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SHPC Funding (BLIS)

* NSF

— Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra
Software Infrastructure for Sustained Innovation in
Computational Chemistry and other Sciences. (Funded June 1,
2012 - May 31, 2015.)

— Award CCF-1320112: SHF: Small: From Matrix Computations to
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.)

— Award ACI-1550493: S/2-5S1: Sustaining Innovation in the Linear

Algebra Software Stack for Computational Chemistry and other
Sciences. (Funded July 15, 2016 — June 30, 2018.)



SHPC Funding (BLIS)

* Industry (grants and hardware)
— Microsoft
— Texas Instruments
— Intel
— AMD
— HP Enterprise
— Oracle
— Huawei



Publications

“BLIS: A Framework for Rapid Instantiation of BLAS Functionality” (TOMS;
in print)

“The BLIS Framework: Experiments in Portability” (TOMS; in print)
“Anatomy of Many-Threaded Matrix Multiplication” (IPDPS; in
proceedings)

“Analytical Models for the BLIS Framework” (TOMS; in print)

“Implementing High-Performance Complex Matrix Multiplication via the

3m and 4m Methods” (TOMS; in print)

“Implementing High-Performance Complex Matrix Multiplication via the

Im Method” (TOMS; accepted pending modifications)



Review

* BLAS: Basic Linear Algebra Subprograms
— Level 1: vector-vector [Lawson et al. 1979]
— Level 2: matrix-vector [Dongarra et al. 1988]

— Level 3: matrix-matrix [Dongarra et al. 1990]

* Why are BLAS important?

— BLAS constitute the “bottom of the food chain” for
most dense linear algebra applications, as well as
other HPC libraries

— LAPACK, 1ibflame, MATLAB, PETSc, numpy, gsl, etc.



Review

e What is BLIS?

— A framework for instantiating BLAS libraries (ie: fully
compatible with BLAS)

e What else is BLIS?

— Provides alternative BLAS-like (C friendly) API that
fixes deficiencies in original BLAS

— Provides an object-based API

— Provides a superset of BLAS functionality
— A productivity multiplier

— A research environment



Review: Where were we a year ago?

License: 3-clause BSD
Most recent version: 0.4.1 (August 30)

Host: https://github.com/flame/blis

— Clone repositories, open new issues, submit pull
requests, interact with other github users, view
markdown docs

GNU-like build system
— Support for gcc, clang, icc

Configure-time hardware detection (cpuid)



Review: Where were we a year ago?

BLAS / CBLAS compatibility layers

Two native APIs

— Typed (BLAS-like)

— Object-based (libflame-like)

Support for level-3 multithreading

— via OpenMP or POSIX threads

— Quadratic partitioning: herk, syrk, her2k, syr2k, trmmm
Comprehensive test suite

— Control operations, parameters, problem sizes,
datatypes, storage formats, and more



So What’'s New?

* Five broad categories
— Framework
— Kernels
— Build system
— Testing
— Documentation



So What’'s New?

* Five broad categories

— Framework



Runtime kernel management

* Runtime management of configurations
(kernels, blocksizes, etc.)

— Rewritten/generalized configuration system

— Allows multi-configuration builds (“fat” libraries)
e CPUID used at runtime to choose between targets
— Examples:
 ./configure intel64
 ./configure x86 64
« ./configure haswell # still works
— Or define your own!
 ./configure skx _knl # with ~5m of work



Runtime kernel management

 For more details:
— docs/ConfigurationHowTo.md



Self-initialization

e Library self-initialization
— Previously status quo

» User of typed/object APIs had to call bli_init () prior to calling
any other function or part of BLIS

* BLAS/CBLAS were already self-initializing

— How does it work now?

* Typical usage of typed/object API results in exactly one thread
calling bli_init() automatically, exactly once

* Library stays initialized; bli_finalize() is optional
— Why is this important?

* Application doesn’t have to worry anymore about whether BLIS is
initialized (esp. with constants BLIS ZERO, BLIS ONE, etc.)

— Implementation
 pthread once()



Basic + Expert Interfaces

e Separate “basic” and “expert” interfaces
— applies to both typed and object APIs

e What is the difference?



