Integer GEMM
(under)performance

Marat Dukhan
Software Engineer on Caffe 2

GEMM in Neural Networks

Fully-connected layers
» im2col+GEMM algorithm for convolution

1x1 convolutional layers

Android CPU Landscape

Overview of CPU microarchitectures

Low-End Mid-End High-End

Cortex-A12
Cortex-AS Cortex-A8 Cortex-A15

(Cortex-A7) Cortex-A9 Cortex-A17
N rat

Cortex-A57

— Cortex-A72

\Cortex-A53) Cortex-A73
Cortex-A55 Kryo

Mongoose

Android CPU Landscape

Overview of low-end microarchitecture

. Cortex-A/

64-bit SIMD units for load/store and integer SIMD
NEON FP32 instructions run at 1 element/cycle (i.e. scalar execution)

- Single-issue NEON pipeline
- Cortex-A53

64-bit SIMD load units
128-bit integer and floating-point SIMD compute and store units
Single-issue NEON pipeline, but with useful co-issue capabilities
Co-issue for NEON compute + general-purpose load
Co-issue for NEON 64-bit load + 64-bit move to NEON co-processor

SGEMM for mobile low-end

ARM NEON pkernel

L oad MR elements of A panel
Load NR elements of B panel
Use vector-scalar multiply-accumulate instruction
(VMLA.F32 Qd, Qn, Qm[x]) to compute a block of C
Optimal MR x NR blocks:
Cortex-A7: 6x6 (6x8 is marginally worse)
Cortex-A53: 6x8

SGEMM

Example of 6x8 ARM NEON pkernel

VLD1.32 {d0-d2}, [rA]l!
VLD1.32 {q2-q3}, [rB]!

o6x2 = 12 VMLA.F32 1instructions
VMLA.F32 q4, g2, do[0]
VMLA.F32 g5, g3, do[0]
VMLA.F32 q6, g2, do[0]
VMLA.F32 q7, q3, do[o]
repeat for do[1]...d2[1]

Integer GEMM

Background

CNNs are very tolerant to quantization noise
Little accuracy loss with 8-bit quantization

Idea: instead of a single FP32, process 4 8-bit ints
Theory: 4x speedup on SIMD!

Implementation: Google’s gemmlowp library

Integer GEMM

Implementation with vector-scalar multiply-accumulate

NEON VMLAL instruction does not have a .U8 version

Need to extend data to uint16 (VMOVL.U8) for VMLAL.U16
L oading uint16 data may be faster on some parchitectures

Two instructions cripple performance
VMOVL.US8 instructions, not needed in FP32 version
VMLAL.U16 accumulates to uint32, does only 4 MACs

USGEMM

Example of 6x8 ARM NEON pkernel

VLD1.32 {d@}, I[rA]!
VMOVL.U8 g0, do # extend to uintl6
VLD1.32 {d1}, [rB]!
VMOVL.U8 g1, d2 # extend to uintlo6

VMLAL.U16 g2, d2, do[@] # multiply-accumulate in uint32
VMLAL.U16 g3, d3, do[@] # multiply-accumulate in uint32
repeat for do[1]...d1[1]

Integer GEMM

Implementation with vector-vector multiply-accumulate

Idea (gemmlowp): use vector-vector VMLAL.US8

First, VMULL.U8 Qd, Dm, Dn to multiply to uint16

Then, VPADAL.U16 to accumulate to uint32

This pykernel assumes 8 kc values are packed sequentially

Still problematic w.r.t performance
Two instructions instead of one
VPADAL.U16 accumulates to uint32, outputs 4 values/cycle
VPADAL.U16 is slow on low-end cores

USGEMM

Example of 3x8 X 8x3 ARM NEON pukernel (gemmlowp)

VLD1.32 {d0-d2}, [rAl]!
VLD1.32 {d4-d6}, [rB]!

