg maxθ Π
|τpre|
t=0 pθ(at |sat , sat+1), (4.1)

where pθ is the conditional distribution over actions induced by Mθ given

a specific state transition. Any number of supervised learning techniques,

denoted as “modelLearning” in Algorithm 2, may be used to solve Equation

4.1.

Some details regarding particular choices made in this chapter: For

domains with a continuous action space, we assume a Gaussian distribution

over each action dimension and our model estimates the individual means and

standard deviations. We use a neural network for Mθ, where the network

receives a state transition as input and outputs the mean for each action

dimension. The standard deviation is also learned for each dimension, but it is

computed independently of the state transitions. In order to train this network

(i.e., to find θ∗ in Equation 4.1), we use the Adam variant [65] of stochastic

gradient decent. Intuitively, the gradient for each sample is computed by

finding a change in θ that would increase the probability of at with respect to

the distribution specified by Mθ(st, st+1). When the action space is discrete, we

again use a neural network for Mθ, where the network computes the probability

of taking each action via a softmax function.

4.3.2 Behavioral Cloning

Our overarching problem is that of finding a good imitation policy from

a set of state-only demonstration trajectories, De = {τ ei } where τ ei = {(se)}i.
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Note that, although the inverse dynamics model is learned using a set of agent-

generated data in Section 4.3.1, the data used there is not utilized in this step.

In order to use the learned agent-specific inverse dynamics model, we first

extract the agent-specific part of the demonstrated state sequences and then

form the set of demonstrated agent-specific state transitions {(seat , seat+1)} (Al-

gorithm 2, Line 10) in which e and a stand for expert and agent-specific, respec-

tively. Next, for each transition (seat , s
ea
t+1), the algorithm computes the model-

predicted distribution over demonstrator actions, Mθ∗(s
ea
t , s

ea
t+1) and uses the

maximum-likelihood action as the inferred action, ãet (Algorithm 2, Line 11).

Using these inferred actions, we then build the set of complete state-action

pairs {(se, ãe)}.

With this new set of state-action pairs, we may now seek the imitation

policy πφ. We cast this problem as one of behavioral cloning, i.e., given a set

of state-action tuples {(set , ãet )}, the problem of learning an imitation policy

becomes that of finding the parameter φ for which πφ best matches this set

of provided state-action pairs (Algorithm 2, Line 12). We find this parameter

using maximum-likelihood estimation, i.e., we seek φ∗ as

φ∗ = arg maxφ ΠN
t=0πφ(ãet | set ) . (4.2)

Some details regarding particular choices made in this chapter: For

continuous action spaces, we assume our policy to be Gaussian over each ac-

tion dimension, and, for discrete actions spaces we use a softmax function to
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Algorithm 2 BCO(α)

1: Initialize the model Mθ as random approximator
2: Set πφ to be a random policy
3: Set I = |τ pre|
4: while policy improvement do
5: for time-step t=1 to I do
6: Generate samples (sat , s

a
t+1) and at using πφ

7: Append samples (sat , s
a
t+1), and at

8: Improve Mθ by modelLearning({(sat , sat+1)}, {at})
9: Generate set of agent-specific state transitions {(seat , seat+1)} from the

demonstrated state trajectories De

10: Use Mθ with {(seat , seat+1)} to approximate {ãet}
11: Improve πφ by behavioralCloning({(se, ãe)})
12: Set I = α|τ pre|

represent the probability of selecting each value. We let πφ be a neural network

that receives as input a state and outputs either the Gaussian distribution pa-

rameters or the action probabilities for continuous or discrete action spaces,

respectively. We then solve for φ∗ in (4.2) using Adam SGD, where the intu-

itive view of the gradient is that it seeks to find changes in φ that increase the

probability of each inferred demonstrator action, ãt, in the imitation policy’s

distribution πφ(· | st).

4.3.3 Model Improvement

The techniques described above form the building blocks of BCO . If one

is willing to tolerate post-demonstration environment interaction, a modified

version of our algorithm can further improve both the learned model and the

resulting imitation policy. This modified algorithm proceeds as follows. After

49



the behavioral cloning step, the agent executes the imitation policy in the en-

vironment for a short period of time. Then, the newly-observed state-action

sequences are used to update the model, and, accordingly, the imitation policy

itself. The above procedure is repeated until there is no more improvement in

the imitation policy. We call this modified version of our algorithm BCO(α),

where α is a user-specified parameter that is used to control the number of post-

demonstration environment interactions at each iteration, α|τ pre|. The total

number of post-demonstration interactions required by BCO(α) can be calcu-

lated as |τ post| = Tα|τ pre|, where T is the total number of model-improvement

iterations required by BCO(α). Using a nonzero α, the model is able to lever-

age post-demonstration environment interaction in order to more accurately

estimate the actions taken by the demonstrator, and therefore improve its

learned imitation policy. If one has a fixed budget for post-demonstration in-

teractions, one could consider terminating the model-improvement iterations

early, i.e., specify both α and T .

4.4 Implementation and Experimental Results

We evaluated BCO(α) in several domains available in OpenAI Gym

[17]. Continuous tasks are simulated by MuJoCo [135]. These domains have

different levels of difficulty, as measured by the complexity of the dynamics

and the size and continuity of the state and action spaces. Ordered from easy

to hard, the domains we considered are: CartPole, MountainCar, Reacher,

and Ant which are described in Section 3.2. Any RL algorithm could be used
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with the problem’s pre-defined reward function to generate an expert policy.

Since Trust Region Policy Optimization (TRPO) [115] has shown promising

performance in simulation [77], we generated our demonstrations using agents

trained with this method.

We evaluated our algorithm in two senses. First, with respect to the

number of environment interactions required to attain a certain performance.

In a real-world environment, interactions can be expensive which makes it a

very important criterion. The second way in which we evaluate our algorithm

is with respect to data efficiency, i.e., the imitator’s task performance as a func-

tion of the amount of available demonstration data. In general, demonstration

data is scarce, and so making the best use of it is very important.

We compared BCO(α) to the following methods:

1. Behavioral Cloning (BC ): As presented in Section 2.2.1, this method

applies supervised learning over state-action pairs provided by the demon-

strator.

2. Feature Expectation Matching (FEM ) [50]: A modified version

of the approach presented by Abbeel and Ng [1]. It uses TRPO with a

linear cost function in order to train neural network policies.

3. General Adversarial Imitation Learning (GAIL) [49]: As pre-

sented in Section 2.2.3, this method is state-of-the-art in IRL. It uses

a specific class of cost functions which allows for the use of generative

adversarial networks in order to do apprenticeship learning.
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Note in particular that our method is the only method that does not

have access to the demonstrator’s actions. However, as our results will

show, BCO(α) can still achieve comparable performance to these other tech-

niques, and do so while requiring far fewer environment interactions.

4.4.1 Training Details and Results

Because both BC and BCO(α) rely on supervised learning methods, we

use only 70% of the available data for training and use the rest for validation.

We stop training when the error on the 30% validation data starts to increase.

For the other methods, all available data was used in the training process. We

will now discuss the architecture details for each domain.

• CartPole: In this domain, we considered linear models over the pre-

defined state features for both the inverse dynamics model and the im-

itation policy and we only used I = 1000 interactions to learn the dy-

namics.

• MountainCar: In this domain, the data set for learning the inverse

dynamics model is acquired by letting the agent to explore its action

space for I = 2000 time steps. For both the imitation policy and inverse

dynamics model, we used neural networks with two hidden layers, 8

nodes each, and leaky rectified linear activation functions (LReLU).

• Reacher: In this domain, we can partition the state-space to agent-

specific features (i.e., those only related to the arm) and task-specific
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features (i.e., those related to the position of the target). A neural

network architecture with two hidden layers of 100 LReLU nodes are

used with I = 5000 agent-specific state transition-action pairs in order

to learn the dynamics and then this model is used to learn a policy which

also has two layers but with 32 LReLU nodes.

• Ant: This is the most complex domain considered in this work. The

state and action space are 111 and 8 dimensional, respectively. The

number of interactions needed to learn the dynamics was I = 5e5 and

the architectures for inverse dynamics learning and the policy are similar

to those we used in Reacher.

4.4.2 Discussion

Each experiment was executed twenty times, and all results presented

here are the average values over these twenty runs. We selected twenty trials

because we empirically observed very small standard error bars in our results.

This is likely a reflection of the relatively low variance in the expert demon-

strations.

In our first experiment, we compare the number of environment inter-

actions needed for BCO(0) with the number for other methods (Figure 4.3.)

We can clearly see how imitation performance improves as the agent is able

to interact more with the environment. In the case of BCO(0), the interac-

tions with the environment happen before the policy-learning process starts,
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Figure 4.3: Performance of each technique with respect to the number of post-
demonstration interactions. For each domain, ten demonstrated trajectories
were considered. BCO(0) is depicted as a horizontal line since all environ-
ment interactions happen before the demonstration is provided. Performance
values are scaled such that performance of a random policy is zero and the
performance of the expert is one. Note that GAIL and FEM have access to
demonstration action information whereas BCO does not. *The BCO line is
not visible for the CartPole domain because BCO has the same performance
as the expert. **FEM is not shown for the Reacher domain because its per-
formance is much worse than the other techniques.
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Figure 4.4: Performance of imitation agents with respect to the number of
available demonstration trajectories. Rectangular bars and error bars repre-
sent the mean return and the standard error, respectively, as measured over
5000 trajectories. Returns have been scaled such that the performance of a
random policy and the demonstrating agent are zero and one, respectively.
*Note that FEM is not shown for the Reacher domain because its perfor-
mance is much worse than the others. **Note that BC , GAIL, and FEM all
have access to demonstration action information whereas BCO(0) does not.

so we represent its performance with a horizontal line. The height of the

line indicates the performance, and we display the number of provided pre-

demonstration environment interactions next to it. The random and expert

policies also do not benefit from post-demonstration environment interaction,

and so they are also shown using horizontal lines. From these plots, we can
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see that it takes at least 40 times more interactions required by GAIL or FEM

to gain the same performance as BCO(0).
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Figure 4.5: The performance of BC and several BCO(α) techniques (varying
α) with respect to the number of demonstrated trajectories provided. Rect-
angular bars and error bars represent the mean return and the standard error,
respectively, as measured over 5000 trajectories. By increasing α, more post-
demonstration environment interactions are allowed to occur, which increases
the performance of the imitation policy. Note that BC has access to demon-
stration action information whereas BCO does not. Also note that the number
of trajectories required for learning a fairly good policy is very small. Each
demonstrated trajectory has 5, 50, and 50 transitions for each domain from
left to right, respectively. Note that we did not demonstrate the results for
CartPole because the results were equally perfect regardless of the value of α.

Now, we compare the performance of our algorithm BCO(α) with the

other algorithms. To do so, we use each algorithm to train the agents, and

then calculate the final performance by computing the average return over

5000 episodes. For comparison purposes, we scale these performance values

such that the performance of the expert and a random policy are 1.0 and 0.0,

respectively. This comparison is shown in Figures 4.4, and 4.5 where we have

plotted the performance of each algorithm with respect to the number of avail-

able demonstrated trajectories. Figure 4.4 shows the comparison between the
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Table 4.1: This is an extension to Figure 4.5 which provides the number of
post-demonstration interactions for each case. First vertical column for each
domain (d) shows the number of demonstrated trajectories. As an example, for
the MountainCar domain with 1 demonstrated trajectory and α = 2E−3, the
average number of post-demonstration interactions is 6825. We can also see at
the top of the table that the number of pre-demonstration interactions is 2E3
so the overall number of interactions would become 8825. It can be seen that
almost always by increasing α or the number of demonstrated trajectories, the
number of post-demonstration interactions increases. Also the overall number
of interactions (combined pre- and post-demonstration interactions) in all the
cases is far less than the overall number of interactions required by the other
methods (FEM and GAIL).
MountainCar (pre-demo = 2E3) Reacher (pre-demo = 5E3) Ant (pre-demo = 5E5)

d\α 2E−3 4E−3 1E−2 d\α 2E−3 4E−3 1E−2 d\α 2E−3 4E−3 1E−2

1 6825 23475 28950 1 210052 358736 912368 5 602500 1270000 3362500

4 8387 12000 31200 5 270500 486578 1837500 10 940000 2075000 5000000

7 6300 23100 122200 10 221421 569736 1055921 15 1387500 2855000 7325000

10 45462 61450 88600 15 509289 852210 1859210 20 1925000 4055000 9687500

performance of BCO(0) with all the other methods, and Figure 4.5 compares

the performance of BCO(α) across different values of α. In Figure 4.4, we can

see that performance of our method is comparable with other methods even

though our method is the only one without access to the actions. In the case

of Reacher, the transferability of the learned inverse model is highlighted by

the high performance of BCO . In the case of the Reacher and Ant domains,

we can see that FEM performs poorly compared to others, perhaps because

the cost functions are not simple enough to be approximated by linear func-

tions. In the CartPole domain, each of the methods performs as well as the

expert and so all the lines are over each other. In the case of MountainCar,

BCO ’s performance is worse than the other methods. Conversely, for Reacher,
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BCO is more sample efficient than GAIL, i.e., with smaller number of demon-

strations we get much better results. In the case of Ant, BCO performs almost

as well as GAIL. In Figure 4.5, we can see that BCO ’s performance improves

with larger α since the extra environment interactions allow it to make better

estimates of the demonstrator’s actions.

4.5 Summary

In this thesis, we have presented BCO , an algorithm for performing im-

itation learning that requires neither access to demonstrator actions nor post-

demonstration environment interaction. Our experimental results show that

the resulting imitation policies perform favorably compared to those generated

by existing imitation learning approaches that do require access to demonstra-

tor actions. Moreover, BCO requires fewer post-demonstration environment

interactions than these other techniques, meaning that a reasonable imitation

policy can be executed with less delay.
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Chapter 5

Generative Adversarial Imitation from

Observation

In this chapter, first, a formulation of a general model-free framework

for imitation from observation is proposed. Then, a specific model-free algo-

rithm, Generative Adversarial Imitation from Observation (GAIfO), is intro-

duced. This algorithm encourages the imitator’s state transition distribution

to match that of the demonstrator through adversarial learning. A derivation

of this algorithm is presented and, at the end of the chapter, the algorithm is

evaluated in multiple MuJoCo domains.

Work in this chapter is based on a paper, Adversarial Imitation Learn-

ing from State-only Demonstrations [138], published in the Proceedings of the

18th International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2019), and another paper, Generative Adversarial Imitation

from Observation [139], presented in the International Conference on Machine

Learning Workshop on Imitation, Intent, and Interaction (I3).
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5.1 Overview

Broadly speaking, the IfO problem consists of two major subproblems:

(1) perception of the demonstrations, i.e., extracting useful features from raw

visual data, and (2) learning a control policy using the extracted features. In

this chapter, we propose a general framework for the subproblem of IfO con-

cerned with learning a control policy in which we characterize the cost as a

function of state transitions only. Using this characterization, the IfO prob-

lem becomes one of trying to recover the state-transition cost function of the

expert. Inspired by the work of Ho and Ermon [49], we introduce a novel,

model-free algorithm called Generative Adversarial Imitation from Observa-

tion (GAIfO) and prove that it is a specific version of the general framework

proposed for IfO . We then experimentally evaluate GAIfO in high-dimensional

MuJoCo environments. Note that, in the settings considered in this chapter,

the state space for both the demonstrator and imitator consists of manually-

defined features (as opposed to raw visual observations, which will be consid-

ered in Chapter 6). We show that the proposed method compares favorably to

BCO and another recently-developed IfO method, and also that it performs

comparably to state-of-the-art conventional imitation learning methods that

do have access the the demonstrator’s actions.

The rest of this chapter is organized as follows. The problem setting

is presented in Section 5.2. In Section 5.3, we introduce our proposed general

framework for IfO problems and, in Sections 5.4 and 5.5, we discuss our IfO

algorithm, GAIfO . Then, we describe and discuss our experiments in Sections
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5.6 and 5.7, respectively. Finally, we conclude the chapter by summarizing the

method and the experiments in Section 5.8.

5.2 Problem Setting

We again operate within the framework of a Markov Decision Processes

(MDP), M = 〈S,A, P, c〉 as discussed in Chapter 2. However, since the goal of

the work presented in this thesis is that of imitation, the agent does not have

access to the cost function. Instead, state-only demonstration trajectories,

De = {τ ei }, are available, where τ ei = {se0, se1, · · · , seN}. These trajectories are

assumed to have been generated using an expert policy πe. In this chapter,

it is also assumed that the demonstrations consist of low-level, hand-crafted

state information, and the study of raw visual state observations is deferred to

Chapter 6. As for notation, R denotes the extended real numbers R∪ {+∞},

and, as noted in Chapter 2, expectation over a policy means the expecta-

tion over all the trajectories that it generates. Finally, the goal here is, first,

to formulate a general, model-free approach for imitation from observation,

and second, to also develop a specific algorithm of this type inspired by the

Generative Adversarial Imitation Learning approach discussed in Chapter 2.

5.3 A General Framework for Imitation from Observa-
tion

In IRL, both states and actions are available, and the goal is to find

a cost function that, on average, results in a smaller cost for the trajecto-
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ries generated by the expert policy compared to trajectories generated by any

other policy. In the case of imitation from observation, however, the demon-

stration trajectories that the agent observes contain sequences of states only.

In the context of the IRL-based approaches to imitation learning discussed in

Chapter 2, this lack of action information makes it impossible to calculate the

Eπe [c(s, a)] term in (2.14). Consequently, none of the approaches described in

Chapter 2 is directly applicable in this setting.

In imitation from observation, the goal is for the actions of the demon-

strator and imitator to have the same effect on the environment (performing

the task), rather than taking exactly the same actions. Therefore, instead of

characterizing the cost signal as a function of states and actions c : S×A→ R,

we instead define it as a function of the state transitions c : S×S→ R. Based

on this characterization, we formulate Inverse Reinforcement Learning from

observation as

IRLfOψ(πe) =argmax
c∈RS×S

− ψ(c) + (min
π∈

∏ Eπ[c(s, s′)])

− Eπe [c(s, s′)] ,
(5.1)

which outputs c̃ (the notation is as discussed in Section 2.2.2). Note that,

in (5.1), we ignore the entropy term so as to simplify the theoretical analysis

presented in Section 5.4. Evidence form Ho and Ermon [49] suggests that doing

so is valid from an empirical perspective (they set λH = 0 in more than 80%

of their successful experiments), but we leave detailed analysis of the effect

of this choice to future work. From a high-level perspective, the goal is to

enable the agent to extract what the task is by observing some state sequences.
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Intuitively, this extraction is possible because we expect the beneficial state

transitions for any given task to form a low-dimensional manifold within the

S × S space. Thus, the intuition behind our definition of the cost function is

to penalize based on how close each transition is to that manifold.

Now, using an RL algorithm for c̃ amounts to solving

RL(c̃) = argmin
π∈

∏ Eπ[c̃(s, s′)] , (5.2)

where the output, π̃, is the imitation policy. The overall process can be sum-

marized as:

RL ◦ IRLfOψ(πe) = argmin
π∈

∏ argmax
c∈RS×S

− ψ(c) + (min
π∈

∏ Eπ[c(s, s′)])

− Eπe [c(s, s′)]) ,
(5.3)

5.4 Generative Adversarial Imitation from Observation

Having developed the general framework in Section 5.3, we now propose

a specific algorithm for the general framework mentioned in the previous sec-

tion called Generative Adversarial Imitation from Observation (GAIfO). To

this end, we first define the state-transition occupancy measure for a specific

policy, ρsπ : S× S→ R as

ρsπ(si, sj) =
∑
a

P (sj|si, a)π(a|si)
∞∑
t=0

γtP (st = si|π) . (5.4)

This occupancy measure corresponds to the distribution of state transitions

that an agent encounters when using policy π. We define the set of valid

state-transition occupancy measures as Ps , {ρsπ : π ∈ Π}.
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We now introduce a proposition which is the foundation of our al-

gorithm. In the following proposition we use the convex conjugate concept

which is defined as follows: for a function f : X → R, the convex conjugate

f ∗ : X∗ → R̄ is defined as f ∗(x∗) , supx∈X〈x∗, x〉 − f(x).

