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Electronic structure model

1. Separate electrons and nuclei
Nuclei become point charges, electrons are a quantum system

2. Choose a discretization scheme
Introduce atomic orbitals

3. Choose type of wavefunction (or density functional)
Collapses the dimensionality from 3N to a reasonable number

First choice is mean-field (Hartree–Fock or Kohn–Sham)

4. Solve for parameters of wavefunction
HF or KS molecular orbitals



Origin of dense and sparse objects

Atomic orbitals Non-orthogonal Local Sparse

Molecular orbitals Orthonormal Delocalized Dense

Localized MOs Both Local Sparse



J and K matrices



Making J and K matrices in HF and DFT

Jµν =
∑
λσ

(µν|λσ)Pλσ Kλν =
∑
µσ

(µν|λσ)Pµσ

(µν|λσ) ≡
∫
φµ(r1)φν(r1)

1

r12
φλ(r2)φσ(r2) dr1dr2

Nominal scaling of computational cost for J and K is N4.

For J-matrix:

1. Define significant pairs
(µν| and |λσ) – O(N)

2. Compute integrals –
O(N2) to O(N)

3. Contract with density –
O(N2) to O(N)

For K-matrix repeat for each (µν|:
1. Compute (µ̃ν|λσ) – O(N)

2. Contract with density – O(N2)
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Contractions in coupled-cluster theory

tλσij =
∑
ab

tab
ij CλaCσb

∑
λσ

[(µν|λσ)− (λν|µσ)] tλσij =
∑
λσ

(µν|λσ)tλσij −
∑
λσ

(λν|µσ)tλσij

Nominal scaling of the steps is O2N4.

Including sparsity reduces scaling of J-type and K-type contractions to
O2N2 and O2N3, respectively.



Resolution of the identity approximation

(µν|λσ) ≈
∑
PQ

CP
µν(P|Q)CQ

λσ

=
∑
PQ

(µν|P)(P|Q)−1(Q|λσ)

(µν|P) =
∑
Q

(P|Q)CQ
µν

(no approximation is made if auxiliary basis is complete)

BQ
µν =

∑
P

(µν|P)(P|Q)−1/2

(µν|λσ) ≈
∑
Q

BQ
µνB

Q
λσ



Make K matrix with RI

Kλν =
∑
µσQ

BQ
µνB

Q
λσPµσ

I How to factorize the equation (choose intermediates)?

I To minimize computations?

I To stay within given memory constraint?



AO-MO transformation



Integral transformation step in MP2 and RI-MP2

(ia|jb) =
∑
µνλσ

(µν|λσ)CµiCνaCλjCσb

(ia|P) =
∑
µν

(µν|P)CµiCνa

I With given memory constrains how to choose batch size and
intermediates?



Linear algebra in many dimensions



Coupled-cluster doubles (CCD) equations

Dab
ij = εi + εj − εa − εb

T ab
ij Dab

ij = 〈ij ||ab〉+ P−(ab)

(∑
c

fbct
ac
ij −

1

2

∑
klcd

〈kl ||cd〉tbd
kl tac

ij

)

− P−(ij)

(∑
k

fjkt
ab
ik +

1

2

∑
klcd

〈kl ||cd〉tcd
jl tab

ik

)

+
1

2

∑
kl

〈ij ||kl〉tab
kl +

1

4

∑
klcd

〈kl ||cd〉tcd
ij tab

kl +
1

2

∑
cd

〈ab||cd〉tcd
ij

− P−(ij)P−(ab)

(∑
kc

〈kb||jc〉tac
ik −

1

2

∑
klcd

〈kl ||cd〉tdb
lj tac

ik

)

P−(ij)Aij = Aij − Aji



Tensor expressions for CCD

void ccd_t2_update(...) {

letter i, j, k, l, a, b, c, d;
btensor<2> f1_oo(oo), f1_vv(vv);
btensor<4> ii_oooo(oooo), ii_ovov(ovov);

