
Another	year	of	progress	for	
BLIS:	2017-2018	
Field	G.	Van	Zee	

Science	of	High	Performance	Compu:ng	
The	University	of	Texas	at	Aus:n	

	

Science	of	High	Performance	
Compu:ng	(SHPC)	research	group	

•  Led	by	Robert	A.	van	de	Geijn	

•  Contributes	to	the	science	of	DLA	and	
instan:ates	research	results	as	open	source	
soJware	

•  Long	history	of	support	from	Na:onal	Science	
Founda:on	
	

•  Website:	hOps://shpc.ices.utexas.edu/	

SHPC	Funding	(BLIS)	

•  NSF	
–  Award	ACI-1148125/1340293:	SI2-SSI:	A	Linear	Algebra	
So2ware	Infrastructure	for	Sustained	Innova;on	in	
Computa;onal	Chemistry	and	other	Sciences.	(Funded	June	1,	
2012	-	May	31,	2015.)	

–  Award	CCF-1320112:	SHF:	Small:	From	Matrix	Computa;ons	to	
Tensor	Computa;ons.	(Funded	August	1,	2013	-	July	31,	2016.)	

–  Award	ACI-1550493:	SI2-SSI:	Sustaining	Innova;on	in	the	Linear	
Algebra	So2ware	Stack	for	Computa;onal	Chemistry	and	other	
Sciences.	(Funded	July	15,	2016	–	June	30,	2018.)	

SHPC	Funding	(BLIS)	

•  Industry	(grants	and	hardware)	
–  MicrosoJ	
–  Texas	Instruments	
–  Intel		
–  AMD	
–  HP	Enterprise	
–  Oracle	
–  Huawei	

Publica:ons	
•  “BLIS:	A	Framework	for	Rapid	Instan;a;on	of	BLAS	Func;onality”	(TOMS;	

in	print)	

•  “The	BLIS	Framework:	Experiments	in	Portability”	(TOMS;	in	print)	

•  “Anatomy	of	Many-Threaded	Matrix	Mul;plica;on”	(IPDPS;	in	

proceedings)	

•  “Analy;cal	Models	for	the	BLIS	Framework”	(TOMS;	in	print)	

•  “Implemen;ng	High-Performance	Complex	Matrix	Mul;plica;on	via	the	

3m	and	4m	Methods”	(TOMS;	in	print)	

•  “Implemen;ng	High-Performance	Complex	Matrix	Mul;plica;on	via	the	

1m	Method”	(TOMS;	accepted	pending	modifica:ons)	

Review	

•  BLAS:	Basic	Linear	Algebra	Subprograms	
–  Level	1:	vector-vector	[Lawson	et	al.	1979]	
–  Level	2:	matrix-vector	[Dongarra	et	al.	1988]	
–  Level	3:	matrix-matrix	[Dongarra	et	al.	1990]	

•  Why	are	BLAS	important?	
–  BLAS	cons:tute	the	“boOom	of	the	food	chain”	for	
most	dense	linear	algebra	applica:ons,	as	well	as	
other	HPC	libraries	

–  LAPACK,	libflame,	MATLAB,	PETSc,	numpy,	gsl,	etc.	

Review	

•  What	is	BLIS?	
– A	framework	for	instan:a:ng	BLAS	libraries	(ie:	fully	
compa:ble	with	BLAS)	

•  What	else	is	BLIS?	
–  Provides	alterna:ve	BLAS-like	(C	friendly)	API	that	
fixes	deficiencies	in	original	BLAS	

–  Provides	an	object-based	API	
–  Provides	a	superset	of	BLAS	func:onality	
– A	produc:vity	mul:plier	
– A	research	environment	

Review:	Where	were	we	a	year	ago?	

•  License:	3-clause	BSD	
•  Most	recent	version:	0.4.1	(August	30)	
•  Host:	hOps://github.com/flame/blis	

–  Clone	repositories,	open	new	issues,	submit	pull	
requests,	interact	with	other	github	users,	view	
markdown	docs	

•  GNU-like	build	system	
–  Support	for	gcc,	clang,	icc	

•  Configure-:me	hardware	detec:on	(cpuid)	

Review:	Where	were	we	a	year	ago?	