Proposition 5.4.1. RL◦IRLfOψ(πe) and argminπ∈Π ψ
∗(ρsπ−ρsπe) induce poli-

cies that have the same state-transition occupancy measure, ρsπ̃.

In the rest of this section, we prove this proposition. Then, by choosing

a specific regularizer, we present our algorithm. Further, we propose a practical

implementation of the algorithm.

To prove the proposition, we first define another problem, RL◦IRLfOψ(πe),

and argue that it outputs a state-transition occupancy measure which is the

same as ρsπ̃ induced by RL ◦ IRLfOψ(πe). We define

IRLfOψ(πe) = argmax
c∈RS×S

min
ρsπ∈Ps

∑
s,s′

ρsπ(s, s′)c(s, s′)

−
∑
s,s′

ρsπe(s, s
′)c(s, s′)− ψ(c) ,

(5.5)

where, the output is a cost function c̄. Note that Eπ[c(s, s′)] =
∑

s,s′ ρ
s
π(s, s′)c(s, s′)

which implies that (5.1) and (5.5) are similar except that the former is opti-

mized over π ∈ Π and the latter over ρsπ ∈ Ps. If we consider using an RL

method to find a state-transition occupancy measure under c̄, (5.2) can be

rewritten as

RL(c̄) = min
ρsπ∈Ps

∑
s,s′

ρsπ(s, s′)c̄(s, s′) , (5.6)

which would now output the desired state-transition occupancy measure ρ̄sπ.
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Lemma 5.4.1. RL◦IRLfOψ(πe) outputs a state-transition occupancy measure,

ρ̄sπ, which is the same as ρsπ̃ induced by RL ◦ IRLfOψ(πe).

Proof. From the definition of Ps, the mapping from Π to Ps is surjective, i.e.,

for every ρsπ ∈ Ps, there exists at least one π ∈ Π. Therefore, we can say

ρ̄sπ = ρsπ̃ (where π̃ and ρ̄sπ, as already defined, are the outputs of (5.2) and

(5.6), and ρsπ̃ is the state-transition occupancy measure that corresponds to

π̃). Therefore, solving RL ◦ IRLfOψ(πe) results in the same ρsπ as applying RL

using the cost function returned by IRLfO in (5.5).

Note that, in Lemma 5.4.1, the returned policies from these two prob-

lems are not necessarily the same. The reason is that the mapping from Π to

Ps is not injective, i.e., there could be one or multiple π ∈ Π that corresponds

to the same ρsπ ∈ Ps. Consequently, it is not necessarily the case that a policy

that gives rise to ρ̄π is the same as π̃. However, as we discussed in the pre-

vious section, in imitation from observation, we are primarily concerned with

the effect of the policy on the environment so this situation is acceptable.

Now we introduce another lemma that helps us in the proof of Propo-

sition 5.4.1.

Lemma 5.4.2. RL ◦ IRLfOψ(πe) = argminρsπ∈Ps ψ
∗(ρsπ − ρsπe)

This lemma is proven in the appendix using the minimax principle

[82]. Thus far, by combining Lemmas 5.4.1 and 5.4.2, we can conclude that ρsπ̃
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induced by RL ◦ IRLfOψ(πe) is the same as the output of argminρsπ∈Ps ψ
∗(ρsπ−

ρsπe). Now, we only need one more step to prove Proposition 5.4.1:

Lemma 5.4.3. argminπ∈Π ψ
∗(ρsπ − ρsπe) is a policy that has a state-transition

occupancy measure that is the same as the output of argminρsπ∈Ps ψ
∗(ρsπ− ρsπe).

The proof of Lemma 5.4.3 is similar to that of Lemma 5.4.1. Now

based on Lemmas 5.4.1, 5.4.2, and 5.4.3 we can conclude that Proposition

5.4.1 holds.

Having proved this proposition, we can solve argminπ∈Π ψ
∗(ρsπ − ρsπe)

instead of RL◦IRLfOψ(πe). To this end, we consider the generative adversarial

regularizer

ψGA(c) ,

{
Eπe [g(c(s, s′))] if c < 0

+∞ otherwise
(5.7)

where

g(x) =

{
−x− log(1− ex) if x < 0

+∞ otherwise
(5.8)

which is a closed, proper, convex function and has convex conjugate

ψ∗GA(ρsπ − ρsπe) = max
D∈(0,1)S×S

∑
s,s

ρsπ(s, s′) log(D(s, s′))+

ρsπe(s, s
′) log(1−D(s, s′)) ,

(5.9)

where D : S× S→ (0, 1) is a discriminative classifier. A similar convex conju-

gate is derived by Ho and Ermon [49]; However, for the sake of completeness,

we prove the properties claimed for (5.7) and show that (5.9) is its convex

conjugate in the appendix.1
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Figure 5.1: A diagrammatic representation of GAIfO . On the left, s (dark
blue) and s′ (light blue) are the state and next-state features in a demonstra-
tion transition, respectively. On the right, dark blue neurons represent the
imitator’s states. Based on policy π (green), it performs action a (red) in the
environment, and encounters the next-state s′ (light blue). We aim to find
a policy that generates state-transitions close to the demonstrations. To this
end, we iteratively train the discriminator and the policy. The discriminator is
trained in a way to output values v (brown) close to zero for the data coming
from the expert (left) and close to one for the data coming from the imitator
(right). The policy is trained to generate state-transitions close to the demon-
strations so that the discriminator is not able to distinguish them from the
demonstrations.
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Algorithm 3 GAIfO

1: Initialize parametric policy πφ with random φ
2: Initialize parametric discriminator Dθ with random θ
3: Obtain state-only expert demonstration trajectories De = {τ ei } where τ ei =
{(se)}i

4: while Policy Improves do
5: Execute πφ and store the resulting state transitions τ ii = {(si)}i
6: Update Dθ using loss

−
(
Eπφ [log(Dθ(s, s

′))] + Eπe [log(1−Dθ(s, s
′))]
)

7: Update πφ by performing TRPO updates with cost function(
Eπφ [log(Dθ(s, s

′))]
)

Using the above, the imitation from observation problem can be solved

as:

min
π∈Π

ψ∗GA(ρsπ − ρsπe) =min
π∈Π

max
D∈(0,1)S×S

Eπ[log(D(s, s′))]+

Eπe [log(1−D(s, s′))]
(5.10)

We can see that the loss function in (5.10) is similar to the generative adver-

sarial loss. We can connect this to general GAN s if we interpret the expert’s

demonstrations as the real data, and the data coming from the imitator as the

generated data. The discriminator seeks to distinguish the source of the data,

and the imitator policy (i.e., the generator) seeks to fool the discriminator to

make it look like the state transitions it generates are coming from the ex-

1This proof closely follows the proofs of Proposition A.1. and Corollary A.1.1. of Ho
and Ermon [49] and it is included here for the sake of completeness. The only substantive
difference is that in our case we consider state-transition occupancy measure (s, s′) instead
of (s, a).
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pert. The entire process can be interpreted as bringing the distribution of the

imitator’s state transitions closer to that of the expert. We call this process

Generative Adversarial Imitation from Observation (GAIfO).

5.5 Practical Implementation

Based on the preceding analysis, we now specify our practical imple-

mentation of the GAIfO algorithm. We represent the discriminator, D, using

a multi-layer perceptron with parameters θ that takes as input a state transi-

tion and outputs a value between 0 and 1. We represent the policy, π, using

a multi-layer perceptron with parameters φ that takes as input a state and

outputs an action. We begin by randomly initializing each of these networks,

after which the imitator selects an action according to πφ and executes that

action. This action leads to a new state, and we feed both this state transi-

tion and the entire set of expert state transitions to the discriminator. The

discriminator is updated using the Adam optimization algorithm [65], with

cross-entropy loss that seeks to push the output for expert state transitions

closer to 0 and the imitator’s state transitions closer to 1. After the discrim-

inator update, we perform trust region policy optimization (TRPO) [115] to

improve the policy using a cost function that encourages state transitions that

yield small outputs from the discriminator (i.e., those that appear to be from

the demonstrator). This process continues until convergence. The algorithm

is shown in Algorithm 3 and the framework is summarized in Figure 5.1.
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5.6 Experimental Setup and Implementation Details

We evaluate our algorithm in domains from OpenAI Gym [17] based

on the Pybullet simulator [25] which are discussed extensively in Section 3.2.

In each of the domains, we used Trust Region Policy Optimization (TRPO)

[115] to train the expert agents, and we recorded the demonstrations using the

resulting policy.

The results shown in the figures are the average over ten independent

trials. We compare our algorithm against three baselines:

• Behavioral Cloning from Observation (BCO)[136]: As described

in Chapter 4, BCO first learns an inverse dynamics model through self-

supervised exploration, and then uses that model to infer the missing

actions from state-only demonstrated trajectories. BCO then uses the

inferred actions to learn an imitation policy using conventional behav-

ioral cloning.

• Time Contrastive Networks (TCN )[117]: TCN s use a triplet loss

to train a neural network to learn an encoded form of the task at each

time step. This loss function brings the states that occur in a small

time-window closer together in the embedding space and pushes the

ones from distant time-steps far apart. A cost function is then defined

as the Euclidean distance between the embedded demonstration and the

embedded agent’s state at each time step. The imitation policy is learned

using RL techniques that seek to optimize this cost function.
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• Generative Adversarial Imitation Learning (GAIL) [49]: This

method is as specified in Section 2.2.3. Note that, this method has

access to the demonstrator’s actions while the others do not.

5.7 Results and Discussion

In this section, we present the results of the experiments described

above. Figure 5.2 illustrate the comparative performance of GAIfO in our

experimental domains using the low-dimensional state representations. We

can see that, for the domains considered here, GAIfO (a) performs very well

compared to other IfO techniques, and (b) is surprisingly comparable to GAIL

even though GAIfO lacks access to explicit action information.

Figure 5.2 compares the final performance of the imitation policies

learned by different algorithms. We can clearly see that GAIfO outperforms

the other imitation from observation algorithms by a large margin in most of

the experiments. For the InvertedDoublePendulum domain, we can see that

the TCN method does not perform well at all. We hypothesize that this is the

case because TCN relies on time synchronization in order to find the imitating

policy, i.e., it learns what the state should be at each time step. However, suc-

cessfully performing the InvertedDoublePendulum task requires the agent to

simply keep the pendulum upright, and requiring it to time synchronize with

the demonstrator may be too restrictive a requirement. BCO , on the other

hand, performs very well in this domain, which demonstrates that, here, the

inverse dynamics model learned by BCO is accurate and that the compound-

71



ing error problem is negligible. We can see that GAIfO also performs very

well here, achieving performance similar to that of the expert, which shows

that the algorithm has been able to extract the goal of the task and find a

reasonable cost function from which to learn the policy.
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Figure 5.2: Performance of algorithms in low-dimensional experiments with
respect to the number of demonstration trajectories. Rectangular bars and
error bars represent mean return and standard deviations, respectively. For
comparison purposes, we have scaled all the performances such that a random
and the expert policy score 0.0 and 1.0, respectively. *GAIL has access to
action information.

For the InvertedPendulumSwingup domain, we can see that TCN again

does not perform well, perhaps because the goal of the task is not well-

represented in the encoding-learning phase. BCO also does not perform well.

We hypothesize that this is the case because of the compounding error problem

since performing this task successfully is contingent on taking several specific

actions consecutively – deviation from those actions would cause the pendu-

lum to drop down and not reach the goal. GAIfO and GAIL, on the other

hand, perform as well as the expert, which reveals that these algorithms have

successfully extracted the goal and learned the task.

For both the Hopper and Walker2D domains, it can be seen that, again,
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TCN does not work well. We posit that this might be due to the fact that these

tasks require behavior that is cyclic in nature, i.e., the expert demonstrations

contain repeated states. Because TCN learns a time-dependent representation

of the task, it cannot appropriately handle this periodicity and, therefore, the

learned representations are not sufficient. GAIfO , however, learns a distribu-

tion of the state transitions that is not time-dependent; therefore, periodicity

does not affect its performance. BCO also does not perform well in either

of these two domains, perhaps again due to the compounding error problem.

Learning in these domains has two steps: first, the agent needs to learn to

stand, and then the agent needs to learn to walk or hop. With BCO , it would

seem that the imitating agent begins to deviate from the expert early in the

task, and this early deviation ultimately leads to the imitating agent being

unable to learn the secondary walking and hopping behaviors. GAIfO , on the

other hand, does not suffer from this issue because it learns by executing its

own policy in the environment (on-policy learning) and is therefore able to

address deviation from the expert during the learning process.

5.8 Summary

In this chapter, we presented a general framework for imitation from ob-

servation (RL ◦ IRLfOψ(πe)) and then proposed a specific algorithm (GAIfO)

for doing so. GAIfO removes the need for several restrictive assumptions

that are required for some other IfO techniques, including the need for multi-

ple demonstrations to be time-synchronized. Moreover, the on-policy nature
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of GAIfO allows it to avoid the compounding error problem experienced by

more brittle imitation techniques. The result is an approach that is able to

find better imitation policies without the need for action information, and is

also able to find imitation policies that perform very close to those found by

techniques that do have access to this information.
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Chapter 6

Adversarial Imitation Learning from Video

In this chapter, two extensions of the algorithm presented in Chapter

5 (i.e., GAIfO) are introduced. These extensions enable an agent to imitate

directly from visual observations. They are evaluated in the Bullet Physics

and MuJoCo simulators, and the results of experiments on multiple domains

are provided.

Work in this chapter is based on a paper, Imitation Learning from

Video by Leveraging Proprioception [140], published in the Proceedings of the

28th International Joint Conference on Artificial Intelligence (IJCAI 2019),

and another paper, Generative Adversarial Imitation from Observation [139],

presented in the International Conference on Machine Learning Workshop on

Imitation, Intent, and Interaction (I3).

6.1 Overview

As mentioned previously in Section 5.1, the IfO problem consists of

two major subproblems: (1) perception of the demonstrations, i.e., extracting

useful features from raw visual data, and (2) learning a control policy using

the extracted features. Most of the previous work in this area is focused on one
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of these subproblems. For example, the two algorithms proposed in Chapters

4 and 5 concentrate exclusively on the second subproblem. However, in order

to move towards the ultimate goal of IfO , i.e., imitating directly from videos,

these subproblems should be considered simultaneously, culminating in one

algorithm. In this chapter, two extensions of GAIfO [139] are presented in

which a perception module is incorporated into the algorithm.

The first extension of the algorithm attempts to learn imitation policies

by relying solely on self-observation through video, i.e., it uses a convolutional

neural network (CNN) that maps images of the agents themselves to actions.

In our experiments, we compare this method with other state-of-the-art visual

imitation algorithms and show that this approach outperforms them. On the

other hand, in many cases, the imitating agent also has access to its own pro-

prioceptive state information, i.e., direct knowledge of itself such as the joint

angles and torques associate with limbs. We argue that IfO algorithms that

ignore this information are missing an opportunity that could potentially im-

prove the performance and the efficiency of the learning process. Therefore,

another extension of GAIfO is proposed as well that can make use of both

visual and proprioceptive state information. This extension uses propriocep-

tive information from the imitating agent during the learning process. We

hypothesize that the addition of such information will improve both learning

speed and the final performance of the imitator, and we test this hypothe-

sis experimentally in several standard simulation domains. We compare our

method with other, state-of-the-art approaches that do not leverage proprio-
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ception, and our results validate our hypothesis, i.e., the proposed technique

outperforms the others by a large margin.

The rest of this chapter is organized as follows. In Section 6.2, we review

technical details surrounding Markov Decision Processes and the IfO problem,

and explain this Chapter’s specific problem of interest. The proposed algo-

rithms are presented in Section 6.3, and we describe the experiments that we

have performed in Section 6.4.

6.2 Problem Setting

Similar to previous chapters, we consider artificial reinforcement learn-

ing agents that operate in the framework of Markov decision processes (MDPs),

M = 〈S,A, P, c〉. As in all imitation learning problems, in the setting that we

consider in this chapter, the imitating agent does not have access to the cost

function, i.e., the agent operates in the context of M \ c. Instead, it has access

to a set of observation-only expert demonstrations De = {τ ei } = {τ e1 , τ e2 , · · · } in

which τ ei is a demonstrated observation-only trajectory τ ei = {oe0, oe1, · · · , oeN}i.

In this chapter, we refer to s as the proprioceptive state, i.e., s is the most

basic, internal state information available to the agent (e.g., the joint angles

of a robotic arm). Since we are also concerned with visual observations of

agent behavior, we denote these observations as o ∈ O, i.e., an image of the

agent at time t is denoted as ot. The visual observations of the agent are

determined both by the agent’s current proprioceptive state s, and also other

factors relating to image formation such as camera position. Importantly, due
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to phenomena such as occlusion, it is not always possible to infer s from o

alone. The goal in this chapter is to modify the GAIfO algorithm in a way

that enables the algorithm to imitate directly from the set of observation-only

expert demonstrations.

6.3 Proposed algorithms

As presented in Section 6.2, we are interested in the problem of imi-

tation from observation (IfO), where an imitating agent has access to visual

demonstrations, De = {τ ei }, of an expert performing a task, and seeks to learn

a behavior that is approximately the same as the expert’s. In this section, we

introduce the two proposed extensions of GAIfO that enable the algorithm to

imitate directly from visual data.

6.3.1 Visual GAIfO with Self-Observation

As presented in Chapter 5, GAIfO is an algorithm that imitates from

low-level, state-only expert demonstrations. The algorithm starts with a

randomly-initialized multi-layer perceptron (MLP) as the policy and executes

that policy to generate states of the imitator’s behavior, and then trains a

discriminator to differentiate between the states of the demonstrator and the

states of the imitator. Then the discriminator is used as a cost function to

train the policy. This process is repeated until convergence. Here, in order to

incorporate a perception module, instead of using the multi-layer perceptron,

we instead use convolutional neural networks to model both the policy and
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the discriminator.

Adopting these new models, the imitating CNN policy is randomly

initialized, and deployed so as to generate recorded video of the imitator’s be-

havior, {τ ii }. Then, the CNN discriminator is trained to differentiate between

videos of the demonstrator, {τ ei }, and videos of the imitator, {τ ii }. GAIfO as

presented in Chapter 5 is feasible for cases in which (a) the states can be as-

sumed to be fully-observable, and (b) the system is strictly Markovian. How-

ever, when considering visual observations, neither of these assumptions is

necessarily valid. Therefore, agents operating in such state spaces are typi-

cally provided with a recent state history instead. Providing this information is

useful because, for example, having knowledge about the velocity of the agent

at each time step is important in order to select the correct action, and veloc-

ity information is not available when considering a single image. We adopted

this same approach by considering stacks of three frames, {ot−1, ot, ot+1} as

the input of the discriminator.

The discriminator is trained with the objective of outputting values that

are closer to one for image sequences that come from the imitator, and values

that are closer to zero for image sequences that come from the demonstrator.

To achieve this goal, the discriminator attempts to solve

max
D∈(0,1)O3

(
Eπθ [log(D(ot−1 : ot+1))]+

Eπe [log(1−D(ot−1 : ot+1))]
)
.