// Compute intermediates
f1_oo(i|j) =

f_oo(i|j) + 0.5 * contract(k|a|b, i_oovv(j|k|a|b), t2(i|k|a|b));
f1_vv(b|c) =

f_vv(b|c) - 0.5 * contract(k|l|d, i_oovv(k|l|c|d), t2(k|l|b|d));
ii_oooo(i|j|k|l) =

i_oooo(i|j|k|l) + 0.5 * contract(a|b, i_oovv(k|l|a|b), t2(i|j|a|b));
ii_ovov(i|a|j|b) =

i_ovov(i|a|j|b) - 0.5 * contract(k|c, i_oovv(i|k|b|c), t2(k|j|c|a));

// Compute updated T2
t2new(i|j|a|b) =

i_oovv(i|j|a|b)
+ asymm(a, b, contract(c, t2(i|j|a|c), f1_vv(b|c)))
- asymm(i, j, contract(k, t2(i|k|a|b), f1_oo(j|k)))
+ 0.5 * contract(k|l, ii_oooo(i|j|k|l), t2(k|l|a|b))
+ 0.5 * contract(c|d, i_vvvv(a|b|c|d), t2(i|j|c|d))
- asymm(a, b, asymm(i, j,

contract(k|c, ii_ovov(k|b|j|c), t2(i|k|a|c))));
}



Evaluation of tensor expressions

1. Convert expression to abstract syntax tree (AST)

2. Optimize and transform AST with given constraints

3. Evaluate expression following optimized AST

Aij = T 1
ij +

∑
k

T 2
ikT

3
kj

A(i|j) =

T1(i|j) +

contract(k, T2(i|k), T3(k|j));

→



Evaluation of tensor expressions

1. Convert expression to abstract syntax tree (AST)

2. Optimize and transform AST with given constraints

3. Evaluate expression following optimized AST

Back-end:

I Shared memory threaded model (single node)3

I Distributed memory parallel model (via CTF)

I Replicated memory parallel model

3E.Epifanovsky et al., J. Comput. Chem. 34, 2293–2309 (2013)



Block tensors in libtensor

Three components:

I Block tensor space: dimensions + tiling pattern.

I Symmetry relations between blocks.

I Non-zero canonical data blocks.
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I Block tensor space: dimensions + tiling pattern.

I Symmetry relations between blocks.

I Non-zero canonical data blocks.

Symmetry:
S : SBi 7→ (Bj ,Uij)

B	  

Permutational

A B1 B2 B3 

A 

B1 

B2 

B3 

Point group

B	  
α 

β α 

β 

Spin



Perturbation theory correction



Perturbation theory

∑
ijab

[(ia|jb)− (ib|ja)]2

∆iajb

∑
ijkabc

tabc
ijk t̃abc

ijk

∆iajbkc

tabc
ijk = P(ijk)P(abc)

(∑
d

tcd
ij 〈kd ||ab〉+

∑
l

tab
lk 〈ij ||lc〉

)
t̃abc
ijk = tabc

ijk + P(ijk)P(abc)
(
tc
i 〈kj ||ab〉+ f c

i tab
kj

)
P(ijk)aijk = aijk − ajik − aikj − akji + ajki + akij

I How to partition the numerator to minimize computational cost and
satisfy memory constraints?



Summary
I Most of the problems are sparse multi-dimensional linear algebra

problems

I For many of those cases there exist a mapping to a dense
two-dimensional problem

I Almost all new problems contain sparse many-tensor contractions,
for which general optimal algorithms have not been developed

Open problems

I Given a contraction of multiple sparse tensors, what is the best way
to factorize it into pairwise contractions?

I How to optimally compute a tensor expression satisfying memory
constraints?



Scalability and software requirements



Scaling to large problems

How well are existing electronic structure methods equipped to benefit
from large-scale HPC systems?

Do they really need to be massively parallel?



Technical requirements

Linear algebra tools are just one component in a large ecosystem:

I Routines should have no side-effects

I Routines should be thread-safe and otherwise parallel-friendly

I User should be able to designate resources for each operation. How
to pass this information?

Good example: original BLAS

Bad example: modern BLAS-OpenMP
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