Basic

// Typed API (basic)

void bli dgemm

(

)5

trans_t
trans_t
dim_t

dim_t

dim_t

double*
double*
double*
double*
double*

transa,

transb,

m,

n,

K,

alpha,

a, inc_t rsa, inc_t csa,
b, inc_t rsb, inc_t csb,
beta,

c, inc_t rsc, inc_t csc

Interfaces

// Object API
void bli gemm

(

)s

obj t*
obj t*
obj t*
obj t*
obj t*



Expert Interfaces

// Typed API (expert) // Object API (expert)
void bli dgemm ex void bli gemm ex
( (
trans_t transa, obj t* alpha,
trans_t transb, obj t* a,
dim_t m, obj t* b,
dim_t n, obj t* beta,
dim t k, obj t* «c,
double* alpha, cntx_t* cntx,
double* a, inc_t rsa, inc_t csa, rntm_t* rntm
double* b, inc_t rsb, inc_t csb, );

double* beta,
double* c, inc_t rsc, inc_t csc,
cntx_t* cntx,
rntm_t* rntm

)s



Basic + Expert Interfaces

* What are cntx_t and rntm_t?

— cntx_t: context encapsulates all architecture-
specific information obtained from the build
system about the configuration (blocksizes, kernel
addresses, etc.)

— rntm_t: more on thisin a bit

— Bottom line: experts can exert more control over
BLIS without impeding everyday users



Basic + Expert Interfaces

 For more details:
— docs/BLISTypedAPI.md
— docs/BLISObjectAPI.md



Controlling Multithreading

* Reminder
— How does multithreading work in BLIS?

— BLIS’s gemm algorithm has five loops outside the
microkernel and one loop inside the microkernel
* JC
e PC (not yet parallelized)
* IC
* JR
* IR

* PR (microkernel)
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Controlling Multithreading

* Previously, BLIS had one method to control
threading: Global specification via environment
variables

— Affects all application threads equally

— Automatic way
« BLIS _NUM_THREADS

— Manual way
« BLIS_JC_NT,BLIS IC_NT,BLIS JR NT,BLIS IR _NT
« BLIS PC _NT (notyetimplemented)



Controlling Multithreading

 Example: Global specification via environment
variables

# Use either the automatic way or manual way of requesting
# parallelism.

# Automatic way.
$ export BLIS_NUM_THREADS = 6

# Expert way.
$ export BLIS IC NT = 2; export BLIS JR NT = 3

// Call a level-3 operation (basic interface is enough).
bli gemm( &alpha, &a, &b, &beta, &c );



Controlling Multithreading

e We now have a second method: Global
specification via runtime API

— Affects all application threads equally

— Automatic way
* bli_thread_set_num_threads( dim_t nt );

— Manual way

 bli thread set ways( dim_t jc, dim_t pc,
dim_t ic, dim_t jr, dim_t ir );



Controlling Multithreading

 Example: Global specification via runtime API

// Use either the automatic way or manual way of requesting
// parallelism.

// Automatic way.
bli_thread_set_num_threads( 6, &rntm );

// Manual way.
bli thread set ways( 1, 1, 2, 3, 1, &rntm );

// Call a level-3 operation (basic interface is still enough).
bli gemm( &alpha, &a, &b, &beta, &c );



Controlling Multithreading

* And also a third method: Thread-local specification
via runtime API

— Affects only the calling thread!

— Requires use of expert interface (typed or object)
* User initializes and passes in a “runtime” object: rntm_t

— Automatic way
 bli rntm_set num _threads( dim_t nt, rntm t*
rntm );
— Manual way

* bli rntm_set ways( dim_t jc, dim_t pc, dim t
ic, dim_t jr, dim_t ir, rntm_t* rntm );



Controlling Multithreading

 Example: Thread-local specification via runtime API

// Declare and initialize a rntm_t object.
rntm_t rntm = BLIS RNTM _INITIALIZER;

// Call ONE (not both) of the following to encode your

// parallelization into the rntm_t.

bli rntm_set num_threads( 6, &rntm ); // automatic way
bli rntm_set ways( 1, 1, 2, 3, 1, &ntm ); // manual way

// Call a level-3 operation via an expert interface and pass
// in your rntm_t. (NULL below requests default context.)
bli gemm ex( &alpha, &a, &b, &beta, &c, NULL, &rntm );



Controlling Multithreading

e For more details:
— docs/Multithreading.md



Thread Safety

* Unconditional thread safety

e What does this mean?

— BLIS always uses mechanisms provided by
pthreads APl to ensure synchronous access to
globally-shared data structures

— Independent of multithreading option

--enable-threading={pthreads|openmp}
* Works with OpenMP
* Works when multithreading is disabled entirely



Sandboxes

* Motivation: what if you could provide your own
implementation of gemm?