(6.1)
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Algorithm 4

1: Initialize policy πθ (modeled with CNNs) randomly
2: Initialize discriminator D (modeled with CNNs) randomly
3: Obtain visual demonstrations De = {τ ei } from an expert policy πe

4: for i← 0 to N do
5: Execute πθ and record video observation {τ ii }
6: Update the discriminator D using loss

−
(
Eπθ [log(D(ot−1 : ot+1))]+

Eπe [log(1−D(ot−1 : ot+1))]
)

7: Update πθ by performing PPO updates with gradient steps of

Eπθ [∇θ log πθ(a|o)Q(s, o)]− λ∇θH(πθ),

where

Q(ôt, ât) =

− Eπθ [log(D(ot−1 : ot+1))|o0 = ôt, a0 = ât]

In order for the imitator to learn the task, it should behave similar to

the demonstrator. Therefore, it needs to fool the discriminator and so(
Eπθ [log(D(ot−1 : ot+1))]

)
(6.2)

is used as the cost to update the CNN imitation policy using RL. In particular,

we use either Trust Region Policy Optimization (TRPO) or Proximal Policy

Optimization (PPO) [116]1 with gradient steps of

1These two RL algorithms were selected based on their performance. In the experiments,
we use whichever one results in better performance for a given experimental domain.
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Figure 6.1: A diagrammatic representation of the implementation of our exten-
sion of GAIfO for processing visual state representations with self-observation.
A stack of 4 grayscale images from t − 3 to t (t being the current time-step)
enters the policy CNN (top left). The policy outputs an action that the agent
takes in the environment and goes to the next state in time t+1 (top right). A
stack of 3 grayscale images from t−1 to t+1 of the agent is prepared along with
a stack of 3 consecutive state images (grayscale) of the demonstrator (bottom
right). When data from the imitation policy is provided, the stack from the
imitator enters the discriminator and outputs the reward for taking that ac-
tion (bottom left). This reward value is then used to both update the policy
using TRPO and also update the discriminator using supervised learning (to
drive the value closer to zero). When data from the demonstrator is provided,
the stack from the demonstrator enters the discriminator and outputs a value
which is then used to update the discriminator (to drive the value closer to
one).
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Eπθ [∇θ log πθ(a|o)Q(o, a)]− λ∇θH(πθ), (6.3)

where Q(o, a) is the observation-action value, i.e. the potential cost that the

agent receives starting from o and taking action a:

Q(ôt, ât) =

− Eπθ [log(D(ot−1 : ot+1))|o0 = ôt, a0 = ât].
(6.4)

The implementation of this algorithm is summarized in Algorithm 4 and Figure

6.1.

6.3.2 Visual GAIfO with Proprioceptive Information

We now propose another visual extension of GAIfO that leverages the

agent’s proprioceptive information. The algorithm presented in Section 6.3.1

differs from what is proposed here in that GAIfO with self-observation uses vi-

sual data both in the process of discriminator and policy learning. That is, the

learned behavior policy maps images o to actions using a convolutional neural

network. We hypothesize, however, that also leveraging available propriocep-

tive state information, s, during the learning process will result in better and

faster learning. Therefore, the technique proposed in this section leverages

proprioceptive information in the policy learning step, instead learning poli-

cies that map proprioceptive states s to actions using a multilayer perceptron

architecture.

Inspired by GAIfO , this technique comprises two pieces: (1) a genera-

tor, which corresponds to the imitation policy, and (2) a discriminator, which
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serves as the reward function for the imitator. We model the imitation pol-

icy as a multilayer perceptron (MLP), πθ. The imitating agent, being aware

of its own proprioceptive features s, feeds them into the policy network and

receives as output a distribution over actions from which the selected action

a can be sampled. The imitator then executes this action and we record a

video of the resulting behavior. After several actions have been executed, we

have accumulated a collection of visual observations of the imitator’s behavior,

{τ ii }.

Meanwhile, a convolutional neural network is used as a discriminator

D. Given visual observations of the demonstrator, {τ ei }, and observations of

the imitator, {τ ii }, the discriminator is trained to differentiate between the

data coming from these different sources. Since single video frames lack ob-

servability in most cases, stacks four frames, {ot−2, ot−1, ot, ot+1} are generated

and fed as input to the discriminator.

Similar to GAIfO the discriminator is trained to output values closer

to zero for the transitions coming from the expert, and values closer to one

for those coming from the imitator. Therefore, the discriminator aims to solve

the following optimization problem:

max
D∈(0,1)O4

(
Eπθ [log(D(ot−2 : ot+1))]+

Eπe [log(1−D(ot−2 : ot+1))]
)
.

(6.5)

The lower the value outputted by the discriminator, the higher the chance of

the input being from the expert. Recall that the objective for the imitator is to
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mimic the demonstrator, which can be thought of as fooling the discriminator.

Therefore, we use (
Eπθ [log(D(ot−2 : ot+1))]

)
(6.6)

as the cost to update the imitation policy using RL. In particular, we use

proximal policy optimization (PPO) [116] with gradient steps of

Eπθ [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ), (6.7)

where Q(s, a) is the state-action value, i.e. the potential reward that the agent

receives starting from s and taking action a:

Q(ŝt, ât) =

− Eπθ [log(D(ot−2 : ot+1))|s0 = ŝt, a0 = ât].
(6.8)

As presented, the proposed algorithm uses the visual information in

order to learn the reward function by comparing visual data generated by the

imitator and the demonstrator. It also takes advantage of proprioceptive state

features in the process of policy learning by learning a mapping from those

features to actions using a reinforcement learning algorithm. Pseudocode and

a diagrammatic representation of the proposed algorithm are presented in

Algorithm 5 and Figure 6.2, respectively.

6.4 Experiments

In this section, we provide the results of the experiments performed for

the two extensions of GAIfO that handle video demonstrations.
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Algorithm 5

1: Initialize policy πθ randomly
2: Initialize discriminator D randomly
3: Obtain visual demonstrations De = {τ ei } from an expert policy πe

4: for i← 0 to N do
5: Execute πθ and record video observations {τ ii }
6: Update the discriminator D using loss

−
(
Eπθ [log(D(ot−2 : ot+1))]+

Eπe [log(1−D(ot−2 : ot+1))]
)

7: Update πθ by performing PPO updates with gradient steps of

Eπθ [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ),

where

Q(ŝt, ât) =

− Eπθ [log(D(ot−2 : ot+1))|s0 = ŝt, a0 = ât]

6.4.1 Visual GAIfO with Self-observation

The first extension of the GAIfO algorithm uses self-observation to en-

able autonomous agents to imitate from raw visual demonstrations. In this

section, we describe the experiments performed to evaluate the proposed al-

gorithm in comparison to other visual imitation algorithms. We hypothesize

that the proposed algorithm will outperform the baselines due to the fact that

the adversarial framework is able to use a customized, learned cost function

at each new iteration.
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Figure 6.2: A diagrammatic representation of the extension of GAIfO algo-
rithm for processing visual demonstration that leverages proprioceptive infor-
mation. A multilayer perceptron (MLP) is used to model the policy, which
takes the proprioceptive features st as the input and outputs an action at. The
agent then executes the action in its environment. While the agent executes
the policy, a video of the resulting behavior is recorded. Stacks of four con-
secutive grayscale images (ot−2 : ot+1) from both the demonstrator and the
imitator are then prepared as the input for the discriminator, which is trained
to discriminate between data coming from these two sources. Finally, the dis-
criminator function is then used as the reward function to train the policy
using PPO (not shown).

6.4.1.1 Setup

The proposed method, GAIfO with self-observation, is evaluated on a

set of continuous control tasks in BulletPhysics: ReacherBulletEnv, Inverted-

PendulumBulletEnv, InvertedPendulumSwingupBulletEnv, and HopperBul-

letEnv. These domains are described in detail in Section 3.2.

In these experiments, like the ones done using the lower-dimensional

state representations, the expert is trained with TRPO or PPO (the one with

better performance is selected) using low-level state features and the ground

truth reward function provided by Pybullet. Then, 64 × 64, 30-fps video

demonstrations are recorded.
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We illustrate the comparison between the performance of this GAIfO ex-

tension, BCO and TCN 2. The BCO algorithm is as described in Chapter 4

with the only difference being that observations are used instead of states to

learn the inverse dynamics model and the policy and TCN is as described in

Section 5.6. Furthermore, for a more-representative baseline, we also learn a

policy with TRPO using visual states only as opposed to the low-dimensional

state observations. This line is important in our comparison because it shows

(everything being similar to IfO methods) what would have been the resulting

performance if the agent had access to the reward.

6.4.1.2 Results

In this section, we evaluate our hypothesis that the proposed algorithm

outperforms the baselines. Figure 6.3 shows the results of the experiments on

the Pybullet domains in which the rectangular bars and error bars represent

mean return and standard deviations and quantities 0 and 1 represent the

performance of a random agent and the expert, respectively. This figure shows

that GAIfO with self-observation outperforms other approaches by a large

margin.

It is interesting to notice that, even though GAIfO with self-observation

(like the other IfO techniques) does not achieve the performance of the expert

agent (solid line), it does achieve the performance of the TRPO-trained agent

2Here, we do not compare against GAIL because doing so would require a drastic change
to the structure of its discriminator in order to process raw visual data, i.e., the discriminator
would need to be altered to appropriately mix action and visual data.
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Figure 6.3: Performance of algorithms in visual experiments with respect to
the number of demonstration trajectories. Rectangular bars and error bars
represent mean return and standard deviations, respectively. For comparison
purposes, we have scaled all the performances such that a random and the
expert policy score 0.0 and 1.0, respectively.

that used visual state representations. These results suggest that, in these

cases, the drop in imitation performance is perhaps due to a fundamental lim-

itation of learning the task from visual data (i.e., partial state observability).

Finally, it can be seen that BCO does not perform well in any of the

domains, perhaps due to (a) the complexity of learning dynamics models over

visual states, and (b) compounding error. TCN also does not work well,

perhaps due to the demonstrations not being time-synchronized.

6.4.2 Visual GAIfO with Proprioceptive Information

The second extension of the GAIfO algorithm combines proprioceptive

state information with video observations in an adversarial imitation learning

paradigm. We hypothesize that using the extra state information in the pro-

posed way will lead to both faster imitation learning and better performance

on the imitated task when compared to similar techniques that ignore propri-
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oception. In this section, we describe the experimental procedure by which we

evaluated this hypothesis, and discuss the results.

6.4.2.1 Setup

We evaluated our method on a subset of the continuous control tasks

available via OpenAI Gym [17] and the MuJoCo simulator [135]: Mountain-

CarContinuous, InvertedPendulum, InvertedDoublePendulum, Hopper, Walker2d,

HalfCheetah. These domains are discussed in detail in Section 3.2.

To generate the demonstration data, we first trained an expert agent

using pure reinforcement learning (i.e., not from imitation). More specifically,

we used Trust Region Policy Optimization (TRPO) and Proximal Policy Op-

timization (PPO) [116] with the ground truth reward function provided by

OpenAI Gym and selected the best agent for each of the domains. After the

expert agents were trained, we recorded 64× 64, 30-fps video demonstrations

of their behavior.

We compared the proposed method with three other imitation from ob-

servation algorithms that do not exploit the imitator’s proprioceptive state in-

formation: Time Contrastive Networks (TCN ) [117], Behavioral Cloning

from Observation (BCO) [136], and Generative Adversarial Imitation Learning

(GAIfO) with self-observation.
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6.4.2.2 Results

We hypothesized that the visual extension of GAIfO that uses pro-

prioceptive information would outperform the baselines with respect to two

criteria: (1) the final performance of the trained imitator, i.e., how the imi-

tator performs the task compared to the demonstrator (as measured by the

ground truth reward functions), and (2) the speed of the imitation learning

process as measured by number of learning iterations. The results shown here

were generated using ten independent trials, where each trial used a different

random seed to initialize the environments and model parameters.

Figure 6.4 depicts our experimental results pertaining to the first cri-

terion, i.e., the final task performance of trained imitating agents in each

domain. The rectangular bars and error bars represent the mean return and

the standard error, respectively, as measured over 1000 trajectories. We re-

port performance using a normalized task score, i.e., scores are scaled in such

a way that the demonstrating agent’s performance corresponds to 1.0 and the

performance of an agent with random behavior corresponds to 0.0. The x-axis

represents the number of demonstration trajectories, i.e., videos, available to

the imitator. In general, it can be seen that the proposed method indeed out-

performs the baselines in almost all cases, which shows that using the available

proprioceptive state information can make a remarkable difference in the final

task performance achieved by imitation learning. In the particular case of

InvertedPendulum, both GAIfO with self-observation and GAIfO with pro-

prioceptive information achieve a final task performance equal to that of the
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Figure 6.4: Performance comparison of visual IfO algorithms presented in this
chapter. The rectangular bars and error bars represent the mean normalized
return and the standard error, respectively, as measured over 1000 trials. The
normalized values have been scaled in such a way that expert and random
performance are 1.0 and 0.0, respectively. The x-axis represents the number
of available video demonstration trajectories.

demonstrator, likely due to the simplicity of the task. However, for the rest of

the tasks, it can be clearly seen that GAIfO with proprioceptive information

performs better than GAIfO with self-observation.3 Further, we can see that

3Note that the performance of GAIfO with self-observation on Hopper is different from
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increasing the number of demonstrated trajectories results in increased task

performance.

To validate our hypothesis with respect to learning speed, we also stud-

ied the transient performance of the various learning algorithms. Because only

one other method, GAIfO with self-observation, performed as well as the ex-

pert in only one domain, InvertedPendulum, Figure 6.5 only depicts the results

for these algorithms in that domain. The x-axis shows the number of itera-

tions, i.e., the number of update cycles for both the policy and the discrim-

inator. Since updating the policy requires interaction with the environment,

a smaller number of iterations also corresponds to less overhead during the

learning process. As shown in the figure, GAIfO with proprioceptive infor-

mation converges to expert-level performance much faster than GAIfO with

self-observation, which supports our hypothesis that leveraging proprioception

speeds the imitation learning process.

In Figure 6.4, we can see that two of the baseline methods—BCO and

TCN —do not achieve task performance anywhere near that of the expert.

For InvertedPendulum and InvertedDoublePendulum, we suspect that

TCN performs poorly due to possible overfitting of the learned state embed-

ding to the specific demonstrations and, therefore, does not generalize well

what was presented in the previous section. We hypothesize that the reason is twofold:
(1) different physics engines—MuJoCo is used in this paper, but in the previous section
Pybullet [25] was used, and (2) differences in video appearance—in this work we do not alter
the default simulator parameters, whereas in the previous section some of the parameters
were modified such as the colors used in the video frames in order to increase the contrast
between the agent and the background.
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Figure 6.5: Performance of imitation agents with respect to the number of
iterations (N). Solid colored lines represent the mean return and shaded areas
represent standard errors. The returns are scaled so that the performance of
the expert and random policies are zero and one, respectively.

toward supporting the overall goal of keeping the pendulum balanced above

the rod. For Hopper, Walker2d, and HalfCheetah, the poor performance of

TCN may be due to the fact that the tasks are cyclical in nature and therefore

not well-suited to the time-dependent learned state embedding. TCN performs

relatively better in MountainCarContinuous, compared to other domains be-

cause this domain does have the properties required by TCN . As for BCO , we

posit that the low performance is due to the well-known compounding-error

issue present in behavioral cloning.

One interesting thing to note is that results in Walker2d have larger

error bars for our technique than those seen for any of the other domains.
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We hypothesize that the reason for this is that the video frames provide very

poor information regarding the state of the demonstrator—here, the agent

has two legs, which sometimes results in occlusion and, therefore, uncertainty

regarding which action the agent should take.

Finally, we can see that GAIfO with proprioceptive information per-

forms the most poorly in the HalfCheetah domain. We hypothesize that this

is due to the speed at which the demonstrator acts: frame-to-frame differ-

ences are large, e.g., three to four consecutive frames cover a complete cycle

of the agent jumping forwards. This rate of change may make it difficult for

our discriminator to extract a pattern of behavior, which, consequently, would

make it much more difficult for the agent to move its behavior closer to that

of the demonstrator. Therefore, one way that performance might be improved

is to increase the frame rate at which the demonstrations are sampled. An-

other way, as suggested by Figure 6.4, would be to increase the number of

demonstration trajectories beyond what is shown here.

6.5 Summary

In this chapter, we proposed two extensions for GAIfO that allow au-

tonomous agents to imitate from visual demonstrations. The first algorithm

involved using convolutional neural networks two model both the policy and

the discriminator. We hypothesized that this algorithm would outperform

other algorithms with the same ability and verified this hypothesis on contin-

uous control domains in Pybullet. The second algorithm was another extension
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of GAIfO that leverages both available visual and proprioceptive information

and we hypothesized that including proprioception would be beneficial to the

learning process in the IfO paradigm. This algorithm uses visual information

to compare the imitator’s behavior to that of the demonstrator, and uses this

comparison as a cost function for training a policy over proprioceptive states.

We showed that leveraging this state information can significantly improve

both the performance and the efficiency of the learning process.
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Chapter 7

Reinforced Inverse Dynamics Modeling

In this chapter, an algorithm called reinforced inverse dynamics mod-

eling (RIDM ) is introduced that is model-based – similar to BCO – and com-

bines imitation learning from observation and reinforcement learning in order

to take advantage of the strengths of both frameworks. This algorithm re-

quires a relatively small number of environment interactions and works with

only one state-only demonstration. RIDM is thoroughly evaluated in the Mu-

JoCo simulator [135], in the 3D SimSpark simulator [13, 152], and on a UR5

robot.

Work in this chapter is based on a paper, RIDM: Reinforced Inverse

Dynamics Modeling for Learning from a Single Observed Demonstration [95]

in collaboration with Brahma Pavse and Josiah Hanna, published in IEEE

Robotics and Automation Letter and presented in 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS 2020), and an-

other paper, UT Austin Villa: RoboCup 2019 3D Simulation League Compe-

tition and Technical Challenge Champions [79] in collaboration with Patrick

MacAlpine and Brahma Pavse, published in Robot World Cup 2019.
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7.1 Overview

Two of the most prevalent paradigms for behavior learning in artificial

agents are imitation learning (IL) [112, 3] and reinforcement learning (RL)

[128]. Agents that use imitation learning receive a strong training signal in the

form of an expert demonstration, but because their goal is to imitate, their task

performance is typically bounded above by that of the expert. Agents using

reinforcement learning, on the other hand, can theoretically learn behaviors

that are optimal with respect to a predefined task cost, but often have difficulty

doing so due to practical challenges such as large state spaces and sparse cost

functions. Because of the relative advantages and disadvantages of each of

these paradigms, it is natural to investigate whether one can integrate them

in order to get the best of both methods.

While combining imitation learning and reinforcement learning has

been explored to a certain extent in the literature [132, 70, 161], several im-

portant issues remain. Most importantly, these techniques require access to

the actions used by a demonstrator in order to be able to leverage the demon-

stration information [49, 161, 48], meaning that imitation from observation

has not been explored in this setting. A second limitation of many exist-

ing techniques is the requirement for many expert demonstrations [14], which

makes obtaining sufficient demonstration data difficult in that it requires a

high level of access to expert demonstrators. Finally, existing methods typ-

ically assume that they have access to task-specific state features during the

learning process that can be used to make learning easier [49, 136, 139]. Task-
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specific state features are ones that somehow augment the agent’s natural (or

raw) state information using additional domain knowledge—like the distance

to certain important subgoals—designed to make cost function representation

easier (see, e.g., Figure 7.2). While providing this domain knowledge may be

fairly easy for a specific task, it will, in general, need to be specified anew for

each new task encountered and therefore represents a practical impediment to

using existing methods.

In this chapter, a new technique for integrating imitation learning

from observation and reinforcement learning called reinforced inverse dynam-

ics modeling (RIDM) is introduced that bypasses the issues identified above.