•  BLAS	/	CBLAS	compa:bility	layers	
•  Two	na:ve	APIs	

–  Typed	(BLAS-like)	
– Object-based	(libflame-like)	

•  Support	for	level-3	mul:threading	
–  via	OpenMP	or	POSIX	threads	
– Quadra:c	par::oning:	herk,	syrk,	her2k,	syr2k,	trmm	

•  Comprehensive	test	suite	
–  Control	opera:ons,	parameters,	problem	sizes,	
datatypes,	storage	formats,	and	more	

So	What’s	New?	

•  Five	broad	categories	
– Framework	
– Kernels	
– Build	system	
– Tes:ng	
– Documenta:on	

So	What’s	New?	

•  Five	broad	categories	
– Framework	
– Kernels	
– Build	system	
– Tes:ng	
– Documenta:on	

Run:me	kernel	management	

•  Run:me	management	of	configura:ons	
(kernels,	blocksizes,	etc.)	
– RewriOen/generalized	configura:on	system	
– Allows	mul:-configura:on	builds	(“fat”	libraries)	

•  CPUID	used	at	run:me	to	choose	between	targets	
– Examples:	

•  ./configure	intel64	
•  ./configure	x86_64	
•  ./configure	haswell			#	still	works	

– Or	define	your	own!	
•  ./configure	skx_knl			#	with	~5m	of	work	

Run:me	kernel	management	

•  For	more	details:	
–  docs/ConfigurationHowTo.md	

Self-ini:aliza:on	

•  Library	self-ini:aliza:on	
–  Previously	status	quo	

•  User	of	typed/object	APIs	had	to	call	bli_init()	prior	to	calling	
any	other	func:on	or	part	of	BLIS	

•  BLAS/CBLAS	were	already	self-ini:alizing	
–  How	does	it	work	now?	

•  Typical	usage	of	typed/object	API	results	in	exactly	one	thread	
calling	bli_init()	automa:cally,	exactly	once	

•  Library	stays	ini:alized;	bli_finalize()	is	op:onal	
– Why	is	this	important?	

•  Applica:on	doesn’t	have	to	worry	anymore		about	whether	BLIS	is	
ini:alized	(esp.	with	constants	BLIS_ZERO,	BLIS_ONE,	etc.)	

–  Implementa:on	
•  pthread_once()	

Basic	+	Expert	Interfaces	

•  Separate	“basic”	and	“expert”	interfaces	
– applies	to	both	typed	and	object	APIs	

•  What	is	the	difference?	

Basic	+	Expert	Interfaces	

//	Typed	API	(basic)	
void	bli_dgemm	
					(
							trans_t	transa,	
							trans_t	transb,	
							dim_t			m,	
							dim_t			n,	
							dim_t			k,	
							double*	alpha,	
							double*	a,	inc_t	rsa,	inc_t	csa,	
							double*	b,	inc_t	rsb,	inc_t	csb,	
							double*	beta,	
							double*	c,	inc_t	rsc,	inc_t	csc	
);	

//	Object	API	(basic)	
void	bli_gemm	
					(
							obj_t*		alpha,	
							obj_t*		a,	
							obj_t*		b,	
							obj_t*		beta,	
							obj_t*		c	
);	

Basic	+	Expert	Interfaces	

//	Typed	API	(expert)	
void	bli_dgemm_ex	
					(
							trans_t	transa,	
							trans_t	transb,	
							dim_t			m,	
							dim_t			n,	
							dim_t			k,	
							double*	alpha,	
							double*	a,	inc_t	rsa,	inc_t	csa,	
							double*	b,	inc_t	rsb,	inc_t	csb,	
							double*	beta,	
							double*	c,	inc_t	rsc,	inc_t	csc,	
							cntx_t*	cntx,	
							rntm_t*	rntm	
);	

//	Object	API	(expert)	
void	bli_gemm_ex	
					(
							obj_t*		alpha,	
							obj_t*		a,	
							obj_t*		b,	
							obj_t*		beta,	
							obj_t*		c,	
							cntx_t*	cntx,	
							rntm_t*	rntm	
);	

Basic	+	Expert	Interfaces	

•  What	are	cntx_t	and	rntm_t?	
– cntx_t:	context	encapsulates	all	architecture-
specific	informa:on	obtained	from	the	build	
system	about	the	configura:on	(blocksizes,	kernel	
addresses,	etc.)	

