
A practical view on linear algebra tools

Evgeny Epifanovsky
University of Southern California

University of California, Berkeley

Q-Chem

September 25, 2014

What is Q-Chem?

Established in 1993, first release in 1997.

Software

Q-Chem 3.0 (2006)
4.0 (2012)
4.1 (2013)
4.2 (2014)

Thousands of users

Platform

Supported infrastructure for
state-of-the-art quantum chemistry

Free of charge and open source
for developers

157 contributors (Q-Chem 4)

Pleasanton, CA

Y. Shao et al., Mol. Phys., in press (2014), DOI:10.1080/00268976.2014.952696
A.I. Krylov and P.M.W. Gill, WIREs Comput. Mol. Sci. 3, 317–326 (2013)

What is Q-Chem?

Established in 1993, first release in 1997.

Software

Q-Chem 3.0 (2006)
4.0 (2012)
4.1 (2013)
4.2 (2014)

Thousands of users

Platform

Supported infrastructure for
state-of-the-art quantum chemistry

Free of charge and open source
for developers

157 contributors (Q-Chem 4)

Pleasanton, CA

Y. Shao et al., Mol. Phys., in press (2014), DOI:10.1080/00268976.2014.952696
A.I. Krylov and P.M.W. Gill, WIREs Comput. Mol. Sci. 3, 317–326 (2013)

What is Q-Chem?

Established in 1993, first release in 1997.

Software

Q-Chem 3.0 (2006)
4.0 (2012)
4.1 (2013)
4.2 (2014)

Thousands of users

Platform

Supported infrastructure for
state-of-the-art quantum chemistry

Free of charge and open source
for developers

157 contributors (Q-Chem 4)

Pleasanton, CA

Y. Shao et al., Mol. Phys., in press (2014), DOI:10.1080/00268976.2014.952696
A.I. Krylov and P.M.W. Gill, WIREs Comput. Mol. Sci. 3, 317–326 (2013)

Electronic structure model

1. Separate electrons and nuclei
Nuclei become point charges, electrons are a quantum system

2. Choose a discretization scheme
Introduce atomic orbitals

3. Choose type of wavefunction (or density functional)
Collapses the dimensionality from 3N to a reasonable number

First choice is mean-field (Hartree–Fock or Kohn–Sham)

4. Solve for parameters of wavefunction
HF or KS molecular orbitals

Origin of dense and sparse objects

Atomic orbitals Non-orthogonal Local Sparse

Molecular orbitals Orthonormal Delocalized Dense

Localized MOs Both Local Sparse

J and K matrices

Making J and K matrices in HF and DFT

Jµν =
∑
λσ

(µν|λσ)Pλσ Kλν =
∑
µσ

(µν|λσ)Pµσ

(µν|λσ) ≡
∫
φµ(r1)φν(r1)

1

r12
φλ(r2)φσ(r2) dr1dr2

Nominal scaling of computational cost for J and K is N4.

For J-matrix:

1. Define significant pairs
(µν| and |λσ) – O(N)

2. Compute integrals –
O(N2) to O(N)

3. Contract with density –
O(N2) to O(N)

For K-matrix repeat for each (µν|:
1. Compute (µ̃ν|λσ) – O(N)

2. Contract with density – O(N2)

Making J and K matrices in HF and DFT

Jµν =
∑
λσ

(µν|λσ)Pλσ Kλν =
∑
µσ

(µν|λσ)Pµσ

(µν|λσ) ≡
∫
φµ(r1)φν(r1)

1

r12
φλ(r2)φσ(r2) dr1dr2

Nominal scaling of computational cost for J and K is N4.

For J-matrix:

1. Define significant pairs
(µν| and |λσ) – O(N)

2. Compute integrals –
O(N2) to O(N)

3. Contract with density –
O(N2) to O(N)

For K-matrix repeat for each (µν|:
1. Compute (µ̃ν|λσ) – O(N)

2. Contract with density – O(N2)

Making J and K matrices in HF and DFT

Jµν =
∑
λσ

(µν|λσ)Pλσ Kλν =
∑
µσ

(µν|λσ)Pµσ

(µν|λσ) ≡
∫
φµ(r1)φν(r1)

1

r12
φλ(r2)φσ(r2) dr1dr2

Nominal scaling of computational cost for J and K is N4.