RIDM leverages recent ideas from model-based imitation from observation

(IfO) to enable integrated imitation and reinforcement learning from a single,

action-free demonstration consisting of only raw states. Moreover, RIDM rep-

resents a new paradigm for combining imitation learning and reinforcement

learning in that the agent’s behavior is based on following a fixed demon-

stration trajectory using a parameterized task-specific inverse dynamics model

(IDM) (see, Figure 7.1). A task-specific IDM is one that maps state-transitions

to actions for a specific task only and may not generalize to other tasks that

have different cost functions. While RIDM requires the demonstration tra-

jectory during execution, its overall objective is not to imitate, but rather to

minimize the external environment cost. RIDM accomplishes the cost min-

imization by using reinforcement learning to tune the IDM that attempts to

follow the fixed demonstration such that the resulting behavior leads to the
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lowest environmental cost. Formulating the overall reinforcement learning

problem in this way allows RIDM to diverge from the demonstration if doing

so will lead to lower task cost, which is helpful when the demonstration is

sub-optimal. To the best of our knowledge, RIDM is the first algorithm that

combines IfO and RL.

To evaluate our algorithm, a baseline algorithm is established by modi-

fying the algorithm presented in Chapter 5, GAIfO , to incorporate an external

cost signal. RIDM is expected to be able to outperform this baseline in the

problem of interest where one, raw-state demonstration is provided. Several

quantitative experiments focused on both simulated and real robot control

tasks are performed, and it is shown that RIDM ’s unique, model-driven ap-

proach results in high-quality behavior trajectories that lead to better perfor-

mance than the baseline.

7.2 Problem Setting

In this chapter, an algorithm is proposed that integrates reinforcement

learning and imitation from observation. The idea is to combine both ap-

proaches in a manner that can take advantage of the strengths of each.

The agent-environment interaction is modeled as an MDP , denoted

by M = 〈S,A, P, c〉. As noted in Chapter 2, S is the state space of the

agent, A is the action space of the agent, P defines the environment transition

function that gives the probability of the agent moving from one state to

another given that the agent took a particular action, and c is the scalar-
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Figure 7.1: RIDM uses a task-specific inverse dynamics model, Mθ, to
trasnform the learner’s current state st and the demonstrator’s next state
set+1, such that the sequence of executed actions, {at}, minimizes the cumula-
tive cost from the environment. At each time step, the agent uses the demon-
strator’s next state, set+1 (black dot), as the set point for Mθ. However, the
agent actually reaches st+1 (red dot) instead—which is typically not the set
point—since RIDM optimizes Mθ to minimize environment task cost instead
of trajectory-tracking error.

valued cost function that dictates the cost incurred by the agent when moving

from one state to another via a particular action. In the context of the problem

setting considered in this chapter, the agents have access to the cost function c

and also a single, state-only demonstration τ e = {se0, se1, · · · , seN}. The agent’s

goal is to find a policy that it can use to select actions at to take at each time

step that allow it follow the demonstration as closely as possible while also

minimizing the cost.

7.3 Reinforced Inverse Dynamics Modeling

Reinforced inverse dynamics modeling (RIDM ) – a new method for

integrating IfO and RL – is now introduced. RIDM learns a strategy by
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which an agent can select actions {at} that allow it to achieve a high level

of task performance when it has available a single, state-only demonstration,

De = {set} and a cost function, Cenv.

RIDM finds such a strategy by learning and using a task-specific in-

verse dynamics model (IDM), Mθ, that computes which action to take at

any given time instant based on both the agent’s current state and a desired

next state, the set point. Under RIDM , the agent’s actions are computed as

at = Mθ(st, s
e
t+1), where st is the learner’s current state and set+1 is the state

of the demonstrator at the next time instant. The goal of RIDM is to find an

optimal θ such that the generated action sequence minimizes the cumulative

cost from the environment, Cenv(Mθ). That is, while RIDM selects which ac-

tions to take by using the demonstrator’s state sequence as a sequence of set

points, it evaluates its policy in relation to the environmental cost as opposed

to, e.g., the trajectory-tracking error. Note that it may actually be desirable

for the induced state sequence to differ from that of the demonstrator’s if this

difference ends up leading to a lower environment cost. Figure 7.1 depicts

this process. To the best of our knowledge, using such a scheme to perform

integrated IfO and RL is unique in the literature.

RIDM consists of two phases: (1) the IDM initialization, and (2) the

IDM reinforcement. The initialization of the IDM can either be done by select-

ing θ at random, or – if a known policy is available to the learner – by having the

agent generate its own set of state-action-next-state triples and using super-

vised learning to fit θ to those triples. In the second phase, RIDM alternates
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between generating agent behavior according to θ and the demonstration, and

optimizing θ in response to the amount of environment cost obtained by the

generated behavior. During this phase, the learner uses the demonstration

to guide the agent’s behavior (i.e., imitation), but uses the observed environ-

ment cost to adjust θ such that actions leading to low costs are generated (i.e.,

reinforcement). The goal of this two-phase procedure is to find the optimal

policy in terms of total task cost (which may outperform the demonstrator)

by using the demonstration as a guide. The pseudo-code for RIDM is given

in Algorithm 6, and each phase is described in more detail below1.

Algorithm 6 RIDM

Require: Single, state-only demonstration De := {set}
1: if πpre available then
2: Generate Dpre := {(spret , apret )} using πpre

3: Initialize θ as the solution to (7.1)
4: else
5: Initialize θ uniformly at random

6: while θ not converged do
7: for t = 0 : |De| − 1 do
8: at := Mθ(st, s

e
t+1)

9: Execute at and record st+1 and cost c(st, at)

10: Compute cumulative episode cost Cenv =
∑

t c(st, at)
11: Update θ by solving (7.2)

return θ∗

1Even though RIDM is described as a method that requires both environment costs
and state-only demonstrations, the algorithm can be used even if the cost is not available
for instance by defining the cost as the distance between the demonstrated state and the
imitator’s state at each time step.
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7.3.1 Inverse Dynamics Model Pre-training

During RIDM ’s optional first phase, an initial value for θ is sought.

This initialization is accomplished either through the use of data collected by

the learner using a pre-defined exploration policy or, if such a policy is not

available, by selecting the parameter value at random. We allow for RIDM to

take advantage of an available exploration policy so that it can achieve a rea-

sonable level of task performance, which is likely to get us into a good basin of

attraction within the optimization landscape. From a high level point of view,

this step is similar to inverse dynamics model learning step of BCO presented

in Section ?? in that in both cases, they are pre-training the IDM. However,

they are different in the sense that here, this step is only happening if a rea-

sonable exploration policy that could perform relatively well is available. In

BCO , on the other hand, the exploration policy was considered to be random.

In the case where an exploration policy πpre is available (e.g. if a

slow-walk policy is available and we want the agent to learn a fast walk),

RIDM computes an initial value for θ as follows. First, the learner executes

πpre in the environment and records the resulting experience as a trajectory

of length T that we denote as Dpre = {(spret , apret , spret+1)}. The initial value for

θ is then computed by solving the following supervised learning problem:

θ∗ = argmax

(
− 1

T

T∑
t=1

N∑
n=1

|Mθ(s
pre
t , spret+1)n − apretn |

max (apren )−min (apren )

)
, (7.1)

where N is the dimensionality of the action space, apretn denotes the scalar

value of the nth component of the action vector apret , and max(apren ) denotes
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the maximum value of apretn across all t. Above, notice that the goal of the

optimization problem is to select θ such that Mθ(s
pre
t , spret+1)n is a good approx-

imation of the true action value apretn . We adopt the particular loss given above

because we found that it worked well in practice. It is able to effectively trade

off short-term errors in order to optimize the differences across a full trajec-

tory, and the normalization term ensures greater accuracy for actions which

vary over a smaller range. RIDM solves (7.1) using a blackbox optimization

technique (e.g., CMA-ES [46]). Note, however, that this pre-training phase

is optional, and only possible when RIDM has access to an exploration pol-

icy that generates a behavior that is qualitatively similar to the desired end

behavior.

7.3.2 Inverse Dynamics Model Reinforcement

RIDM ’s required second phase seeks to iteratively update the inverse

dynamics model parameters in response to the environment return. The

process executed here is illustrated in Figure 7.1, where one can see that

RIDM uses the demonstration as a behavior template in the sense that the

demonstrator’s state trajectory is used as a sequence of set points.

The iterative updates to θ are computed as follows. First, the learner

uses Mθ and the demonstration to generate a trajectory of experience. It does

so by, when in state st at time step t, executing action at = Mθ(st, s
e
t+1), which

results in a transition to state st+1 and the observation of cost c(st, at). After

an entire trajectory has been generated, the learner computes the cumulative
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environment cost Cenv(D
e ; θ) =

∑
t c(st, at), which is dependent on both the

(fixed) demonstration data De and the (tunable) model parameters θ. In a

given iteration, i, an update to θ is computed as the solution to:

θi = arg maxCenv(D
e ; θi−1) . (7.2)

It is important to note that, here, the demonstrator’s actions are unknown.

While Cenv(D
e ; θ) is used to reinforce the learning of the inverse dynamics

model parameters, the learner is always guided by the same, fixed, state-only

demonstration trajectory.

For each iteration of the above procedure, RIDM solves (7.2) again

using a blackbox optimization technique (eg., CMA-ES [46] or Bayesian opti-

mization [96]).

7.4 Empirical Results

We now empirically validate our hypothesis, i.e., that behaviors learned

using RIDM will outperform those learned by the established baseline, i.e., a

modified version of GAIfO . We focus on the case in which only a single, state-

only demonstration is available to the agent and when no task-specific state

augmentation can be performed. Our experiments are executed in multiple

robot control domains: simulated tasks are carried out in the MuJoCo and

SimSpark simulators, and several manipulation tasks are carried out on a

UR5 robot arm. These environments are extensively discussed in Chapter 3.

In the first set of experiments with the MuJoCo simulator, neural net-
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works are used to model IDMs since other literature has shown that such

models are effective in the corresponding domains. The selected neural net-

work IDM receives a single (state, next-state) pair as input, and outputs the

parameters of a Gaussian distribution from which an action is to be sampled

and executed by the agent. For the experiments in the SimSpark simulator and

the real world, PID controllers are used as IDMs since, again, such controllers

have proven effective in these domains in the past2.

During training, the next state (or set point) at each time step is fixed

according to the demonstration, and RIDM uses reinforcement learning to

tune the IDM parameters (either NN parameters or PID gains) such that

the overall agent behavior can best minimize the external environment cost.

RIDM uses CMA-ES[46] in all the simulated experiments, but uses Bayesian

optimization[96] in the physical robot experiments to learn the inverse dynam-

ics model due to its superior sample complexity.

This rest of this section is organized as follows. First, we provide exper-

imental motivation for studying RIDM in the single, state-only demonstration

and raw state space case. Next, we establish a reasonable IfO+RL baseline

that can also operate in this regime, and we validate our hypothesis by com-

paring RIDM to this baseline. In each of our evaluations, we scale the reported

performance metrics such that a score of 0 corresponds to the behavior of a

2PID controllers are not exactly inverse dynamics models due to their differential and
integral terms. However, they retain the essential characteristic that RIDM requires, i.e.,
that, given a current state and desired next state (or set point), they will generate an action
that attempts to reach the set point.
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random policy, and a score of 1 corresponds to the behavior of the demonstra-

tor. Note that, when the demonstrator performance is sub-optimal, because

we are combining imitation learning with reinforcement learning, it is reason-

able to expect that the algorithm will outperform the demonstrator on some

tasks. Finally, we conclude this section by reporting additional empirical re-

sults for applying RIDM to both simulated robot soccer skill learning and to

learning to perform a behavior on a physical UR5 arm robot.

7.4.1 Raw vs. Augmented State

Prior research has established that the availability of demonstrator

action information and many demonstration trajectories are critical for the

success of existing imitation learning algorithms [136, 139]. While RIDM is

advantageous in that it does not depend on the availability of the above in-

formation, we have also claimed that it can operate directly on raw state

information that has not been augmented using extra knowledge of the task

which, of course, is typically unknown or difficult to obtain. We now seek

to experimentally motivate the need for overcoming this issue by showing the

level of reliance on these augmented state spaces in many existing imitation

and reinforcement learning algorithms.

In Figure 7.2, we compare the scaled performance of an imitation from

observation algorithm (GAIfO [139] introduced in Chapter 5) and a reinforce-

ment learning algorithm (TRPO [115]) when they are given access to an aug-

mented state space vs. when they are exposed to only the raw state space on
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six tasks from the MuJoCo domain [135]3. Here, the raw state space refers

to the list of joint angles, and the augmented state space also includes task-

specific information. For instance, in the Hopper task, the augmented state

space includes the agent’s global position which is advantageous in that it is

more highly correlated with the cost signal (see, e.g., [139, 140, 49, 115, 116]).

In this specific task, the agent’s goal is that of controlling the limbs of a 2D,

one-legged robot such that it moves forward as fast as possible. The task

cost given per time step corresponds to the change in global position of the

agent, and since this information appears in the augmented state information,

both learning algorithms perform much better (except for GAIfO in the Ant

domain, perhaps due to the very large (111 dimensional) augmented state

space). This advantage can be seen in Figure 7.2, where the high reliance of

GAIfO [139] and TRPO [115] on the augmented state space is readily appar-

ent. Designing state spaces is, in general, a relatively hard task. The difficulty

arises in that, to get the best performance possible, the state space should

have just the right amount of information, which often requires a significant

amount of domain knowledge and, therefore, our preference here is to remove

this requirement.

Because we seek to remove the above restriction, we use only the joint

angles as the raw state information in our experiments. Many robots are

composed of joints, and therefore a joint-only representation is reasonably task-

3The MuJoCo experiments use all the standard settings, e.g., the cost functions, the
goals, and the augmented state spaces, as defined in the MuJoCo code base.
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Figure 7.2: Quantitative exhibition of the importance of an augmented state
space for high performance on six MuJoCo domains for GAIfO and TRPO .
Mean and standard deviations are over 100 policy runs. The results are
brought here as we seek the RIDM to operate over raw state space and to
show how challenging it is to learn when raw state space is considered com-
pared to augmented space. Both methods use a neural network parameterized
policy.

independent. The core results of our algorithm are exclusively concerned with

dealing with the above case, i.e., single state-only demonstration consisting of

joint angles.

7.4.2 RIDM Applied to MuJoCo Simulation

We now present our core results. This section is organized as follows.

Section 7.4.2.1 proposes a reasonable baseline to compare against our method.

Section 7.4.2.2 presents the performance of our algorithm against this baseline.
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7.4.2.1 Baseline: GAIfO+RL

To the best of our knowledge, there is no method in the existing lit-

erature which can operate in the experimental setting of interest. Therefore,

in order to understand the effectiveness of RIDM , we first introduce a natu-

ral combination of the best existing algorithms for the components of RIDM ,

namely IfO and RL as the baseline, which we refer to as GAIfO+RLand then

compare the performance of RIDM against this algorithm in MuJoCo envi-

ronments4.

GAIfO+RL is based on the current state-of-the-art imitation from ob-

servation algorithm, GAIfO [139]. Starting from GAIfO , GAIfO+RL inte-

grates RL by modifying the cost function used during the agent update step.

Instead of the cost function being determined solely by the discriminator as in

GAIfO , GAIfO+RL integrates imitation and reinforcement learning by defin-

ing a new cost function that is a linear combination of the discriminator’s

output and the task cost [161].

In Figure 7.3, we establish that GAIfO+RL is a strong baseline by

evaluating the performance of GAIfO alone, RL alone (TRPO/PPO), and

GAIfO+RL. All three methods operate in the raw (un-augmented) state

space, and GAIfO and GAIfO+RL are also given access to a single, state-only

demonstration. While the performance of either pure IfO or pure RL alone is

4The baseline algorithm’s high sample complexity prevents us from using it on SimSpark
simulator and UR5 and therefore, this algorithm is only considered as the baseline for
MuJoCo experiments
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Figure 7.3: Establishment of GAIfO+RL as a reasonable IfO+RL baseline to
compare against RIDM . All methods use the same single state-only demon-
stration consisting of only raw states (exclusively of joint angles). Mean and
standard deviations are over 100 policy runs. All methods use a neural network
parameterized policy.

relatively poor, we can see that GAIfO+RL achieves significantly higher per-

formance than its parts. Moreover, GAIfO+RL operates in the same estab-

lished regime and belongs to the same class of IfO+RL algorithms as RIDM ,

and therefore seems to be a reasonable imitation from observation + reinforce-

ment learning algorithm.

7.4.2.2 Hypothesis Validation

We conducted an experiment comparing the scaled performance of

RIDM against that of the GAIfO+RL baseline on six tasks from the Ope-

nAI Gym domain. The demonstrators are generated using TRPO/PPO with

augmented states. However, the demonstrated trajectories only include the
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raw state information. Here, we first model the inverse dynamics model using

a neural network and train the network to minimize the received cost while

attempting to follow the demonstrator trajectory. The results are presented in

Figure 7.4. It can be seen that RIDM outperforms GAIfO+RL in five of the

domains. The only domain that the performance is worse than the baseline

is the Ant domain. We speculate that the neural network IDM is not able to

learn a meaningful model due to the complexity of the domain resulting from

the large number of joints compared to each of the other domains. In Section

7.5, we show that if RIDM uses a lower-dimensional parameterized IDM (e.g.

a PID controller), the performance of the learning agents is improved.

7.4.3 RIDM Applied to SimSpark RoboCup 3D Simulation

We now report the results of using RIDM to learn agent behaviors

in the RoboCup 3D simulation environment, SimSpark[13, 152]. Specifically,

our goal was to determine whether or not RIDM could imitate agent skills

exhibited by the agents of other teams that participate in the RoboCup 3D

simulation competition [78]. Since the opponent’s policies are unknown, we

obtain the demonstration by executing the teams’ computer-readable but non-

human-readable code in the environment.

In our experiments, we are interested in two tasks: (1) speed walking,

and (2) long distance kick-offs. We collect demonstration data of two teams,

FC Portugal (FCP) [104] and FUT-K [59]. RIDM pre-trained the model (see

Section 7.3.1) using walk and kick exploration policies from our own team,
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Figure 7.4: Comparison of RIDM final performance against established base-
line, GAIfO+RL, on the MuJoCo domains on the same single state-only
demonstration consisting of only raw states (exclusively of joint angles). Mean
and standard deviations for GAIfO+RL and RIDM are over 100 policy runs.
GAIfO+RL uses a neural network parameterized policy. For each domain, in
order of x-axis, the numbers of iterations required for RIDM are 700, 800,
400, 100, 900, and 1300 and for GAIfO+RL are 400, 800, 1000, 1000, 1200,
and 1500
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Figure 7.5: Comparison of RIDM learning process against established baseline,
GAIfO+RL, on the Swimmer domain on the same single state-only demon-
stration consisting of only raw states (exclusively of joint angles). Solid lines
represent the mean return and shaded areas represent standard deviations over
10 trials. While the shown graph is for Swimmer-v2, we observed the same
qualitative trend on other domains as well.

UT Austin Villa[78]. Here, we report results using only RIDM since it proved

infeasible to evaluate GAIfO+RL in this domain due to the computational

time complexity. We found that RIDM performed best with global PD gains

common to all joints as the inverse dynamics model.

Below are the cost function details of each task:

• Speed walking: Summation of distances (meters) travelled per time-step

with a −5 penalty for falling down.

• Long-distance kick-off:

Ckick = −(1 + xtotal) · exp
(−θ2

180

)
− xair · 100
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with a penalty −5 for bumping the ball, −10 for falling down, where

xtotal is the x-axis distance traveled by the ball, θ is the angle between

the ball’s trajectory and the line between the agent and center of the

goal, and xair is the x-axis distance for which the ball was traveling in

the air. Distances are in meters, and θ is in degrees.

Since we defined these cost functions independently from the demonstrations,

the demonstrations do not optimize the cost signals. The demonstrators are

trained for the RoboCup task; their performances are sub-optimal with regards

to our designed cost functions.