– rntm_t:	more	on	this	in	a	bit	
– BoOom	line:	experts	can	exert	more	control	over	
BLIS	without	impeding	everyday	users		

Basic	+	Expert	Interfaces	

•  For	more	details:	
–  docs/BLISTypedAPI.md	
–  docs/BLISObjectAPI.md	

Controlling	Mul:threading	

•  Reminder	
– How	does	mul:threading	work	in	BLIS?	
– BLIS’s	gemm	algorithm	has	five	loops	outside	the	
microkernel	and	one	loop	inside	the	microkernel	

•  JC	
•  PC	(not	yet	parallelized)	
•  IC	
•  JR	
•  IR	
•  PR	(microkernel)	

JC	loop	

PC	loop	

IC	loop	

JR	loop	

IR	loop	

PR	loop	

5th	loop	around	micro-kernel	

4th	loop	around	micro-kernel	

3rd	loop	around	micro-kernel	

2nd	loop	around	micro-kernel	

1st	loop	around	μkernel	

micro-kernel	

+=	

mC

mR

mR

1

+=	

+=	

+=	

+=	

+=	

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai
~

Pack Bp → Bp
~

nR

A Bj Cj

Ap

Ai

Bp
Cj

Ai
~ Bp

~

Bp
~ Ci

Ci

kC

L3	cache	
L2	cache	
L1	cache	
registers	

main	memory	

Update Cij

Controlling	Mul:threading	

•  Previously,	BLIS	had	one	method	to	control	
threading:	Global	specifica:on	via	environment	
variables	
– Affects	all	applica:on	threads	equally	
– Automa:c	way	

•  BLIS_NUM_THREADS	
– Manual	way	

•  BLIS_JC_NT,	BLIS_IC_NT,	BLIS_JR_NT,	BLIS_IR_NT		
•  BLIS_PC_NT	(not	yet	implemented)	

Controlling	Mul:threading	

#	Use	either	the	automatic	way	or	manual	way	of	requesting	
#	parallelism.	
	
#	Automatic	way.	
$	export	BLIS_NUM_THREADS	=	6	
	
#	Expert	way.	
$	export	BLIS_IC_NT	=	2;	export	BLIS_JR_NT	=	3	
	
//	Call	a	level-3	operation	(basic	interface	is	enough).	
bli_gemm(&alpha,	&a,	&b,	&beta,	&c);	

•  Example:	Global	specifica:on	via	environment	
variables	

Controlling	Mul:threading	

•  We	now	have	a	second	method:	Global	
specifica:on	via	run:me	API	
– Affects	all	applica:on	threads	equally	
– Automa:c	way	

•  bli_thread_set_num_threads(dim_t	nt);	
– Manual	way	

•  bli_thread_set_ways(dim_t	jc,	dim_t	pc,	
dim_t	ic,	dim_t	jr,	dim_t	ir);	

Controlling	Mul:threading	

//	Use	either	the	automatic	way	or	manual	way	of	requesting	
//	parallelism.	
	
//	Automatic	way.	
bli_thread_set_num_threads(6,	&rntm);	
	
//	Manual	way.	
bli_thread_set_ways(1,	1,	2,	3,	1,	&rntm);	
	
//	Call	a	level-3	operation	(basic	interface	is	still	enough).	
bli_gemm(&alpha,	&a,	&b,	&beta,	&c);	

•  Example:	Global	specifica:on	via	run:me	API	

Controlling	Mul:threading	

•  And	also	a	third	method:	Thread-local	specifica:on	
via	run:me	API	
– Affects	only	the	calling	thread!	
–  Requires	use	of	expert	interface	(typed	or	object)		

•  User	ini:alizes	and	passes	in	a	“run:me”	object:	rntm_t	
– Automa:c	way	

•  bli_rntm_set_num_threads(dim_t	nt,	rntm_t*	
rntm);	