For J-matrix:

1. Define significant pairs
(µν| and |λσ) – O(N)

2. Compute integrals –
O(N2) to O(N)

3. Contract with density –
O(N2) to O(N)

For K-matrix repeat for each (µν|:
1. Compute (µ̃ν|λσ) – O(N)

2. Contract with density – O(N2)

Contractions in coupled-cluster theory

tλσij =
∑
ab

tab
ij CλaCσb

∑
λσ

[(µν|λσ)− (λν|µσ)] tλσij =
∑
λσ

(µν|λσ)tλσij −
∑
λσ

(λν|µσ)tλσij

Nominal scaling of the steps is O2N4.

Including sparsity reduces scaling of J-type and K-type contractions to
O2N2 and O2N3, respectively.

Resolution of the identity approximation

(µν|λσ) ≈
∑
PQ

CP
µν(P|Q)CQ

λσ

=
∑
PQ

(µν|P)(P|Q)−1(Q|λσ)

(µν|P) =
∑
Q

(P|Q)CQ
µν

(no approximation is made if auxiliary basis is complete)

BQ
µν =

∑
P

(µν|P)(P|Q)−1/2

(µν|λσ) ≈
∑
Q

BQ
µνB

Q
λσ

Make K matrix with RI

Kλν =
∑
µσQ

BQ
µνB

Q
λσPµσ

I How to factorize the equation (choose intermediates)?

I To minimize computations?

I To stay within given memory constraint?

AO-MO transformation

Integral transformation step in MP2 and RI-MP2

(ia|jb) =
∑
µνλσ

(µν|λσ)CµiCνaCλjCσb

(ia|P) =
∑
µν

(µν|P)CµiCνa

I With given memory constrains how to choose batch size and
intermediates?

Linear algebra in many dimensions

Coupled-cluster doubles (CCD) equations

Dab
ij = εi + εj − εa − εb

T ab
ij Dab

ij = 〈ij ||ab〉+ P−(ab)

(∑
c

fbct
ac
ij −

1

2

∑
klcd

〈kl ||cd〉tbd
kl tac

ij

)

− P−(ij)

(∑
k

fjkt
ab
ik +

1

2

∑
klcd

〈kl ||cd〉tcd
jl tab

ik

)

+
1

2

∑
kl

〈ij ||kl〉tab
kl +

1

4

∑
klcd

〈kl ||cd〉tcd
ij tab

kl +
1

2

∑
cd

〈ab||cd〉tcd
ij

− P−(ij)P−(ab)

(∑
kc

〈kb||jc〉tac
ik −

1

2

∑
klcd

〈kl ||cd〉tdb
lj tac

ik

)

P−(ij)Aij = Aij − Aji

Tensor expressions for CCD

void ccd_t2_update(...) {

letter i, j, k, l, a, b, c, d;
btensor<2> f1_oo(oo), f1_vv(vv);
btensor<4> ii_oooo(oooo), ii_ovov(ovov);

// Compute intermediates
f1_oo(i|j) =

f_oo(i|j) + 0.5 * contract(k|a|b, i_oovv(j|k|a|b), t2(i|k|a|b));
f1_vv(b|c) =

f_vv(b|c) - 0.5 * contract(k|l|d, i_oovv(k|l|c|d), t2(k|l|b|d));
ii_oooo(i|j|k|l) =

i_oooo(i|j|k|l) + 0.5 * contract(a|b, i_oovv(k|l|a|b), t2(i|j|a|b));
ii_ovov(i|a|j|b) =

i_ovov(i|a|j|b) - 0.5 * contract(k|c, i_oovv(i|k|b|c), t2(k|j|c|a));