Tables 7.1 and 7.2 and summarize our results. We report both the

performance of the demonstrator and our agent. We can see that, since

RIDM takes advantage of both the cost functions and the demonstrations,

it allows our agents to outperform the sub-optimal demonstrators.

Table 7.1: RIDM vs. demonstrator for speed walking.

Demonstrator Agent Speed (m/s) Cost

FCP RIDM (ours) 0.81 -9.82
Demonstrator 0.69 -8.35

FUT-K RIDM (ours) 0.89 -10.70
Demonstrator 0.70 -8.47
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Table 7.2: RIDM vs. demonstrator for long-distance kick offs.

Demonstrator Agent xair (m) xtotal (m) Cost

FCP RIDM (ours) 13.78 24.05 -1386.00
Demonstrator 8.00 17.00 -808.00

FUT-K RIDM (ours) 10.62 16.23 -1064.00
Demonstrator 0.00 10.00 -1.00

7.4.4 RIDM Applied to a Physical UR5 Robot Arm

We also used RIDM for behavior learning on a physical robot. Specif-

ically, we used a UR5, a 6-degree-of-freedom robotic arm. We considered a

reaching task in which the arm begins in a consistent, retracted position, then

must move its end effector (i.e., the gripper at the end of the arm) to a target

point in Cartesian space, and finally must stop moving once the end effector

has reached the target point. We trained the demonstrator by iterating be-

tween iLQR [130] and dynamics learning with a specified cost function. We

then executed this demonstrator policy and recorded the resulting trajectories

to create the demonstration data [137].

For the physical arm experiments, we skip the pre-training phase for

two reasons: 1) we did not have access to a sub-optimal policy for each task,

and 2) for safety concerns, we did not want to use a random exploration policy.

For RIDM ’s second phase, we used a cost function defined as the Euclidean

distance of the end effector of the arm to the target point at each time step.

We used Bayesian optimization[96] as the blackbox optimization algorithm to

update the model parameters in response to the environment cost. Bayesian
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optimization works by constructing a posterior distribution over the space of

functions being optimized over. Here, this distribution was represented us-

ing a Gaussian process over functions that map PID values to the episode

returns. As the training proceeds and more data is observed, Bayesian opti-

mization techniques sharpen the posterior, resulting in more certainty as to

which regions of the parameter space are worth exploring further with more

trials and which are not. For simpler optimization problems, Bayesian opti-

mization is more sample efficient compared to CMA-ES and converges within

a few iterations.

Table 7.3 represents the results of our experiments on the UR5, where

we compare RIDM to a baseline behavior generated by using the demonstra-

tion state sequence as set points for the platform’s pre-defined, hard-coded

PID controller parameterization. The reported numbers are the averages and

standard deviations of episode returns over five separate experiments all of

which are reaching tasks with different target points. Table 7.3 shows that

while RIDM outperforms the original PID, it is worse than the demonstrator.

The reason is that the demonstrator is optimal with regards to the designed

cost function.

Table 7.3: RIDM vs. original PID controller vs. demonstrator.

Agent Reaching Pushing Pouring

RIDM (ours) 11.94 (1.55) 19.01 (1.03) 5.87 (0.08)

Original PID controller 36.57 (0.97) 58.98 (0.15) 15.67 (0.68)

Demonstrator 5.64 (0.76) 8.43 (0.11) 2.31 (0.04)
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Figure 7.6: Comparison of RIDM with PID as the IDM versus RIDM with
NN as the IDM and the maximum performance between the randomly gen-
erated PID values on the MuJoCo domain on the same single state-only
demonstration consisting of only raw states (exclusively of joint angles). Since
RIDM with PID uses a deterministic inverse dynamics model, we do not report
mean or standard deviations of our algorithm. ?PID version of RIDM used
global PID gains for Walker2d-v2, unlike on other domains where it used local
PD gains.
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7.5 Additional Results

Due to the impressive results acquired by RIDM with PID controllers

presented in previous sections, we performed another set of experiments on

the MuJoCo domains that used a PID controller as the IDM instead of a

neural network to see the effects that these two types of IDM have on the

performance of the algorithm. We compare RIDM with with PID controller

to 1) RIDM with a NN IDM (from Figure 7.4) and 2) the best-performing

randomly generated PID gain. We determined the best-performing random

PID gain by sampling 100 PID gains from a Gaussian distribution with mean

[0.45, 0.75, 0.15] and standard deviation [.5, .5, .5] (each index in the list cor-

responds to P, I, and D. In order for these values to be reasonable, they are

selected using domain knowledge), and selecting the best-performing set. Fig-

ure 7.6 provides experimental results for all six of the domains. One can see

that RIDM with a PID controller performs similarly to RIDM with an NN,

and in more complex domains such as Ant and Walker2d, significantly out-

performs it. The reasonably good performance of random PID gains shows

us that even an un-trained PID controller is an effective IDM. RIDM with a

PID controller is able to focus on optimizing just the (very few) parameters

of the PID controller (i.e., the gains) as opposed to a neural network policy,

where the policy space is much larger. Furthermore, no matter what the gains

are, the PID has a lot of knowledge built into it in that it is designed to try

to reach the set point whereas the NN is not predisposed to exhibit any such

behavior.
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7.6 Summary

In this chapter, we investigated whether or not several restrictive as-

sumptions common to many techniques that integrate imitation and reinforce-

ment learning – access to demonstrator action information, access to several

demonstrations, and knowledge of task-specific state augmentations – are nec-

essary. We hypothesized that they are not, and we proposed a new algorithm

called RIDM in order to validate that hypothesis. RIDM is a fundamentally

new method for integrated imitation and reinforcement learning that operates

in scenarios for which only a single, raw-state-only demonstration is provided.

We experimentally demonstrated that RIDM can find behaviors that achieve

good task performance in these scenarios. Moreover, our results show that it

outperforms a reasonable baseline technique while doing so. We posit that the

success of RIDM is due to the way in which it generates behavior trajecto-

ries and performs learning – RIDM generates behavior by directly using the

demonstration data as the set points for a parameterized but robust inverse

dynamics model, and iteratively optimizes the model parameters in response

to the environment cost. The above procedure not only generates reasonable

trajectories over which to learn, but also reduces the learning problem to one

over a relatively low-dimensional set of parameters when compared to other

approaches.

This chapter opens up many possible directions for future work. For

one, while RIDM is designed for single-demonstration scenarios, it may be

useful in some scenarios to try to extend it such that a generalized controller
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can be learned using numerous demonstrations of a specific task. For example,

in an arm-reaching task, we may have two different demonstrations with two

different target reaching points. Another open question is how RIDM will

perform when using optimization algorithms other than CMA-ES, such as

TRPO or PPO . Furthermore, in all of our experiments, the state spaces are

low-level features (only joint angles). Another possible future direction is to

investigate how RIDM performs with video demonstrations.
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Chapter 8

Data-Efficient Adversarial Learning for

Imitation from Observation

In this chapter, an extension of the algorithm presented in Chapter 5

(i.e., GAIfO) is introduced. This extension, Data-Efficient Adversarial Learn-

ing for Imitation from Observation (DEALIO) improves the sample-efficiency

of GAIfO in order to enable agents to learn tasks in the real world. The

proposed algorithm is evaluated in the MuJoCo simulator, and the results of

experiments on multiple domains are provided.

Work in this chapter is based on a paper, DEALIO: Data-Efficient

Adversarial Learning for Imitation from Observation [142], published in Pro-

ceedings of the International Conference on Intelligent Robots and Systems

(IROS 2021).1

8.1 Overview

Imitation learning from observation (IfO) [77, 141] considers explicitly

the case where artificial agents seek to learn behaviors from demonstrations

1An earlier version of this work was presented in ICML Workshop on Imitation, Intent,
and Interaction (I3) [137]. This paper [142] however, is drastically different both in the
design of the proposed algorithm and the experiments.
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Figure 8.1: A block diagram representing the learning flow of DEALIO . A
time-varying Gaussian controller p(a|s) is initialized and used to collect tra-
jectories {τ i} which are then used to fit a linear Gaussian dynamics model
P (s′|s, a). The collected data {τ i} is also used with the demonstration data
De to train a discriminator Dθ which is a composition function of a quadratic
function h(., st, st+1) and a neural network gθ(st, st+1). The discriminator Dθ

and the dynamics model P (s′|s, a) are then used to extract the cost function
c(s, a) which is then used to update the controller p(a|s).
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consisting only of state information. As discussed in Chapter 5 and 6, one class

of algorithms that have achieved state-of-the-art performance on IfO problems

rely on techniques from adversarial learning [40]. Generative Adversarial Im-

itation from Observation (GAIfO) [139, 138] as an example uses adversarial

learning to bring the state-transition distribution of the imitator closer to that

of the demonstrator. GAIfO relies on a model-free RL algorithm as part of the

learning process, in which the goal is to learn a policy directly from samples

without forming or leveraging any intermediate representations of the environ-

ment or cost function. These model-free techniques typically exhibit extremely

high sample complexity, which can prove problematic in real-world settings in

which each sample required for learning incurs a high cost in terms of time,

energy, and/or risk.

One classical way in which the RL community has dealt with poor

sample efficiency is through the use of model-based RL. Unlike model-free

techniques, model-based RL algorithms make assumptions about the environ-

ment dynamics such as it being linear or differentiable, and learn a model

of the dynamics during the learning process. Model-free RL algorithms are

known to perform well at the cost of data inefficiency [67, 115], i.e., the final

learned policy is able to perform close to optimality, but learning it requires

many interactions with the environment. On the other hand, model-based

algorithms are more sample efficient, but, since they rely on assumptions to

build models, they typically result in sub-optimal policies, especially in en-

vironments that exhibit complex dynamics [27]. Some RL algorithms, such
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as PILQR [24] (as presented in Section 2.1.3), have been proposed to take

advantage of the benefits of both model-based and model-free algorithms.

In this chapter, we propose to address sample inefficiency in adversarial

IfO algorithms by integrating ideas from model-based RL. In particular, we

propose to integrate the sample-efficient RL updates from PILQR with the

high-performing GAIfO algorithm for IfO . The resulting algorithm, Data-

Efficient Adversarial Learning for Imitation from Observation (DEALIO), is

able to learn a time-varying linear Gaussian controller that can imitate a

demonstrator using state-only demonstrations of a behavior. We evaluate

DEALIO in several simulation domains and compare it with GAIfO . Our

results show that DEALIO can achieve good imitation performance using

far fewer environment interactions during learning. Moreover, in some cases,

DEALIO is even able to outperform GAIfO .

8.2 Problem Setting

As in previous chapters, the agents are modeled in the framework of

Markov Decision Processes (MDPs) which is often represented by a tuple

M = {S,A, P, c}, where S and A are state and action spaces, respectively,

P is a transition probability distribution, and c is the cost function. At a

given time instant, a decision-making agent operating within M finds itself

in state s ∈ S and takes an action a ∈ A based on a policy π : S → A. As

a result, agent moves to a new state s′ ∈ S with probability P (s′|s, a), at

which point the agent also receives feedback c(s, a) based on the cost function
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c : S× A → R. The goal of reinforcement learning agents is to use their own

experience to learn a policy that results in a behavior that incurs minimal

expected cumulative cost. Our problem of interest is IfO and therefore, the

agent does not have access to the cost function. Instead, it has access to

demonstrations that only consist of state information, i.e., De = {τ ei }, where

τ ei = {(se)}i.

Our work builds off of GAIfO [139, 138, 140] presented in Chapter

5. Recall that GAIfO attempts to learn a policy such that the imitator’s

state-transition distribution matches that of the demonstrator. The algorithm

works as follows. First, a random neural network policy πφ is initialized as the

imitator’s policy, which is used by the imitator to generate state trajectories

{τ ii } where τ ii = {(si)}i. Next, a neural network discriminator is trained to

discriminate between the state transitions provided by the demonstrator and

the state transitions generated by the imitator. Specifically, the discriminator

training is done using supervised learning with the following loss function:

−
(
E{τ ii }[log(Dθ(st, st+1))] + E{τei }[log(1−Dθ(st, st+1))]

)
, (8.1)

where D is the discriminator network parameterized by θ and st and st+1 are

two consecutive states. Finally, the model-free RL algorithm Trust Region

Policy Optimization (TRPO) [115] is used to update the imitator’s policy

using the cost function

E{τ ii }[log(Dθ(st, st+1))] . (8.2)
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While GAIfO has shown very promising performance, it also exhibits high

sample complexity. This chapter introduces an algorithm, DEALIO , that

integrates PILQR into GAIfO to make it more sample efficient.

8.3 DEALIO

We now introduce DEALIO , an algorithm for IfO that has the explicit

goal of making adversarial imitation learning from observation techniques more

sample efficient through the use of model-based RL. DEALIO is based on the

GAIfO algorithm discussed in Section 5.4, in which a neural network dis-

criminator attempts to distinguish between state transitions generated by the

current imitation policy and state transitions generated by the demonstrator.

The discriminator’s output is used as the cost function that drives imitation

policy learning using the model-free RL algorithm TRPO . To improve sample

efficiency, DEALIO replaces TRPO with the PILQR algorithm that computes

policy updates using a combination of model-based and model-free RL.

Making this change to GAIfO is nontrivial due to the functional form

of the cost function required by PILQR. First, PILQR requires a quadratic

approximation of the cost function in order to compute updates, whereas the

cost function used in GAIfO is specified by the discriminator, which is a con-

tinually updating deep neural network. As mentioned in Section 2.1.3, it is

not required for the cost function to be in the form of Equation 2.9. Instead

it only needs to be twice-differentiable. Therefore, we aim to develop a cost
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function in the form of

c(st, at) =
1

2

[
st
at

]T
Ct

[
st
at

]
+

[
st
at

]T
ct + cct (8.3)

for which the quadratic approximation would be the first two terms of the

right hand side.2 Second, PILQR requires a cost function over both states

and actions (as suggested by Equation 8.3), whereas, because GAIfO is an

IfO technique, the discriminator that specifies the cost function is a function

of state information only.

Overcoming these challenges and learning the cost function presented

in Equation 8.3 requires us to find a method by which we can compute Ct,

ct, and cct in the context of the GAIfO algorithmic structure. To do so, we

first propose to modify the structure of the discriminator by considering it

to be a composition of two functions, gθ(st, st+1) and h(., st, st+1). The first

function, gθ(st, st+1), is a neural network (with parameters θ) that takes state

transitions as inputs and outputs the following quantities:

• The elements of a matrix Css(st, st+1)

• The elements of a vector css(st, st+1)

• A constant ccss(st, st+1)

2Another option is to use a neural network discriminator (the same as GAIfO) and
take the second order Taylor expansion of the neural network to calculate the quadratic
approximate of the cost function. This approach also meets the requirements of PILQR.
We implemented this approach and saw that DEALIO outperforms it by a large margin.
We hypothesize that the reason is that the manifold learned using the neural network is so
complex that its second order Taylor expansion is not meaningful enough.
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The second function, h(., st, st+1), is a quadratic function in which the outputs

of gθ(st, st+1), i.e. Css(st, st+1) and css(st, st+1), can be used as its matrix and

vector and the overall function composition becomes

Dθ(st, st+1) = h(gθ(st, st+1), st, st+1) (8.4)

=
1

2

[
st
st+1

]T
Css(st, st+1)

[
st
st+1

]
+

[
st
st+1

]T
css(st, st+1) .

which yield the discriminator we use in DEALIO . By imposing this structure

on the discriminator, we now have a quadratic cost function, h(gθ(st, st+1), st, st+1),

as required by PILQR. However, two issues still remain. First, h(gθ(st, st+1), st, st+1)

is still a function of state transitions rather than state-action pairs. Second,

Css(st, st+1) and css(st, st+1) are functions of states rather than time.

In order to find a quadratic cost function with state-action pairs as

input, we use the linear dynamics model assumed by PILQR in Equation 2.8,

which allows us to rewrite st+1 in h(gθ(st, st+1), st, st+1) as a function of st

and at. To do so, we first partition quantities from Equations 2.8 and 8.4 as

follows:

Ft =

[
Fst
Fat

]
, (8.5)

Css(st, st+1) =

[
Css
st,st Css

st,st+1

Css
st+1,st

Css
st+1,st+1

]
, (8.6)
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and

css(st, st+1) =

[
cssst
cssst+1

]
. (8.7)

Next, substituting st+1 from Equation 2.8 into Equation 8.4 and doing some

linear algebra, we can write

h(st, at) =
1

2

[
st
at

]T
Csa(st, st+1)

[
st
at

]
(8.8)

+

[
st
at

]T
csa(st, st+1) ,

where the new matrix and vector, Csa(st, st+1) and csa(st, st+1), respectively,

are given by

Csa(st, st+1) =

[
Csa
st,at Csa

st,at

Csa
at,st Csa

at,at

]
, (8.9)

and

csa(st, st+1) =

[
csast
csaat

]
, (8.10)

and the individual partition terms above are computed as

Csa
st,st = Css

st,st + F T
stC

ss
st+1,st

+ Css
st,st+1

Fst (8.11)

+ F T
stC

ss
st+1,st+1

Fst ,

Csa
st,at = Css

st,st+1
Fat + F T

stC
ss
st+1,st+1

Fat , (8.12)
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Csa
at,st = F T

atC
ss
st+1,st

+ F T
atC

ss
st+1,st+1

Fst , (8.13)

Csa
at,at = F T

atC
ss
st+1,st+1

Fat , (8.14)

csast =
1

2
CssT
st+1,st

ft +
1

2
Css
st,st+1

ft +
1

2
F T
stC

ssT
st+1,st+1

ft (8.15)

+
1

2
F T
stC

ss
st+1,st+1

ft + cssst + F T
stc

ss
st+1

,

and

csaat =
1

2
F T
atC

ssT
st+1,st+1

ft +
1

2
F T
atC

ss
st+1,st+1

ft + F T
atc

ss
st+1

. (8.16)

Finally, in order to find cost function parameters Ct, ct, and cct (as

shown in Equation 8.3) that are functions of time only (i.e., independent of

states), we use the mean state transition at time t as input to Csa(·, ·), csa(·, ·),

and ccss(·, ·), i.e.,

Ct = Csa(s̄t, s̄t+1) , (8.17)

ct = csa(s̄t, s̄t+1) , (8.18)

and

cct = ccss(s̄t, s̄t+1) , (8.19)
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Algorithm 7 DEALIO

1: Initialize controller p(a|s)
2: Initialize a neural network discriminator Dθ with random parameter θ
3: Collect demonstration trajectories De = {τ e}
4: while Controller Improves do
5: Execute the controller to collect state-action trajectories {τ ii }
6: Fit a linear Gaussian dynamics model P (s′|s, a)
7: Update Dθ using loss

−
(
E{τ ii }[log(Dθ(st, st+1))]

+ E{τei }[log(1−Dθ(st, st+1))]
)

and store Css(st, st+1), css(st, st+1), and ccss(st, st+1)
8: Compute the cost c(st, at) by calculating Ct, ct, and cct
9: Perform a PILQR update to update the controller p(a|s)

where s̄t represents the mean taken over all the available sample states at

each time step.3 With the above quantities defined, the final cost function (as

presented in Equation 8.3) used to perform PILQR updates in DEALIO is

prepared.