– Manual	way	
•  bli_rntm_set_ways(dim_t	jc,	dim_t	pc,	dim_t	
ic,	dim_t	jr,	dim_t	ir,	rntm_t*	rntm);	

Controlling	Mul:threading	

//	Declare	and	initialize	a	rntm_t	object.	
rntm_t	rntm	=	BLIS_RNTM_INITIALIZER;	
	
//	Call	ONE	(not	both)	of	the	following	to	encode	your	
//	parallelization	into	the	rntm_t.	
bli_rntm_set_num_threads(6,	&rntm);							//	automatic	way	
bli_rntm_set_ways(1,	1,	2,	3,	1,	&rntm);		//	manual	way	
	
//	Call	a	level-3	operation	via	an	expert	interface	and	pass	
//	in	your	rntm_t.	(NULL	below	requests	default	context.)	
bli_gemm_ex(&alpha,	&a,	&b,	&beta,	&c,	NULL,	&rntm);	

•  Example:	Thread-local	specifica:on	via	run:me	API	

Controlling	Mul:threading	

•  For	more	details:	
–  docs/Multithreading.md	

Thread	Safety	

•  Uncondi:onal	thread	safety	
•  What	does	this	mean?	

– BLIS	always	uses	mechanisms	provided	by	
pthreads	API	to	ensure	synchronous	access	to	
globally-shared	data	structures	

–  Independent	of	mul:threading	op:on	
	--enable-threading={pthreads|openmp}	
• Works	with	OpenMP	
• Works	when	mul:threading	is	disabled	en:rely	

Sandboxes	

•  Mo:va:on:	what	if	you	could	provide	your	own	
implementa:on	of	gemm?	
–  You	could	use	as	liOle	or	as	much	of	the	exis:ng	
implementa:on	code	as	you	like	

–  But	you	want	to	preserve	everything	else:	build	system,	
testsuite,	u:lity	func:ons,	etc.	

•  Enter	BLIS	sandbox	
–  Integrated	into	build	system	(no	addi:onal	makefiles)	
–  Requires	only	one	header	file	(which	can	be	empty)	
–  Requires	only	one	func:on:	bli_gemmnat()	
– Use	C	(or	even	C++)	

Sandboxes	

•  Enabling	a	sandbox	in	BLIS	
#	Enable	sandbox	named	‘ref99’	(with	automatic	configuration	
#	selection).	
$./configure	--enable-sandbox=ref99	auto	
	
#	Shorthand:	
$./configure	-s	ref99	auto	

Sandboxes	

•  Possible	uses	
– Trying	a	different	algorithmic	path	(not	Goto)	
– Trying	a	different	implementa:on	of	packm	(not	
just	packm	kernels)	

– Try	various	op:miza:ons:	avoiding	obj_t	at	a	
higher	level,	or	inlining	func:ons.	

– Create	experimental	implementa:ons	of	new	
opera:ons	

Sandboxes	

•  NOT	for	doing	any	of	the	following:	
– Defining	a	new	datatype	(half-precision,	quad-
precision,	short	integer,	etc.)	

– Changing	exis:ng	APIs	
– Removing	support	for	one	or	more	datatypes	(to	
reduce	library	size)	

– Change	implementa:on	of	other	level-3	opera:ons	
such	as	herk	or	trmm	

•  This	may	be	allowed	in	the	future	

Sandboxes	

•  For	more	details:	
–  docs/Sandboxes.md	

So	What’s	New?	

•  Five	broad	categories	
– Framework	
– Kernels	
– Build	system	
– Tes:ng	
– Documenta:on	

Kernels	

•  Intel	SkylakeX	and	Knight’s	Landing	(AVX-512)		
– na:ve:	s/d	(all	level-3	opera:ons)	
–  induced	1m:	c/z	(all	level-3)	

•  Intel	Penryn,	Sandybridge,	Ivy	Bridge,	Haswell,	
Broadwell,	Skylake,	Kaby	Lake,	Coffee	Lake	
– na:ve:	s/d/c/z	(all	level-3;	some	level-1v,	-1f)	

•  AMD	Bulldozer,	Piledriver,	Steamroller,	
Excavator,	Zen	
– na:ve:	s/d/c/z	(all	level-3)	

So	What’s	New?	