// Compute updated T2
t2new(i|j|a|b) =

i_oovv(i|j|a|b)
+ asymm(a, b, contract(c, t2(i|j|a|c), f1_vv(b|c)))
- asymm(i, j, contract(k, t2(i|k|a|b), f1_oo(j|k)))
+ 0.5 * contract(k|l, ii_oooo(i|j|k|l), t2(k|l|a|b))
+ 0.5 * contract(c|d, i_vvvv(a|b|c|d), t2(i|j|c|d))
- asymm(a, b, asymm(i, j,

contract(k|c, ii_ovov(k|b|j|c), t2(i|k|a|c))));
}

Evaluation of tensor expressions

1. Convert expression to abstract syntax tree (AST)

2. Optimize and transform AST with given constraints

3. Evaluate expression following optimized AST

Aij = T 1
ij +

∑
k

T 2
ikT

3
kj

A(i|j) =

T1(i|j) +

contract(k, T2(i|k), T3(k|j));

→

Evaluation of tensor expressions

1. Convert expression to abstract syntax tree (AST)

2. Optimize and transform AST with given constraints

3. Evaluate expression following optimized AST

Back-end:

I Shared memory threaded model (single node)3

I Distributed memory parallel model (via CTF)

I Replicated memory parallel model

3E.Epifanovsky et al., J. Comput. Chem. 34, 2293–2309 (2013)

Block tensors in libtensor

Three components:

I Block tensor space: dimensions + tiling pattern.

I Symmetry relations between blocks.

I Non-zero canonical data blocks.

Block tensors in libtensor

Three components:

I Block tensor space: dimensions + tiling pattern.

I Symmetry relations between blocks.

I Non-zero canonical data blocks.

Symmetry:
S : SBi 7→ (Bj ,Uij)

B	

Permutational

A B1 B2 B3

A

B1

B2

B3

Point group

B	
α

β α

β

Spin

Perturbation theory correction

Perturbation theory

∑
ijab

[(ia|jb)− (ib|ja)]2

∆iajb

∑
ijkabc

tabc
ijk t̃abc

ijk

∆iajbkc

tabc
ijk = P(ijk)P(abc)

(∑
d

tcd
ij 〈kd ||ab〉+

∑
l

tab
lk 〈ij ||lc〉

)
t̃abc
ijk = tabc

ijk + P(ijk)P(abc)
(
tc
i 〈kj ||ab〉+ f c

i tab
kj

)
P(ijk)aijk = aijk − ajik − aikj − akji + ajki + akij

I How to partition the numerator to minimize computational cost and
satisfy memory constraints?

Summary
I Most of the problems are sparse multi-dimensional linear algebra

problems

I For many of those cases there exist a mapping to a dense
two-dimensional problem

I Almost all new problems contain sparse many-tensor contractions,
for which general optimal algorithms have not been developed

Open problems

I Given a contraction of multiple sparse tensors, what is the best way
to factorize it into pairwise contractions?

I How to optimally compute a tensor expression satisfying memory
constraints?

Scalability and software requirements

Scaling to large problems

How well are existing electronic structure methods equipped to benefit
from large-scale HPC systems?

Do they really need to be massively parallel?

Technical requirements

Linear algebra tools are just one component in a large ecosystem:

I Routines should have no side-effects

I Routines should be thread-safe and otherwise parallel-friendly

I User should be able to designate resources for each operation. How
to pass this information?

Good example: original BLAS

Bad example: modern BLAS-OpenMP

Technical requirements

Linear algebra tools are just one component in a large ecosystem:

I Routines should have no side-effects

I Routines should be thread-safe and otherwise parallel-friendly

I User should be able to designate resources for each operation. How
to pass this information?

Good example: original BLAS

Bad example: modern BLAS-OpenMP

Technical requirements

Linear algebra tools are just one component in a large ecosystem:

I Routines should have no side-effects

I Routines should be thread-safe and otherwise parallel-friendly

I User should be able to designate resources for each operation. How
to pass this information?

Good example: original BLAS

Bad example: modern BLAS-OpenMP

Acknowledgments

I Dr. Michael Wormit (Heidelberg)

I Edgar Solomonik (UCB → ETH Zurich)

I Dr. Arik Landau, Dr. Tomasz Kus, Kirill Khistyaev, Dr. Prashant
Manohar (USC)

I Xintian Feng, Dr. Dmitry Zuev (USC)

I Prof. Anna I. Krylov (USC),
Prof. Martin Head-Gordon (UC Berkeley)

I DOE SciDAC collaboration http://mee-scidac.org/

I NSF SICM2 collaboration http://www.s2i2.org/