DEALIO Having resolved the incompatibility between GAIfO and PILQR above,

we now describe the full proposed algorithm, DEALIO , detailed in Algorithm

7. First, we initialize a time-varying, linear Gaussian imitation controller

p(a|s) and a neural network discriminator Dθ (Lines 1 and 2). The imita-

tor uses p to generate multiple state-action trajectories τ i = {(si, ai)} (Line

3One alternative is to calculate the average of Csa(st, st+1) and csa(st, st+1) over
the available states, however, our experiments showed that calculating Csa(s̄t, s̄t+1) and
csa(s̄t, s̄t+1) results in better performance.
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5), and these trajectories are used to fit a linear Gaussian dynamics model

P (s′|s, a), as shown in Equation 2.12 (Line 6). Next, state transitions from

both the imitator and the demonstrator are used to train the discriminator Dθ

(Equation 8.4) using the same loss function as in GAIfO (Line 7). Then, h and

P are used to calculate the quadratic cost function parameters in Equation

8.3 (Line 8). Finally, the cost function is used to perform a PILQR update

(Line 9).

8.4 Experiments

In order to evaluate DEALIO , we ran several experiments using a

benchmark robotics simulation environment. In particular, we sought to deter-

mine whether or not DEALIO , which integrates a model-based RL technique

with the GAIfO algorithm for IfO , exhibited better data efficiency than the

original GAIfO algorithm, which instead uses a model-free RL technique. We

compared the data efficiency of each approach by analyzing learning curves—

more data-efficient approaches exhibit steeper learning curves (i.e., they rise

to a higher level of task performance using fewer samples). As we will detail

below, our results do indeed confirm that DEALIO is more data-efficient than

GAIfO , suggesting that integrating model-based RL approaches is a promising

path forward for designing IfO approaches that are practical for real-world

systems. Moreover, we also found that, even given fewer training samples,

DEALIO also led to better overall task performance than GAIfO in our ex-

perimental tasks.
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8.4.1 Experimental Setup

We conducted our experiments using four robotics tasks simulated us-

ing the MuJoCo physics engine [135]. These tasks are Disc, PegInsertion,

GripperPusher, and DoorOpening which are summarized in Section 3.2.

In order to generate demonstration data De, expert demonstrators are

trained for each task until convergence using PILQR with predefined task

cost functions that have been previously used in related work [72, 84]. The

trained policies are then used to generate 20 demonstration trajectories for

each task. The performance of these expert agents is represented as the green

horizontal lines in Figure 8.2, where the performance metric (negative expected

cumulative cost) is normalized to the expert’s level.

8.4.2 Implementation Details

In our experiments, the neural network component of the DEALIO dis-

criminator was modeled with two hidden layers, each with one hundred neu-

rons. For fair comparison, the GAIfO discriminator was similarly modeled.

One important hyperparameter that must be specified for both DEALIO and

GAIfO is the number of trajectory samples generated by the imitator at each

iteration (e.g., for DEALIO , Line 5 of Algorithm 7); we empirically deter-

mined the best value of this hyperparameter separately for each algorithm

and environment. For DEALIO , we collect ten, three, twenty, and twenty

trajectories (each trajectory is one hundred time steps) for each domain in the

order mentioned in the beginning of Section 8.4.1. For GAIfO , these same pa-

134



rameters were set as five, five, twenty, and twenty with the same order again.

Another important set of hyperparameters required by both algorithms is the

number of updates to make to both the discriminator and the controller at

each iteration. Again, we empirically determined the best values for these hy-

perparameters, and we found that ten discriminator updates per iteration and

one update for the controller per iteration worked best regardless of algorithm

or domain. Above, ten discriminator updates means that we divide the overall

data collected at that iteration into ten batches and updated the discriminator

once for each batch.

8.4.3 Results and Discussion

For each environment and algorithm, we generated the learning curves

shown in Figure 8.2 by computing the mean and standard deviation of the

developing imitation policies over ten independent training runs. The results

confirm our hypothesis that integrating a model-based RL algorithm leads to

improved data efficiency: the DEALIO learning curves all exhibit a signifi-

cantly steeper rise than those obtained with GAIfO . The results also show

that, even over much longer training horizons, DEALIO still achieves better fi-

nal performance than GAIfO . We posit that this is possible because PILQR it-

self combines model-free and model-based reinforcement learning algorithms

such that it is both data efficient and high performing. Taken together, our

results suggest that model-based RL can play an important role in bringing

adversarial IfO methods to real-world scenarios.
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Figure 8.2: Learning with DEALIO is compared against GAIfO . The plots
represent the performance of the algorithms with respect to the number of
trajectories sampled during the learning process. The solid lines represent the
mean of the performances over 10 different training processes and the shaded
areas represent the standard deviations. For comparison purposes, all the
performances are scaled such that a random and the expert policy score 0.0
and 1.0, respectively.
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8.5 Summary

In this chapter, we studied the effect of integrating sample-efficient,

model-based RL techniques with recent adversarial IfO algorithms. To do so,

we introduced one way to perform this integration through our novel algorithm,

DEALIO , and demonstrated experimentally that (1) it exhibits significantly

reduced sample complexity compared to GAIfO , and (2) it can do so seemingly

without sacrificing performance.
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Chapter 9

Related Work

In this chapter, an overall categorization of imitation learning from

observation work is proposed, and the existing work in each category is dis-

cussed. The presented categorization and the survey of previous work is based

on three papers: (1) Recent Advances in Imitation Learning from Observation

[141], published in Proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI 2019), (2) Leveraging Human Guidance for Deep

Reinforcement Learning Tasks [155] in collaboration with Ruohan Zhang, Lin

Guan, and Dana H. Ballard, published in Proceedings of the 28th International

Joint Conference on Artificial Intelligence (IJCAI 2019), and (3) Recent Ad-

vances in Leveraging Human Guidance for Sequential Decision-Making Tasks

[156] in collaboration with Ruohan Zhang which is published in the Journal

of Autonomous Agents and Multi-Agent System.

9.1 Overview

Recall that, as described in Section 2.2, imitation learning [112, 3, 92] is

a problem in machine learning that autonomous agents face when attempting

to learn tasks from another, more-expert agent. The expert provides demon-
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strations of task execution, from which the imitator attempts to mimic the

expert’s behavior. Conventionally, methods developed in this framework re-

quire the demonstration information to include not only the expert’s states

(e.g., robot joint angles), but also its actions (e.g., robot torque commands).

For instance, a human expert might provide a demonstration of an object-

manipulation task to a robot by manually moving the robot’s arms in the

correct way, during which the robot can record both its joint angles and also

the joint torques induced by the human demonstrator. Unfortunately, requir-

ing demonstration action information prevents imitating agents from using a

large number of existing valuable demonstration resources such as online videos

of humans performing a wide variety of tasks. These resources provide state

information only—the actions executed by the demonstrator are not available.

In order to take advantage of these valuable resources, the more-specific

problem of imitation learning from observation (IfO) must be considered. The

IfO problem arises when an autonomous agent attempts to learn how to per-

form tasks by observing state-only demonstrations generated by an expert.

Compared to the typical imitation learning paradigm described above, IfO is

a more natural way to consider learning from an expert, and exhibits more

similarity with the way many biological agents appear to approach imitation.

Considering the problem of imitation learning using state-only demon-

strations is not new [57, 11]. However, with recent advances in deep learning

and visual recognition, researchers now have much better tools than before

with which to approach the problem, especially with respect to using raw vi-
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sual observations. These advances have resulted in a litany of new imitation

from observation techniques in the literature, which can be categorized in sev-

eral fundamentally-different ways. In this chapter, we discuss our proposed

categorization and how each work can be placed in each category.

The rest of this chapter is organized as follows. As my thesis can be

placed in the broad field of imitation learning, Section 9.2 first offers a short

summary of imitation learning and it’s general categorization and some of the

most recognized works in each category. Then, Section 9.3 introduces our

proposed categorization of IfO research, where the research in this thesis can

be put in these categories, where other IfO work can be placed, and how they

are related to our work. Finally, Section 9.4 summarizes the chapter.

9.2 Imitation Learning

The learning frameworks surveyed in this chapter are inspired by, an

extension of, or combined with traditional imitation learning algorithms. The

standard imitation learning setting can be formulated as MDP\c, i.e. there is

no cost function c available. Instead, a learning agent (the imitator) records

expert (the demonstrator, could be expert humans or artificial agents) demon-

strations in the format of state-action pairs {(se, ae)} at each timestep, and

then attempts to learn the task using that data.

One approach is for the agent to learn to mimic the demonstrated policy

using supervised learning, which is known as behavioral cloning [9]. A second

approach to imitation learning is called inverse reinforcement learning (IRL)
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[1] which involves learning a cost function based on the demonstration data and

learning the imitation policy using RL with the learned cost function. These

two approaches constitute the major learning frameworks used in imitation

learning. Comprehensive reviews of these two approaches can be found in [3,

54, 92, 5, 31]. More recently, generative adversarial imitation learning (GAIL)

[49] has been proposed, which utilizes the notion of generative adversarial

networks (GAN ) [40].

Importantly, all of these approaches assume that both s and a are

available to the agent. In the rest of this section, we briefly describe the three

IL frameworks described above, i.e., (1) behavioral cloning (BC ), (2) inverse

reinforcement learning (IRL), and (3) adversarial imitation learning (AIL).

9.2.1 Behavioral Cloning (BC )

As described in Chapter 2, behavioral cloning [99, 9] is one of the main

methods to approach an imitation learning problem. The agent receives as

training data both the encountered states and actions of the demonstrator,

then uses supervised learning techniques such as classification or regression

to estimate the demonstrator’s policy. This method is powerful in the sense

that it is capable of imitating the demonstrator immediately without having

to interact with the environment, and it has been successfully applied in many

application domains. For instance, it has been used to train a quadrotor to

fly down a forest trail [38]. There, the training data consists of images of the

forest trail gathered by a camera mounted to the quadrotor and labeled with
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the actions that the demonstrating quadrotor used. The policy is modeled as a

convolutional neural network classifier, and trained using supervised learning.

In the end, the quadrotor managed to fly down the trail successfully. BC has

also been used in autonomous driving [14]. The training data is acquired

using a human demonstrator, and a convolutional neural network is trained to

map raw pixels from a single front-facing camera directly to platform steering

commands. After training, the vehicle was capable of driving in traffic on

local roads. BC has also been successfully used to teach robotic manipulators

complex, multi-step, real-world tasks using kinesthetic demonstrations [91].

One of BC ’s major drawbacks is potential performance degradation due

to the well-studied compounding error caused by covariate shift [106, 107], i.e.,

that training and testing data distribution mismatch results in deviation of

the learned behavior from the demonstration [136]. Ross et al. [107] proposed

an interactive training method to correct the shift called DAgger (Dataset

Aggregation) which attempts to bring the distribution of demonstration data

closer to that of the learned behavior. It does so by collecting demonstration

data on the states observed by the imitator at each iteration. Retraining

the policy on the aggregated dataset ultimately prevents the imitator from

deviating from the demonstration behavior.

9.2.2 Inverse Reinforcement Learning (IRL)

Inverse reinforcement learning [1, 162] is another category of imitation

learning, IRL techniques seek to learn a cost function that has the minimum
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value for the demonstrated actions. The learned cost function is then used in

combination with RL methods to find an imitation policy. To be more specific,

most IRL algorithms first initialize a random policy. Next, the agent executes

that policy in the environment to collect state-action data, and then the algo-

rithms estimate the expert’s cost function based on the data generated by the

policy and the demonstration data. Finally, standard RL algorithms are used

to learn an optimal policy for that cost function. The process of cost learn-

ing and policy learning is repeated until the agent policy becomes sufficiently

close to the demonstrator’s policy. Like BC techniques, IRL methods usually

assume that state-action pairs are available [33], and also that the cost is a

function of both states and actions. The algorithms developed in this cate-

gory have shown impressive results in a variety of tasks such as autonomous

helicopter aerobatics [2], robot object manipulation [33], and autonomous nav-

igation in complex unstructured terrains [120], etc.

One major drawback of most algorithms developed for IRL is that at

each iteration, they have to solve a complete RL problem to find an optimal

policy given the current estimated cost function which is computationally very

expensive. However, the learned policies are often more robust than the poli-

cies learned by BC algorithms as they do not suffer from the covariate shift

problem. This shift does not happen in the case of IRL because the agent

is able to interact with the environment while training and the distribution

mismatch diminishes during the process.
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9.2.3 Adversarial Imitation Learning

As mentioned in Chapter 2, recently an imitation learning algorithm,

generative adversarial imitation learning (GAIL) [49], has been developed that

alleviates the IRL’s drawback just set forth. This algorithm directly learns the

policy given demonstration bypassing the optimal cost recovery. GAIL formu-

lates the problem of finding an imitating policy as that of solving the following

optimization problem:

min
π∈Π

max
D∈(0,1)S×A

− λHH(π) + Eπ[log(D(s, a)] + Eπe [log(1−D(s, a))] , (9.1)

where
∏

is a set of agent policies, Eπe is the demonstrator’s policy, λH is

a weight factor, H is the entropy function, and the discriminator function

D : S × A → (0, 1) can be thought of as a classifier trained to differentiate

between the state-action pairs provided by the demonstrator and those expe-

rienced by the imitator. The objective in (2.15) is inspired by the one used in

generative adversarial networks (GAN s) [40]. A GAN system is trained in a

competitive process: the generator tries to fool the classifier while the classifier

tries to distinguish the generated data from the real data. This competitive

training process makes both models do better by trying to beat the other.

In GAIL the associated algorithm can be thought of as trying to induce an

imitator state-action occupancy measure that is similar to that of the demon-

strator. Even more recently, there has been research on methods that seek to

improve on GAIL by, e.g., increasing sample efficiency [69, 111] and improving

cost representation [35, 102].
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9.3 Imitation from Observation

We now turn to the problem that is the focus of this thesis, i.e., that

of imitation learning from observation (IfO), in which the agent has access

to state-only demonstrations (visual observations) of an expert performing a

task, i.e., τ ei = {oe0, oe1, · · · , oeN}i. As in IL, the goal of the IfO problem is

to learn an imitation policy π that results in the imitator exhibiting similar

behavior to the expert. Broadly speaking, there are two major components of

the IfO problem: (1) perception, and (2) control. Most of the IfO methods

proposed in this thesis are mainly concerned with the control aspect of the

IfO problem.

9.3.1 Perception

Because IfO depends on observations of a more expert agent, process-

ing these observations perceptually is extremely important. In the existing

IfO literature, multiple approaches have been used for this part of the prob-

lem. One approach to the perception problem is to record the expert’s move-

ments using sensors placed directly on the expert agent [56]. Using this style

of perception, previous work has studied techniques that can allow humanoid

or anthropomorphic robots to mimic human motions, e.g., arm-reaching move-

ments [57, 11], biped locomotion [87], and human gestures [21]. A more recent

approach is that of motion capture [32], which typically uses visual markers on

the demonstrator to infer movement. IfO techniques built upon this approach

have been used for a variety of tasks, including locomotion, acrobatics, and
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martial arts [97, 81, 119]. The methods discussed above often require costly

instrumentation and pre-processing [51]. Moreover, one of the goals of IfO is

to enable task imitation from available, passive resources such as YouTube

videos, for which these methods are not helpful.

Recently, however, convolutional neural networks and advances in vi-

sual recognition have provided promising tools to work towards visual imita-

tion where the expert demonstration consists of raw video information (e.g.,

pixel color values). The IfO algorithms in this thesis that consider the per-

ception module in Chapter 6, utilize convolutional neural networks to extract

the useful information from video demonstrations [139, 140]. However, as the

focus of this thesis is mainly on the control aspect of the IfO problem, in the

cases that perception module is considered, the imitator and the demonstrator

have exactly the same observation space. In general, however, the imitating

agent is faced with a number of challenges: (1) embodiment mismatch, and

(2) viewpoint difference.

9.3.1.1 Embodiment Mismatch

One challenge that might arise is if the demonstrating agent has a

different embodiment from that of the imitator. For example, the video could

be of a human performing a task, but the goal may be to train a robot to

do the same. Since humans and robots do not look exactly alike (and may

look quite different), the challenge is in how to interpret the visual information

such that IfO can be successful. One IfO method developed to address this
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problem learns a correspondence between the embodiments using autoencoders

in a supervised fashion [42]. The autoencoder is trained in such a way that the

encoded representations are invariant with respect to the embodiment features.

Another method learns the correspondence in an unsupervised fashion with a

small amount of human supervision [118]. A more recent approach integrates

the correspondence learning process into an adversarial IfO algorithm in which

the learning of the policy, mapping, and the cost function are interconnected

[53]. The paper demonstrates high performance on a large set of simulation

tasks.

9.3.1.2 Viewpoint Difference

Another perceptual challenge that might arise in IfO applications comes

when demonstrations are not recorded in a controlled environment. For in-

stance, video background may be cluttered, or there may be mismatch in the

point of view present in the demonstration video and that with which the agent

sees itself. One IfO approach that attempts to address this issue learns a con-

text translation model to translate an observation by predicting it in the target

context [77]. The translation is learned using data that consists of images of

the target context and the source context, and the task is to translate the

frame from the source context to that of the target. Another approach uses a

classifier to distinguish between the data that comes from different viewpoints

and attempts to maximize the domain confusion in an adversarial setting dur-

ing the training [123]. Consequently, the extracted features can be invariant
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with respect to the viewpoint. A more recent IfO approach [62] resolves the

viewpoint mismatch by detecting keypoints and descriptors and determining

keypoint matches based on two nearest neighbors in descriptor space [28].

IfO Control Algorithms

Model-based Model-free

Inverse Model Forward Model Adversarial Methods Cost-Engineering

Figure 9.1: A diagrammatic representation of categorization of the IfO control
algorithm. The algorithms can be categorized into two groups: (1) model-
based algorithms in which the algorithms may use either a forward dynamics
model [30] or an inverse dynamics model [136, 85]. (2) Model-free algorithms,
which itself can be categorized to adversarial methods [139, 81, 123] and cost
engineering [118, 42, 77].

9.3.2 Control

Another main component of IfO is control, i.e., the approach used to

learn the imitation policy, typically under the assumption that the agent has

access to clean state demonstration data τ ei = {se0, se1, · · · , seN}i. Since the

action labels are not available, this is a very challenging problem, and many

approaches, including the ones in this thesis, have recently been proposed in

the literature. We organize IfO control algorithms in the literature into two

general groups: (1) model-based algorithms, and (2) model-free algorithms.

The algorithms presented in Chapters 4, 7, and 8 are model-based and the

ones in Chapters 5, and 6 are model-free. In the following subsections, we

discuss the features of each group and present relevant example algorithms

from the literature.
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9.3.2.1 Model-based

Model-based approaches to IfO are characterized by the fact that they

learn some type of dynamics model during the imitation process. The learned

models themselves can be either (1) inverse dynamics models, or (2) forward

dynamics model.

Inverse Dynamics Model

An inverse dynamics model is a mapping from state-transitions {(st, st+1)}

to actions {at} [45]. One algorithm that learns and uses this kind of model for

IfO is that of Nair et al. [85]. Given a single video demonstration, the goal of

the proposed algorithm is to allow the imitator to reproduce the observed be-

havior directly. To do so, the algorithm first allows the agent to interact with

the environment using an exploratory policy to collect data {(st, at, st+1)}.

Then, the collected data is used to learn a pixel-level inverse dynamics model

which is a mapping from observation transition, {(ot, ot+1)}, to actions, {at}.

Finally, the algorithm computes the actions for the imitator to take by apply-

ing the inverse dynamics model to the video demonstration. Critically, this

method makes the assumption that each observation transition is reachable

through the application of a single action. Pathak et al. [94] attempt to re-

move this assumption by allowing the agent to execute multiple actions until

it gets close enough to the next demonstrated frame. Then this process is

repeated for the next frame, and so on.

Both of the algorithms mentioned above attempt to exactly reproduce
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single demonstrations. Behavioral Cloning from Observation (BCO) [136], in-

troduced in Chapter 4, on the other hand, is instead concerned with learning

generalized imitation policies using multiple demonstrations. The approach

also learns an inverse dynamics model using an exploratory policy, and then

uses that model to infer the actions from the demonstrations. Then, however,

since the states and actions of the demonstrator are available, a regular imita-

tion learning algorithm (behavioral cloning) is used to learn the task. Later,

Robertson and Walter [105] proposed another version of BCO and has pro-

vided guarantees on the convergence of the new version to behavioral cloning.