•  Five	broad	categories	
– Framework	
– Kernels	
– Build	system	
– Tes:ng	
– Documenta:on	

Build	system	

•  Monolithic	header	genera:on	
– All	headers	(~500)	recursively	inlined	into	blis.h	
–  Faster	compila:on	:me	
–  Easier	to	distribute	build	products	

•  RewriOen	configure-:me	hardware	detec:on	
•  Configura:on	blacklis:ng	(assembler/binu:ls)	
•  ARG_MAX	hack	

–  ./configure	--enable-arg-max-hack	
•  Compile/link	against	installed	copy	of	BLIS	

–  make	BLIS_INSTALL_PATH=/usr/local		

So	What’s	New?	

•  Five	broad	categories	
– Framework	
– Kernels	
– Build	system	
– Tes:ng	
– Documenta:on	

Tes:ng	

•  Integrated	netlib	BLAS	test	drivers	
– Carefully	translated	from	Fortran-77	to	C	
–  Integrated	into	build	system	

•  make	checkblas	
•  Simulate	applica:on-level	mul:threading	in	
testsuite	
– Execute	with	arbitrary	number	of	threads	

•  Travis	CI	now	uses	Intel	SDE	emulator	to	test	
all	x86_64	kernels	
– Excep:on:	FMA4-based	Bulldozer	

So	What’s	New?	

•  Five	broad	categories	
– Framework	
– Kernels	
– Build	system	
– Tes:ng	
– Documenta:on	

Documenta:on	

•  Example	code	
– Typed	API:	examples/tapi	
– Object	API:	examples/oapi	
– Makefiles	included	
– Set	up	like	a	tutorial:	read	code	alongside	the	
executable	output		

•  Documenta:on	
–  typed	API,	object	API,	build	system,	configura:ons,	
hardware	support,	kernels,	mul:threading,	
sandboxes,	testsuite,	release	notes	

Performance	

Performance	

GitHub	Stats	

•  Total	BLIS	contributors	to-date:	62	
–  non-UT	contributors:	52	

•  Issues	closed:	115	
–  by	non-UT	contributors:	86	

•  Pull	requests	closed:	88	
–  virtually	all	accepted	

•  Average	unique	clones	per	two-week	period:	~50	
–  total	clones	per	two-week	period:	~500	

•  Average	unique	visitors	per	two-week	period:	~350	
–  total	visitors	per	two-week	period:	~1500	

What’s	new?	(review)	

•  Five	broad	categories	
–  Framework:	run:me	config	management;	library	self-init;	
basic+expert	APIs;	per-call	mul:threading	specifica:on;	
uncondi:onal	thread	safety;	sandboxes	

–  Kernels:	zen	support;	Devin’s	assembly	macro	language	
–  Build	system:	monolithic	header	genera:on	(faster	build	
:me);	rewriOen	configure-:me	hardware	detec:on;	config	
blacklis:ng;	ARG_MAX	hack;	BLIS_INSTALL_PATH	

–  Tes:ng:	integrated	netlib	BLAS	test	drivers	(translated	to	
C);	simulate	applica:on-level	threads	in	testsuite;	Travis	CI	
now	uses	Intel	SDE	

–  Documenta:on:	example	code	(typed	and	object	APIs);	
API	documenta:on	(typed	and	object	APIs);	moved	wikis	
into	source	distribu:on		

Conclusion	

•  BLIS…	
–  is	rapidly	maturing	
–  is	feature-rich	
–  is	well-documented	
– has	a	community	to	support	its	developers/users	
– has	been	embraced	by	industry	
– provides	compe::ve	(or	superior)	performance	
rela:ve	to	other	leading	open-source	solu:ons	
(and	some	vendor	libraries!)	

Further	Informa:on	

•  Website:	
– hOp://github.com/flame/blis/	

•  Discussion:	
– hOp://groups.google.com/group/blis-devel	
– hOp://groups.google.com/group/blis-discuss	

•  Contact:	
– field@cs.utexas.edu	

											 48	

Thank	you!	