— You could use as little or as much of the existing
implementation code as you like

— But you want to preserve everything else: build system,
testsuite, utility functions, etc.

* Enter BLIS sandbox
— Integrated into build system (no additional makefiles)
— Requires only one header file (which can be empty)
— Requires only one function: bli_gemmnat()
— Use C (or even C++)



Sandboxes

* Enabling a sandbox in BLIS

# Enable sandbox named ‘ref99’ (with automatic configuration
# selection).
$ ./configure --enable-sandbox=ref99 auto

# Shorthand:
$ ./configure -s ref99 auto



Sandboxes

* Possible uses
— Trying a different algorithmic path (not Goto)

— Trying a different implementation of packm (not
just packm kernels)

— Try various optimizations: avoiding obj_t at a
higher level, or inlining functions.

— Create experimental implementations of new
operations



Sandboxes

NOT for doing any of the following:

— Defining a new datatype (half-precision, quad-
precision, short integer, etc.)

— Changing existing APIs

— Removing support for one or more datatypes (to
reduce library size)

— Change implementation of other level-3 operations
such as herk or trmm

* This may be allowed in the future



Sandboxes

e For more details:
— docs/Sandboxes.md



So What’'s New?

* Five broad categories

— Kernels



Kernels

* |Intel SkylakeX and Knight’s Landing (AVX-512)
— native: s/d (all level-3 operations)
— induced 1m: c/z (all level-3)

* Intel Penryn, Sandybridge, Ivy Bridge, Haswell,
Broadwell, Skylake, Kaby Lake, Coffee Lake
— native: s/d/c/z (all level-3; some level-1v, -1f)

e AMD Bulldozer, Piledriver, Steamroller,
Excavator, Zen
— native: s/d/c/z (all level-3)



So What’'s New?

* Five broad categories

— Build system



Build system

Monolithic header generation

— All headers (~500) recursively inlined into blis.h
— Faster compilation time

— Easier to distribute build products

Rewritten configure-time hardware detection
Configuration blacklisting (assembler/binutils)

ARG_MAX hack
— ./configure --enable-arg-max-hack

Compile/link against installed copy of BLIS
— make BLIS INSTALL PATH=/usr/local



So What’'s New?

* Five broad categories

— Testing



Testing

* |Integrated netlib BLAS test drivers
— Carefully translated from Fortran-77 to C

— Integrated into build system
* make checkblas

e Simulate application-level multithreading in
testsuite
— Execute with arbitrary number of threads

* Travis Cl now uses Intel SDE emulator to test
all x86_64 kernels
— Exception: FMA4-based Bulldozer



So What’'s New?

* Five broad categories

— Documentation



Documentation

 Example code
— Typed API: examples/tapi
— Object API: examples/oap1i
— Makefiles included

— Set up like a tutorial: read code alongside the
executable output

e Documentation

— typed API, object API, build system, configurations,
hardware support, kernels, multithreading,
sandboxes, testsuite, release notes



GFLOPS

Performance
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GitHub Stats

Total BLIS contributors to-date: 62
— non-UT contributors: 52

Issues closed: 115

— by non-UT contributors: 86

Pull requests closed: 88

— virtually all accepted

Average unique clones per two-week period: ~50
— total clones per two-week period: ~500

Average unique visitors per two-week period: ~350
— total visitors per two-week period: ~1500



What’s new? (review)

* Five broad categories

— Framework: runtime config management; library self-init;
basict+expert APls; per-call multithreading specification;
unconditional thread safety; sandboxes

— Kernels: zen support; Devin’s assembly macro language

— Build system: monolithic header generation (faster build

time); rewritten configure-time hardware detection; config
blacklisting; ARG_MAX hack; BLIS INSTALL PATH

— Testing: integrated netlib BLAS test drivers (translated to
C); simulate application-level threads in testsuite; Travis Cl
now uses Intel SDE

— Documentation: example code (typed and object APIs);
APl documentation (typed and object APIs); moved wikis
into source distribution



Conclusion

 BLIS...
— is rapidly maturing
— is feature-rich
— is well-documented
— has a community to support its developers/users
— has been embraced by industry

— provides competitive (or superior) performance
relative to other leading open-source solutions
(and some vendor libraries!)



Further Information

e Website:
— http://github.com/flame/blis/

 Dijscussion:

— http://eroups.soogle.com/group/blis-devel

— http://eroups.soogle.com/group/blis-discuss

* Contact:
— field@cs.utexas.edu
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Thank you!