In another work, Guo et al. [41] proposed a hybrid algorithm that

assumes that the agent also has access to both visual demonstrations and cost

information as in the RL problem. A method similar to BCO is formulated

for imitating the demonstrations, and a gradient-based RL approach is used

to take advantage of the additional cost signal. The final imitation policy is

learned by minimizing a linear combination of the behavioral cloning loss and

the RL loss. Reinforced Inverse Dynamics Modeling (RIDM ) [95], introduced

in Chapter 7, on the other hand, combines RL and IfO by training the inverse

dynamics policy with the cost signal using black-box optimization techniques.

Forward Dynamics Model

A forward dynamics model is a mapping from state-action pairs, {(st, at)},

to the next states, {st+1}. One IfO approach that learns and uses this type

of dynamics model is called imitating latent policies from observation (ILPO)
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[30]. ILPO creates an initial hypothesis for the imitation policy by learning

a latent policy π(z|st) that estimates the probability of latent (unreal) action

z given the current state st. Since actual actions are not needed, this process

can be done offline without any interaction with the environment. In order

to learn the latent policy, they use a latent forward dynamics model which

predicts st+1 and a prior over z given st. Then they use a limited number of

environment interactions to learn an action-remapping network that associates

the latent actions with their corresponding correct actions. Since most of the

process happens offline, the algorithm is efficient with regards to the number

of interactions needed. Another algorithm of this type is developed by Wu

et al. [151] in which a forward dynamics model is learned which is used to

predict the future state of the imitating agent and then future state similarity

is used to learn an imitation policy. Data-Efficient Adversarial Learning for

Imitation from Observation (DEALIO), introduced in Chapter 8, also learns

a forward dynamics model in the learning process. The learned model is used

both in the policy learning process and the cost learning process.

9.3.2.2 Model-free

The other broad category of IfO control approaches is that of model-

free algorithms. Model-free techniques attempt to learn the imitation policy

without any sort of model-learning step. Within this category, there are two

fundamentally-different types of algorithms: (1) adversarial methods, and (2)

cost-engineering methods.
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Adversarial Methods

Adversarial approaches to IfO are inspired by the generative adversar-

ial imitation learning (GAIL) algorithm described in Section 2.2.3. Motivated

by this work, Merel et al. [81] proposed an IfO algorithm that assumes access

to proprioceptive state-only demonstrations {(se)}i and uses a GAN -like ar-

chitecture in which the imitation policy is interpreted as the generator. The

imitation policy is executed in the environment to collect data, {(si)}i, and

single states are fed into the discriminator, which is trained to differentiate

between the data that comes from the imitator and data that comes from the

demonstrator. The output value of the discriminator is then used as a cost to

update the imitation policy using RL. Another algorithm, called OptionGAN

[47], uses the same algorithm combined with option learning to enable the

agent to decompose policies for cases in which the demonstrations contain tra-

jectories result from a diverse set of underlying cost functions rather than a

single one.

In both of the algorithms discussed above, the underlying goal is to

achieve imitation policies that generate a state distribution similar to the ex-

pert. However, two agents having similar state distributions does not nec-

essarily mean that they will exhibit similar behaviors. For instance, in a

ring-like environment, two agents that move with the same speed but different

directions (i.e., one clockwise and one counter-clockwise) would result in each

exhibiting the same state distribution even though their behaviors are oppo-

site one another. Generative Adversarial Imitation from Observation (GAIfO)
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[139, 138], introduced in Chapter 5, on the other hand, considers state tran-

sitions, {(st, st+1)}, as the input to the discriminator instead of single states.

Visual GAIfO with self-observation, introduced in Chapter 6, considers the

cases that the imitator has only access to visual demonstrations {ot} by in-

corporating CNNs into GAIfO , and shows that using multiple video frames

instead of single frames resulted in good imitation policies for the demon-

strated tasks. In this algorithm, we consider policies to be a mapping from

observations {ot} to actions {at}. In follow up work [140], presented in Chap-

ter 6, motivated by the fact that agents often have access to their own internal

states (i.e., proprioception), we introduced a modified version of this algorithm

that leverages this information in the policy learning process. Zolna et al. [163]

has built on this work, and proposed an approach to adapt the algorithm to

cases in which the imitator and the expert have different action spaces. Instead

of using consecutive states as the input of the discriminator, they use pairs

of states with random time gaps, and show that this change helps improve

imitation performance.

Another adversarial IfO approach developed by Stadie et al. [123] con-

siders cases in which the imitator and demonstrator have different viewpoints.

To overcome this challenge, a new classifier is introduced that uses the out-

put of early layers in the discriminator as input, and attempts to distinguish

between the data coming from different viewpoints. Then they train early

layers of the discriminator and the classifier in such a way as to maximize the

viewpoint confusion. The intuition is to ensure that the early layers of the
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discriminator are invariant to viewpoint. Sun et al. [127] have also developed

an adversarial IfO approach in which, from a given start state, a policy for

each time-step of the horizon is learned by solving a minimax game. The

minimax game learns a policy that matches the state distribution of the next

state given the policies of the previous time-steps.

GAIL and GAIfO consider the problem of minimizing the discrepancy

over state-action and state-transition occupancy measures, respectively. Later

Yang et al. [153] showed the gap between these problems lies in the disagree-

ment of inverse dynamics models between the imitator and the expert. There-

fore, they attempted to minimize that gap as well the occupancy measure

discrepancy in order to get better performance.

Cost Engineering

Another class of model-free approaches developed for IfO control are

those that utilize cost engineering. Here, cost engineering means that, based

on the expert demonstrations, a manually-designed cost function is used to find

imitation policies via RL. Importantly, the designed cost functions are not nec-

essarily the ones that the demonstrator used to produce the demonstrations—

rather, they are simply estimates inferred from the demonstration data. One

such method, developed by Kimura et al. [64], first trains a predictor that

predicts the demonstrator’s next state given the current state. The manually-

designed cost function is then defined as the Euclidean distance of the actual

next state and the one that the approximator returns. An imitation policy
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is learned via RL using the designed cost function. Another cost-engineering

approach is that of time-contrastive networks (TCN ) [118]. TCN considers

settings in which demonstrations are generated by human experts performing

tasks and the agent is a robot with arms. A triplet loss is used to train a

neural network that is used to generate a task-specific state encoding at each

time-step. This loss function brings states that occur in a small time-window

closer together in the embedding space and pushes others farther apart. The

engineered cost function is then defined as the Euclidean distance between the

embedded demonstration and the embedded agent’s state at each time-step,

and an imitation policy is learned using RL techniques. Dwibedi et al. [29]

claims that, since TCN uses single frames to learn the embedding function, it

is difficult for TCN to encode motion cues or the velocities of objects. There-

fore, they extend TCN to the multi-frame setting by learning an embedding

function that uses multiple frames as the input, and they show that it results

in better imitation. Also TCN required the imitator and the demonstrator to

be time-aligned, therefore, in order to remove this constraint, Liu et al. [76]

has proposed an algorithm that is inspired by hierarchical reinforcement learn-

ing. This approach selects a sub-goal from the expert demonstration every few

steps and attempts to reach that sub-goal using RL with manually-designed

cost function being Euclidean distance between the observations. Another

approach of this type is developed by Goo and Niekum [39] in which the algo-

rithm uses a formulation similar to shuffle-and-learn [83] to train a classifier

that learns the order of frames in the demonstration. The manually-specified
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cost function is then defined as the progress toward the task goal based on

the learned classifier. Aytar et al. [6] also take a similar approach, learning an

embedding function for the video frames based on the demonstration. They

use the closeness between the imitator’s embedded states and some checkpoint

embedded features as the cost function.

Gupta et al. [42] consider settings in which the demonstrator and the

imitator have different state spaces. First, they train an autoencoder that

maps states into an invariant feature space where corresponding states have

the same features. Then, they define the cost as the Euclidean distance of

the expert and imitator state features in the invariant space at each time-

step. Finally, they learn the imitation policy using this cost function with

an RL algorithm. Liu et al. [77] also uses the same cost function to solve

the task however in a setting where the expert demonstrations and the im-

itator’s viewpoints are different. Karnan et al. [62] also consider viewpoint

mismatch, however, they consider a deep-learning-based keypoint extractors

such as SUPERPOINT [28] to detect keypoints and descriptors and the ratio

of the number of keypoint matches between the observations of the imitator

and expert is used to generate the cost at each time-step.

9.4 Summary

In this chapter, we reviewed recent advances in imitation learning from

observation (IfO) and provided an organization of the research that is being

conducted in this field.
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Chapter 10

Conclusion and Future Work

This chapter summarizes the ideas and contributions of this thesis and

also provides directions for future work.

The increasing number and availability of robots, coupled with an in-

crease in the complexity of their capability and a limited number of human

operators, has necessitated that robots be able to perform and learn tasks au-

tonomously. Currently, the most well-known approaches used for robot learn-

ing are reinforcement learning [128] and imitation learning [1]. The former

approach utilizes a framework of learning by exploring the environment and

searching for behaviors that optimize the feedback received from a predefined

cost function that defines the task. The latter approach utilizes a framework

of learning from an expert that demonstrates how the task should be executed.

Between these two frameworks, imitation learning in particular is known for

(1) its convenience in that it alleviates the laborious process of cost design,

and (2) its sample-efficiency in that it reduces the amount of exploration re-

quired by the learning agent. However, imitation learning itself imposes some

constraints on the learning problem such as requiring access to both states

and actions of the demonstrator. Requiring access to the actions is limiting as
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it prevents the agent to take advantage of a large number of existing valuable

demonstration resources such as online videos of humans performing a wide

variety of tasks. These resources include state information (i.e., video frames)

of the demonstrator, but the actions are not available.

The problem of learning from state-only demonstrations is called imi-

tation learning from observation which is the title of this thesis. This problem

can be divided into two main components, (1) perception of the demonstra-

tions, and (2) learning an autonomous control policy. The main focus of this

thesis has been primarily on the latter, i.e., the control aspect of the problem.

To approach this problem, this thesis has introduced multiple algorithms.

This thesis has provided multiple model-based IfO algorithms, one of

which is called Behavioral Cloning from Observation (BCO), which was in-

troduced in Chapter 4. In BCO , an inverse dynamics model is learned using

data collected by the learner exploring the environment. The learned model is

then used to infer the missing actions of the demonstrator. Using the inferred

actions, the problem is then treated as a regular imitation learning problem

and behavioral cloning is used to learn an imitation policy. Another model-

based algorithm called Reinforced Inverse Dynamics Modeling (RIDM ) was

introduced in Chapter 7, which has access to both a single, state-only demon-

stration and a cost function. This algorithm combines reinforcement learning

and imitation learning from observation so as to take advantage of the sparse

cost feedback available to the agent in order to improve the performance.

This thesis also introduced multiple model-free algorithms, one of which
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is called Generative Adversarial Imitation from Observation (GAIfO), which

was discussed in Chapter 5. This algorithm is inspired by Generative Adversar-

ial Networks (GAN s) and attempts to match the distribution of the imitator’s

state transitions to that of the demonstrator. Two extensions of this algo-

rithm were introduced in Chapter 6 that incorporate the perception module

of the IfO problem intro GAIfO by using convolutional neural networks. An-

other extension, called Data-Efficient Adversarial Learning for Imitation from

Observation (DEALIO), was introduced in Chapter 8. DEALIO integrates

model-based reinforcement learning algorithms into GAIfO in order to make

it efficient enough that it could be deployed in the real world.

The remainder of this chapter is organized as follows. Section 10.1

summarizes the contributions made in this thesis, then Section 10.2 provides

some directions for future work, and finally Section 10.3 concludes.

10.1 Contributions

As first presented in Section 1.2, this thesis has provided the following

contributions:

1. One model-free algorithm for imitation learning from observa-

tion, and two extensions: Model-free algorithms directly learn tasks

without having explicit access to—or a learned model of—the environ-

ment. In this thesis, a model-free algorithm for imitation learning from

observation, called Generative Adversarial Imitation from Observation
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(GAIfO), was introduced (Chapter 5). Furthermore, two extensions of

this algorithm were presented, both of which allow the approach to imi-

tate directly from visual data (Chapter 6).

2. Three model-based algorithms for imitation learning from ob-

servation: Model-based algorithms are algorithms that, while learning,

rely upon a model of the environment. The model itself could either be

known or learned. In this thesis, three model-based algorithms for im-

itation learning from observation were introduced: Behavioral Cloning

from Observation (BCO) – introduced in Chapter 4 – Reinforced Inverse

Dynamics Modeling (RIDM ) – introduced in Chapter 7 – Data-Efficient

Adversarial Learning for Imitation from Observation (DEALIO) – intro-

duced in Chapter 8.

3. Theory on applicability of the introduced model-free algorithm:

In this thesis, theoretical results that establish the applicability of GAIfO to

the general model-free imitation from observation framework formulation

are presented.

4. Empirical evaluation of the developed algorithms on problems

both in simulation and in the real world: In this thesis, all of the

algorithms are thoroughly tested either in simulation, in the real world,

or both, and we have shown that our introduced algorithms outperform

well-known baselines in most cases.
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10.2 Future Work

In this section, some directions for future work are provided. First, we

will provide general directions for future work and then we’ll provide some

more specific directions for the specific research conducted in this thesis.

10.2.1 General Directions

In this section, general directions for future IfO researchers are pre-

sented.

10.2.1.1 Perception

This thesis was mostly focused on the control aspect of the imitation

from observation problem. However, to reach the end goal of IfO (i.e., imitat-

ing from passive visual demonstrations such as YouTube videos), both main

components of the problem (i.e., control and perception) should be solved

jointly. While the vision community has conducted extensive research on the

perception aspect alone [159, 134], there has been only limited work that inte-

grates both perception and control of these modules in an attempt to address

the overall IfO problem [140, 77]. That said, the research in the perception

community is evolving very fast, and one promising direction for future work

is to bring the latest ideas there to bear in solving the perception aspect of

IfO .

As stated in Section 9.3.1, in order to achieve the end goal of true

imitation from observation, several additional challenges exist. For example,
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IfO algorithms should be able to overcome embodiment mismatch (i.e., the

situation in which the imitator and the demonstrator have different physical

bodies), and viewpoint mismatch (i.e., when the visual demonstrations are

recorded from different viewpoints). Resolving these limitations is a natural

next step for extending this research.

Embodiment Mismatch In computer vision, there has been a number of

advancements in the area of visual domain adaptation [147], which is con-

cerned with transferring learned knowledge to different visual contexts than

the ones in which the system was trained. Domain adaptation has success-

fully made noticeable progress in image-to-image translation, where the goal

is to learn a mapping from one domain to another domain. Some of the ap-

proaches that have had great impact are CycleGAN [160], pix2pix [58], dual

GAN [154], disco GAN [63], and others [143]. These approaches may be ap-

plicable to IfO problems that require solutions to embodiment mismatch, in

that if the embodiment of the demonstrator is different from that of the imita-

tor, these approaches potentially could be used to transfer the demonstrator’s

embodiment to the imitator’s. Therefore, it is a promising research direction

to explore the use of these techniques in the context of the IfO algorithms

introduced in this thesis.

Viewpoint Mismatch As mentioned in Section 9.3.1.2, there has been a

small amount of recent work that attempts to address the viewpoint mismatch
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challenge of IfO problem [77, 123, 62]. However, several recent and excit-

ing advances in the computer vision community—led by adversarial training

techniques—have resulted in creative ideas that could be used to address the

viewpoint mismatch challenge. One such advance is in the area of pose esti-

mation, where recent work based on keypoint detection [22, 146] has enabled

the detection of object position and orientation even in cluttered video. This

keypoint information would also be invariant to the viewpoint. While there

has been a small amount of effort to incorporate these advances in IfO [98],

there is still much to investigate.

10.2.1.2 Application to Physical Robots

Only a few of the IfO algorithms discussed in this thesis have actually

been successfully tested on physical robots [118, 77, 95]. That is, many of the

algorithms have been studied only in domains developed in simulation engines

such as MuJoCo and Pybullet. One factor at play is that, while adversarial

methods currently provide state-of-the-art performance for a number of base-

line experimental IfO problems, these methods exhibit high sample complexity

and therefore using them on a real robot is prohibitively expensive (in terms

of time, risk to the physical platform, etc.). One approach proposed in this

thesis, DEALIO , does seek to address this issue by lowering the sample com-

plexity of such methods, but it has yet to have been tested on a physical robot.

Thus, an open problem in IfO is that of finding ways to adapt the techniques

developed thus far such that they can be used in scenarios for which high
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sample complexity is prohibitive, i.e., tasks in robotics.

10.2.1.3 Integration

Most of the algorithms introduced in this thesis, along with the ones

reviewed in Chapter 9, are exclusively concerned with the IfO problem, i.e.,

finding imitation policies from state-only demonstrations. However, to achieve

the overall goal of developing fully-intelligent agents, algorithms that have

been developed for other learning paradigms (e.g., reinforcement learning or

imitation learning) should be integrated with these techniques. Leveraging the

advantages of a myriad of techniques is a promising path to get closer to the

goal of creating complete autonomous agents, one of the longstanding goals of

AI. While there is some previous work that considers a combination of imita-

tion learning and reinforcement learning [161] or imitation from observation

and reinforcement learning [41, 95, 114], there is still much to investigate.

10.2.2 Specific Directions

In this section, future directions are presented for each algorithm intro-

duced in this thesis.

10.2.2.1 Behavioral Cloning from Observation (BCO)

In Chapter 4, Behavioral Cloning from Observation (BCO) was pre-

sented, in which an inverse dynamics model is learned to infer the action

information missing from the demonstration, and then a policy is learned us-
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ing behavioral cloning over the completed demonstration data. In BCO , the

inverse dynamics model is first learned using data collected by the imitating

agent exploring the environment randomly. This random exploration results

in higher sample complexity and probably lower performance. Therefore, one

future direction is to look at performing this exploration with different poli-

cies. For instance, a known policy that exhibits a state-action distribution

close to that of the expert would likely perform better than a random pol-

icy. Indeed, there is extensive research towards smart exploration strategies

in the reinforcement learning literature [93, 19], and it would be interesting to

investigate how these ideas could be transferred to BCO .

Furthermore, in the imitation learning step of BCO , behavioral cloning

is used to learn an imitating policy. One future direction is to use other

methods such as inverse reinforcement learning [33] or generative adversarial

imitation learning [49] and investigate how they affect the performance of the

learning agents.

10.2.2.2 Generative Adversarial Imitation from Observation (GAIfO)

In Chapter 5, Generative Adversarial Imitation from Observation (GAIfO)

was introduced, in which a GAN -like structure was used to move the state-

transition distribution of the imitator closer to that exhibited by the demon-

strator. Regarding future work, note that the analysis presented in this thesis

did not consider policy entropy terms in either the IRLfO step or in the RLstep.

Therefore, it would be interesting to include entropy in these equations—as has
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been shown to be beneficial in some cases [43, 44]—and investigate its effect

on the overall problem and results. Another way to improve upon GAIfO as

presented here would be to attempt to make the training more reliable by

incorporating techniques developed to improve the stability of GAN s, such as

the work of Arjovsky et al. [4].

10.2.2.3 Visual Extensions of GAIfO

In Chapter 6, two extensions of GAIfO were presented that integrate

a perception module into the algorithm in order to enable the autonomous

agent to imitate from visual demonstrations. These algorithms, however, are

not able to imitate from demonstrations that exhibit mismatch in terms of

embodiment or viewpoint. Therefore, following what has been described in

Section 10.2.1.1, utilizing the ideas from computer vision in order to overcome

these challenges would be an interesting direction to pursue for future work.