VMULL.U8 g4, d@, d4 # multiply to uintl6
VMULL.U8 g5, d@, d5 # multiply to uintl6
VMULL.U8 g6, d@, d6 # multiply to uintl6

VPADAL.U16 q7, q4 # accumulate to uint32
VPADAL.U16 g8, g5 # accumulate to uint32
VPADAL.U16 g9, g6 # accumulate to uint32

repeat for dl...d2

Integer GEMM

Implementation with sighed vector-vector multiply-accumulate

Idea (gemmlowp): a1 *b1 + a2 * b2 fits into int16 if we
restrict either as or bs to [-127,127]
First, VMULL.S8 Qd, Dm, Dn to multiply to int16
Then, VMLAL.S8 Qd, Dm, Dn to multiply-accumulate in int16
Then, VPADAL.S16 to accumulate to uint32
This pkernel assumes 16 ke values are packed sequentially
Slightly improves performance

Expensive VPADAL is amortized between two VMULLS

ISGEMM

Example of 4x16 X 16x2 ARM NEON pkernel (gemmlowp)

VLD1.32 {d0-d2}, [rA]!
VLD1.32 {d4-d7}, [rB]!

VMULL.S8 g4, d0, d4 # multiply
VMLAL.S8 g4, d1, d5 # multiply—accumulate 1in 1ntl6
VPADAL.S16 g7, q4, 9@ # accumulate to 1nt32

repeat for 4x2 tile of NEON registers

Performance
Measured and estimated OPS/cycle

Cortex-A7 Cortex-A53

SGEMM 6x6 (FB impl): FLOPS/cycle measured 1.619

SGEMM 6x8 (FB impl): FLOPS/cycle measured 1.613 5.888
SGEMM 6x8 (FB impl): FLOPS/cycle estimated 1.745 6.000
USGEMM 6x4 X 4x8 (FB impl): OPS/cycle est. 3.03 6.56
/x VLDR Dd, [Rn, #imm] 7 4
/x VMOVL.U8 Qd, Rm 14 7
48x VMLAL.U16 Qd, Qn, Qm[x] 106 48
USGEMM 3x8 X 8x3 (gemmlowp): OPS/cycle est. 2.40 4.80
6x VLDR Dd, [Rn, #imm] 6 3
9x VMULL.U8 Qd, Dn, Dm 18 9
9x VPADAL.U16 Qd, Qn, Qm 32 18
IBGEMM 4x16 X 16x2 (gemmlowp): OPS/cycle est. 3.30 6.74
12x VLDR Dd, [Rn, #imm] 12 6
8x VMLAL.S8 Qd, Dn, Dm 17.6% 8
8x VMULL.S8 Qd, Dn, Dm 16 8
8x VPADAL.S16 Qd, Qn, Qm 32 16

Performance

Analysis

Int8 GEMM vs SGEMM on low-end ARM cores:

e 2x speedup on Cortex-A7 (due to slow FP units)
e At most 10% speedup on Cortex-A53

Why small speedups?

e Accumulation to int32 is expensive
e No dual-issue of VMUL + VPADAL on low-end

Performance

Instruction set effects

Lack of instructions to multiply and accumulate
neighboring lanes to 32 bits is what kills performance.

e Scalar SMLASD existed in ARMv6, but no NEON version
e Instruction like DP4A (nVidia Pascal) would be helptul

Cortex-A7 Cortex-A53
SGEMM 6x6 (FB impl): FLOPS/cycle measured

SGEMM 6x8 (FB impl): FLOPS/cycle measured

USGEMM 6x4 X 4x8 (NEON DP4A): OPS/cycle est.
USGEMM 6x4 X 4x8 (NEON SMLASD): OPS/cycle est.

Conclusion

8-bit Integer GEMM promised great speedups, but in
practice doesn’t deliver where we need them most - on

low-end mobile phones

This fact is due to a combination of ARM NEON ISA
imitations and single-issue NEON pipelines

4x speedups could be realized it ARM NEON included a
4x 8-bit int dot product with 32-bit accumulation

