A Case for Malleable Thread-Level Linear Algebra Libraries: The LU Factorization with Partial Pivoting

Sandra Catalán, Jose R. Herrero, Enrique S. Quintana-Ortí, Rafael Rodríguez-Sánchez, Robert van de Geijn

BLIS Retreat, 19-20th September 2016, Austin (Texas)

Motivation Increase number of threads BLAS → TLP Nested TLP + TP LAPACK \rightarrow TP (runtime)

Why malleability

Ta *3th* Tb *5th*

Та

.

Tb

.

.

.

Why malleability

DLA library modification to allow number of threads expansion

LU as an example

Algorithm: $[A] := LU_BLK(A)$
$A \to \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right)$
where A_{TL} is 0×0
while $n(A_{TL}) < n(A)$ do
Determine block size b
$\begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{pmatrix}$
where A_{11} is $b \times b$
A1. $\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} := LU_{UNB} \left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} \right)$
A2. $A_{12} := \text{TRILU}(A_{11})^{-1}A_{12}$
A3. $A_{22} := A_{22} - A_{21}A_{12}$
$\begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{pmatrix}$
endwhile

b size is important:

- Too small \rightarrow Low GEMM performance
- Too large \rightarrow Too many panel factorization flops

Optimal block size

Optimal block size

The panel factorization relevance

Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, applied to a square matrix of order 10,000.

Dealing with the panel factorization

Algorithm: $[A] := LU_LA_BLK(A)$ Determine block size b $A \to \begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix}, \ A_{BR} \to \begin{pmatrix} A_{BR}^p & A_{BR}^R \end{pmatrix}$ where A_{TL} is 0×0 , A_{BR}^{p} has b columns $A_{BR}^{p} := \text{LU}_{\text{UNB}}(A_{BR}^{p})$ while $n(A_{TL}) < n(A)$ do $\begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{pmatrix}$ where A_{11} is $b \times b$ Determine block size b % Partition into panel factorization and remainder $\begin{pmatrix} A_{12} \\ \hline A_{22} \end{pmatrix} \rightarrow \begin{pmatrix} A_{12}^p & A_{12}^R \\ \hline A_{22}^p & A_{22}^R \end{pmatrix}$ where both A_{12}^{p} , A_{22}^{p} have b columns % Panel factorization, Tp % Remainder, Tp

P1. $A_{12}^{P} := \text{TRILU}(A_{11})^{-1}A_{12}^{P}$ P2. $A_{22}^{P} := A_{22}^{P} - A_{21}A_{12}^{P}$ P3. $A_{22}^{P} := \text{LU}_{\text{UNB}}(A_{22}^{P})$ $\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$ endwhile

Look-ahead:

Overlap the factorization of the "next" panel with the update of the "current" trailing submatrix.

Look Ahead LU

Our setup

- Intel Xeon E5-2603 v3
- 6 cores at 1.6 Ghz
- BLIS 0.1.8
- BLIS Loop 4 (jr) parallelized
- Extrae 3.3.0
- Panel factorization via blocked algorithm
- Two block sizes *b*₀ and *b*_i
- Inner LU involve small-grained computations and little parallelism

Look Ahead LU Performance

Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead, applied to a square matrix of order 10,000.

Look Ahead LU Performance

Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead, applied to a square matrix of order 10,000.

Towards malleability

- P threads in the panel factorization
- R threads in the update
- Panel factorization less expensive than update
 - P threads will join R team eventually
 - BLAS does not allow to modify the number of working threads

Static re-partitioning

- Workaround: split the update into several GEMM
- Drawbacks:
 - Lower GEMM throughput (packing and suboptimal blocks)
 - Decision on which loop to parallelize and the granularity of the partitioning

Malleable thread-level BLAS

- Solving static partitioning issues:
 - Only one GEMM call \rightarrow no extra data movements
 - BLIS takes care of the partitioning and granularity

How Malleability behaves

Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead and *malleable BLIS*, applied to a square matrix of order 10,000.

Execution trace of the first four iterations of the blocked RL LU factorization with partial pivoting, enhanced with look-ahead, applied to a square matrix of order 2,000.

What if panel factorization is more expensive than the update

- If R finish before P \rightarrow Stop panel factorization
 - RL LU. Keep a copy of the panel
 - Use LL LU. Sincronization among threads follows the same idea

Look ahead via runtimes

- TP execution
- Adaptative-depth look-ahead

- Re-packing and data movements (many GEMM calls)
- Block size fixes the granularity of the tasks
- * Rarely exploit TP+TLP

Experimental results

- LU, LU_LA, LU_MB, LU_OS
- Square matrices from n=500 to n=12,000
- b₀ was tested for values from 32 to 512 in steps of 32
- *bi* was evaluated for 16 and 32

Performance comparison

LU on Intel Xeon E5-2603 v3

19

Performance comparison

Conclusions

- Malleable implementation of DLA library
- Competitive results (small matrices)
- Pending strategies to be applied (Early termination)

THANK YOU