10.2.2.4 Reinforced Inverse Dynamics Modeling (RIDM )

In Chapter 7, Reinforced Inverse Dynamics Modeling (RIDM ) was pre-

sented, in which reinforcement learning is used to tune an inverse dynamics

policy to follow a state-only demonstration. This algorithm opens up many

possible directions for future work. For instance, RIDM attempts to follow

only a single demonstration trajectory. Therefore, one future direction could

be extending RIDM to learn a generalized controller from numerous demon-

strations of a specific task. For example, in an arm-reaching task, RIDM learns
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an inverse dynamics policy for starting from one specific starting point and

reaching one specific target point. Therefore, for this specific task, the im-

provement would be enabling RIDM to take different demonstrations and

provide a policy that could generalize to unseen starting and target points.

Another open question is how RIDM will perform when using optimization

algorithms other than CMA-ES, such as TRPO or PPO . Furthermore, in

all of our experiments, the state spaces are low-level features (only joint an-

gles). Another possible future direction is to integrate RIDM with perception

modules, and investigate how it performs with video demonstrations.

10.2.2.5 Data-Efficient Adversarial Learning for Imitation from Ob-
servation (DEALIO)

In Chapter 8, Data-Efficient Adversarial Learning for Imitation from

Observation (DEALIO) was introduced, in which a model-based reinforcement

learning algorithm, PILQR, is integrated with GAIfO in order to lower the

sample complexity. While our work suggests that model-based RL can play an

important role in improving adversarial techniques for IfO , there are several

ways in which we might improve upon the exemplar algorithm we proposed

here. One such way concerns our use of PILQR, which is a trajectory-centric

reinforcement learning algorithm, i.e., it finds a local controller, p(a|s), only

for a very specific task with a very specific initial state and goal. While this

approach appears to have been sufficient for our experimental domains, an

interesting direction for future work is to take advantage of algorithms such as

Guided Policy Search (GPS ) [73] to integrate general neural network policy
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learning using a supervised learning algorithm to mimic the combined behavior

of all the learned local controllers for different initial states and goals.

10.3 Concluding Remarks

This thesis introduced multiple imitation learning from observation

control algorithms that allow agents to learn by observing just the state in-

formation of an expert performing a task. Moreover, two algorithms were

proposed that integrate a perception module in order to get closer to the ulti-

mate goal of IfO , i.e., being able to imitate from general visual observations.

Furthermore, this thesis provided a survey and a categorization of the research

conducted in this area. We hope that the research presented here will con-

tribute to the AI and machine learning community’s ongoing effort to develop

fully-autonomous agents in the real world.
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Appendix A

Proofs and Additional Experimental

Details for GAIfO

In this appendix, we provide proofs and experimental details for Gener-

ative Adversarial Imitation from Observation (GAIfO), introduced in Chapter

5.

A.1 Proofs

Proofs of the lemmas, propositions and claims are provided in this

section.

A.1.1 Proof of Lemma 5.4.2

In order to prove Lemma 5.4.2, we first define a state-action occupancy

measure, ρaπ : S×A→ R as

ρaπ(s, a) = π(a|s)
∞∑
t=0

γtP (st = s|π) . (A.1)

This occupancy measure corresponds to the distribution of state-action pairs

that an agent encounters when navigating the environment with policy π [49].

The set of valid state-action occupancy measures can be defined as Pa , {ρaπ :

π ∈ Π} = {ρa : ρa ≥ 0,
∑

a ρ
a(s, a) = p0(s) + γ

∑
s′,a P (s|s′, a)ρa(s′, a) ∀s ∈
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S} where ρa could be any distribution, ρa : S×A→ R.

Lemma A.1.1. (Theorem 8.9.4 of Puterman [101]). Pa is compact and con-

vex.

Having established Lemma A.1.1, we now introduce another lemma

which helps us in the proof of Lemma 5.4.2:

Lemma A.1.2. Ps is compact and convex.

Proof. Convexity: Based on (A.1) and (5.4), we know that that ρsπ(si, sj) =∑
a P (sj|si, a)ρaπ(si, a). We need to show that Ps is convex, meaning that for

any ρsπ1 , ρ
s
π2
∈ Ps and any λ with 0 ≤ λ ≤ 1, we have λρsπ1 + (1 − λ)ρsπ2 ∈ Ps

[15].

λρsπ1(si, sj) + (1− λ)ρsπ2(si, sj) = λ
∑
a

P (sj|si, a)ρaπ1(si, a)+

(1− λ)
∑
a

P (sj|si, a)ρaπ2(si, a)

=
∑
a

P (sj|si, a)(λρaπ1(si, a) + (1− λ)ρaπ2(si, a))

Based on Lemma A.1.1, we know that Pa is convex and so λρaπ1(si, a) + (1 −

λ)ρaπ2(si, a) ∈ Pa. Therefore,
∑

a P (sj|si, a)(λρaπ1(si, a) + (1− λ)ρaπ2(si, a)) is a

valid state-transition occupancy measure and belongs to Ps so we can conclude

that Ps is convex. Compactness: Based on the definition of ρsπ(si, sj) in (5.4),

we have
∑

si∈S
∑

sj∈S ρ
s
π(si, sj) = 1. This equality and the non-negativity

constraint imply that Ps is bounded and compact [101].
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Having proven Lemma A.1.2, we now prove Lemma 5.4.2:

proof of Lemma 5.4.2. Let c̄ ∈ IRLfOψ(πe), ρ̄sπ ∈ RL(c̄) = RL ◦ IRLfOψ(πe),

and

ρ̂sπ ∈ argmin
ρsπ

ψ∗(ρsπ − ρsπe) = argmin
ρsπ

max
c
− ψ(c) +

∑
s,a

(ρsπ(s, s′)− (A.2)

ρsπe(s, s
′))c(s, s′)

Here we argue that ρ̄sπ = ρ̂sπ which are the outputs of the two sides of the

equation that we want to prove. If we consider loss function L : Ps×RS×S → R

to be

L(ρπ, c) = −ψ(c) +
∑
s,s′

(ρπ(s, s′)− ρπe(s, s′))c(s, s′) (A.3)

then we can write:

ρ̂sπ ∈ argmin
ρsπ∈Ps

max
c

L(ρsπ, c) (A.4)

c̄ ∈ max
c

argmin
ρsπ∈Ps

L(ρsπ, c) (A.5)

ρ̄sπ ∈ argmin
ρsπ∈Ps

L(ρsπ, c̄) (A.6)

Based on Lemma A.1.2, Ps is compact and convex and RS×S is convex; More-

over, L(., c) is convex over all c, and L(ρsπ, .) is concave over all ρsπ. Therefore,

based on minimax duality:

min
ρsπ∈Ps

max
c

L(ρsπ, c) = max
c

min
ρsπ∈Ps

L(ρsπ, c) (A.7)

Therefore based on (A.4) and (A.5), (ρ̂sπ, c̄) is a saddle point of L, which implies

that ρ̂sπ ∈ argmin
ρsπ∈Ps

L(ρsπ, c) and so ρ̄sπ = ρ̂sπ.
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A.1.2 Proof of the claims made for the generative adversarial reg-
ularizer

In this section, we prove the claims made that (5.7) is convex and its

convex conjugate is (5.9).

Proposition A.1.1. Suppose ψκ : RS∈S → R

ψκ(c) =


∑
s,s′

ρπe(s, s
′)gκ(c(s, s

′)) if c(s, s′) ∈ T for all s, s′

+∞ otherwise

,

gκ(x) =

−x+ κ(−κ−1(−x)) if x ∈ T

+∞ otherwise
,

(A.8)

where κ : R → R is a strictly decreasing convex function and gκ : R → R

and T is the range of −κ. Then ψκ is closed, proper, and convex, and if

κ = log(1 + e−x) (note that with this logistic loss, (A.8) becomes equivalent to

(5.7)), then:

ψ∗GA(ρsπ − ρsπe) = max
D∈(0,1)S×S

∑
s,s

ρsπ(s, s′) log(D(s, s′)) + ρsπe(s, s
′) log(1−D(s, s′)) .

(A.9)

Proof. Closedness: κ is strictly decreasing; consequently, the range of this

function is either R or (a,∞). In both cases, κ(−κ−1(−x)) is closed and gκ

is closed; therefore ψκ is closed as well. Properness: T is nonempty so gκ is

proper. Convexity: κ is a strictly decreasing convex function; therefore, κ−1

is convex and so −κ−1 is concave. Hence, κ(−κ−1(−x)) is convex and as a
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result gκ and ψκ are convex as well. Now we prove the second claim made in

the proposition:

ψ∗κ(ρ
s
π − ρsπe) = max

c∈C

∑
s,s′

(ρsπ(s, s′)− ρsπe(s, s′))c(s, s′)−
∑
s,s′

ρsπe(s, s
′)gκ(c(s, s

′))

(A.10)

=
∑
s,s′

max
c∈T

(ρsπ(s, s′)− ρsπe(s, s′))c− ρsπe(s, s′)[−c+ κ(−κ−1(−c))]

(A.11)

=
∑
s,s′

max
c∈T

ρsπ(s, s′)c− ρsπe(s, s′)κ(−κ−1(−c)). (A.12)

Since T is the range of −κ, by change of variables c→ −κ(γ)

ψ∗κ(ρ
s
π − ρsπe) =

∑
s,s′

max
γ∈R

ρsπ(s, s′)(−κ(γ))− ρsπe(s, s′)κ(−κ−1(κ(γ))) (A.13)

=
∑
s,s′

max
γ∈R

ρsπ(s, s′)(−κ(γ))− ρsπe(s, s′)κ(−γ). (A.14)

Substituting the logistic function κ(x) = log(1 + e−x),

ψ∗GA(ρsπ − ρsπe) =
∑
s,s′

max
γ∈R

ρsπ(s, s′) log

(
1

1 + e−γ

)
+ ρsπe(s, s

′) log

(
1

1 + eγ

)
(A.15)

=
∑
s,s′

max
γ∈R

ρsπ(s, s′) log

(
1

1 + e−γ

)
+ ρsπe(s, s

′) log

(
1− 1

1 + e−γ

)
(A.16)

=
∑
s,s′

max
γ∈R

ρsπ(s, s′) log(σ(γ)) + ρsπe(s, s
′) log(1− σ(γ)),

(A.17)
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where σ(x) = 1/(1 + e−x) is the sigmoid function. Because the range of σ is
(0, 1), we can write

ψ∗GA(ρsπ − ρsπe) =
∑
s,s′

max
d∈(0,1)

ρsπ(s, s′) log d+ ρsπe(s, s
′) log(1− d) (A.18)

= max
D∈(0,1)S×S

∑
s,s′

ρsπ(s, s′) log(D(s, s′)) + ρsπe(s, s
′) log(1−D(s, s′)),

(A.19)

which is the desired expression.

A.2 Experimental Details

We now discuss some detail regarding the experimental setup and the

implementation of GAIfO and the baselines.

For GAIL and GAIfO , each iteration consists of three main compo-

nents: (1) executing the current policy in the environment, (2) updating the

discriminator, and (3) updating the policy. For (1), we executed the policy for

1000 time steps in each domains. For (2) and (3), we found that the number

of updates performed at each iteration could affect results significantly, and so

we performed an extensive hyper-parameter search to find the numbers that

performed the best. These numbers are presented in Table B.1. For Dou-

blePendulum and PendulumSwingup, we use deep neural networks with two

64-neuron layers for both the model and policy. For Hopper and Walker2D,

we use networks with two 100-neuron layers.

For BCO , in DoublePendulum and PendulumSwingup, we use 50, 000

and 5, 000 exploration actions for training and validation in the model learning
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stage, respectively. In the case of Hopper and Walker2D, we use 500, 000 and

50, 000 interactions for training and validation, respectively. For BCO and

TCN , in order to be consistent with the generative adversarial methods, we

use the same network architectures for each domain.

We compare the methods both in terms of the final performance (mean

score at the end of training) and in terms of the learning process. We also

vary the number of demonstrations in order to investigate the effect of more

or less demonstration data. In this set of experiments, since GAIL has access

to the demonstrator’s actions, we expect it to perform best.
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Table A.1: Number of discriminator and policy updates performed at each
iteration.

GAIL GAIfO

Domain
Demonstration

trajectories
Discriminator

steps
Policy
steps

Discriminator
steps

Policy
steps

InvertedDoublePendulum 1 10 1 5 3

5 10 3 10 3

10 10 3 10 3

15 5 3 10 3

20 10 2 10 3

InvertedPendulumSwingup 1 10 1 1 2

5 10 2 2 3

10 10 2 1 3

15 10 3 1 3

20 5 3 1 3

Hopper 1 3 1 3 2

5 3 1 10 1

10 10 1 3 1

15 10 2 10 2

20 10 1 10 1

Walker2D 1 10 1 10 2

5 10 2 10 2

10 10 2 10 2

15 1 1 10 2

20 10 2 10 1
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Appendix B

Experimental Details for Visual Extensions of

GAIfO

In this appendix, information regarding the experimental details for

the visual extensions of GAIfO presented in Chapter 6 (i.e. GAIfO with self-

observation and GAIfO with proprioceptive information) is presented.

B.1 GAIfO with Self-observation

Each iteration of GAIfO implemented for visual state representations

consists of the same three components as the version discussed in the Section

A.2 for GAIfO : (1) executing the current policy in the environment, (2) up-

dating the discriminator, and (3) updating the policy. For component (1), we

executed the policy for 5120 time steps in each domain. For components (2)

and (3), we again did an extensive hyperparameter search (the best number of

updates for the policy and the discriminator are presented in Table B.1). We

use the convolutional architecture presented in Figure 6.1 for each domain.

For these experiments, we compare our approach against BCO and

TCN . For each of these competing techniques, we use the same architecture

as the one considered for the policy in Figure 6.1. Note in particular that we
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use the grayscale version of the images as inputs.

Table B.1: Number of discriminator and policy updates performed at each
iteration.

GAIfO with Self-Observation

Domain
Demonstration

trajectories
Discriminator

steps
Policy steps

Reacher 1 10 5

5 10 5

10 10 5

15 5 5

InvertedDoublePendulum 1 10 5

5 10 5

10 10 5

15 10 3

InvertedPendulumSwingup 1 10 5

5 10 5

10 10 3

15 3 3

Hopper 1 10 5

5 10 5

10 10 5

15 5 5

B.2 GAIfO with Proprioceptive Information

For the proposed algorithm, we model imitation policies as multi-layer

perceptrons with 2 64-neuron layers. We model the discriminator as a convo-
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lutional neural network with three convolutional layers with 5-by-5 filters that

use a stride of 2. These layers have 16, 32, and 64 filters, respectively. The

last layer is fully-connected to a single output, which represents the output

value. For training of these networks, we use the Adam variant of stochastic

gradient descent [66] with a learning rate of 3e−4. One important parameter

in the training process is the the number of updates performed on the discrim-

inator and the policy at each iteration. Therefore, we performed an extensive

hyper-parameter search to find the numbers that performed the best for each

experiment which are presented in Table B.2. Also, for each of the baseline

algorithms above, we used the hyper-parameters and the architectures used in

the original paper. Finally, the same as the previous section, visual observa-

tions are represented as 64×64 grayscale images and they are the same across

the environment.
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Table B.2: Number of discriminator and policy updates performed at each
iteration.

GAIfO w\
Proprioception

GAIfO w\
Self-observation

Domain
Demonstration
trajectories

Policy
steps

Discriminator
steps

Policy
steps

Discriminator
steps

MountainCarContinuous 1 1 25 1 10

5 1 25 1 5

10 1 25 1 10

15 1 25 2 10

InvertedPendulum 1 2 5 2 3

5 3 5 3 3

10 2 3 2 5

15 3 5 3 5

InvertedDoublePendulum 1 3 10 3 1

5 3 5 3 1

10 3 1 3 1

15 3 5 3 1

Hopper 1 3 10 1 10

5 1 10 1 10

10 1 10 3 10

15 1 10 1 3

Walker2D 1 3 10 1 10

5 3 10 1 10

10 1 10 3 10

15 1 10 1 3

HalfCheetah 1 1 10 1 10

5 2 10 1 10

10 2 10 1 10

15 1 10 1 10
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Appendix C

Acronyms

Acronym Definition

AIL Adversarial Imitation Learning
BC Behavioral Cloning
BCO Behavioral Cloning from Observation
DEALIO Data-Efficient Adversarial Learning for Imitation from Observation
GAIfO Generative Adversarial Imitation from Observation
GAIL Generative Adversarial Imitation Learning
GAN Generative Adversarial Networks
GPS Guided Policy Search
IDM Inverse Dynamics Model
IfO Imitation Learning from Observation
IL Imitation Learning
iLQR iterative Linear Quadratic Regulator
ILPO Imitating Latent Policies from Observation
IRL Inverse Reinforcement Learning
IRLfO Inverse Reinforcement Learning from Observation
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
MCTS Monte Carlo Tree Search
MDP Markov Decision Processes
PI2 Path Integrated Policy Improvement
PPO Proximal Policy Optimization
RIDM Reinforced Inverse Dynamics Modeling
TCN Time Contrastive Networks
TRPO Trust Region Policy Optimization
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[20] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisen-

roth. Bayesian optimization for learning gaits under uncertainty. Annals

of Mathematics and Artificial Intelligence, 76(1-2):5–23, 2016.

[21] Sylvain Calinon and Aude Billard. Incremental learning of gestures by

imitation in a humanoid robot. In HRI. ACM, 2007.

[22] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages

7291–7299, 2017.

[23] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Ma-

lik. Human pose estimation with iterative error feedback. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

4733–4742, 2016.

[24] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme,

Stefan Schaal, and Sergey Levine. Combining model-based and model-

free updates for trajectory-centric reinforcement learning. In 34th In-

ternational Conference on Machine Learning (ICML), pages 703–711.

PMLR, 2017.

[25] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics

simulation for games, robotics and machine learning. 2016-2017. URL

http://pybullet.org/.

186

http://pybullet.org/


[26] Shreyansh Daftry, J Andrew Bagnell, and Martial Hebert. Learning

transferable policies for monocular reactive mav control. In International

Symposium on Experimental Robotics, pages 3–11. Springer, 2016.

[27] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey

on policy search for robotics. Foundations and trends in Robotics, 2(1-2):

388–403, 2013.

[28] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super-

point: Self-supervised interest point detection and description. In Pro-

ceedings of the IEEE conference on computer vision and pattern recog-

nition workshops, pages 224–236, 2018.

[29] Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, and Pierre Ser-

manet. Learning actionable representations from visual observations.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1577–1584. IEEE, 2018.

[30] Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Is-

bell. Imitating latent policies from observation. In International Con-

ference on Machine Learning, pages 1755–1763, 2019.

[31] Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun

Sun. Survey of imitation learning for robotic manipulation. International

Journal of Intelligent Robotics and Applications, pages 1–8, 2019.

187



[32] Matthew Field, David Stirling, Fazel Naghdy, and Zengxi Pan. Motion

capture in robotics review. In 2009 IEEE-ICCA, pages 1697–1702. IEEE,

2009.

[33] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning:

Deep inverse optimal control via policy optimization. In International

Conference on Machine Learning, pages 49–58, 2016.

[34] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey

Levine. One-shot visual imitation learning via meta-learning. In Con-

ference on Robot Learning, pages 357–368, 2017.

[35] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with

adverserial inverse reinforcement learning. In International Conference

on Learning Representations, 2018.

[36] Tanmay Gangwani and Jian Peng. State-only imitation with transition

dynamics mismatch. In International Conference on Learning Represen-

tations, 2019.

[37] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,

Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lem-

pitsky. Domain-adversarial training of neural networks. JMLR, 17(1):

2096–2030, 2016.
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