Another year of progress for
BLIS: 2017-2018

Field G. Van Zee

Science of High Performance Computing
The University of Texas at Austin

Science of High Performance
Computing (SHPC) research group

Led by Robert A. van de Geijn

Contributes to the science of DLA and
instantiates research results as open source

software

Long history of support from National Science
Foundation

Website: https://shpc.ices.utexas.edu/

SHPC Funding (BLIS)

* NSF

— Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra
Software Infrastructure for Sustained Innovation in
Computational Chemistry and other Sciences. (Funded June 1,
2012 - May 31, 2015.)

— Award CCF-1320112: SHF: Small: From Matrix Computations to
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.)

— Award ACI-1550493: S/2-5S1: Sustaining Innovation in the Linear

Algebra Software Stack for Computational Chemistry and other
Sciences. (Funded July 15, 2016 — June 30, 2018.)

SHPC Funding (BLIS)

* Industry (grants and hardware)
— Microsoft
— Texas Instruments
— Intel
— AMD
— HP Enterprise
— Oracle
— Huawei

Publications

“BLIS: A Framework for Rapid Instantiation of BLAS Functionality” (TOMS;
in print)

“The BLIS Framework: Experiments in Portability” (TOMS; in print)
“Anatomy of Many-Threaded Matrix Multiplication” (IPDPS; in
proceedings)

“Analytical Models for the BLIS Framework” (TOMS; in print)

“Implementing High-Performance Complex Matrix Multiplication via the

3m and 4m Methods” (TOMS; in print)

“Implementing High-Performance Complex Matrix Multiplication via the

Im Method” (TOMS; accepted pending modifications)

Review

* BLAS: Basic Linear Algebra Subprograms
— Level 1: vector-vector [Lawson et al. 1979]
— Level 2: matrix-vector [Dongarra et al. 1988]

— Level 3: matrix-matrix [Dongarra et al. 1990]

* Why are BLAS important?

— BLAS constitute the “bottom of the food chain” for
most dense linear algebra applications, as well as
other HPC libraries

— LAPACK, 1ibflame, MATLAB, PETSc, numpy, gsl, etc.

Review

e What is BLIS?

— A framework for instantiating BLAS libraries (ie: fully
compatible with BLAS)

e What else is BLIS?

— Provides alternative BLAS-like (C friendly) API that
fixes deficiencies in original BLAS

— Provides an object-based API

— Provides a superset of BLAS functionality
— A productivity multiplier

— A research environment

Review: Where were we a year ago?

License: 3-clause BSD
Most recent version: 0.4.1 (August 30)

Host: https://github.com/flame/blis

— Clone repositories, open new issues, submit pull
requests, interact with other github users, view
markdown docs

GNU-like build system
— Support for gcc, clang, icc

Configure-time hardware detection (cpuid)

Review: Where were we a year ago?

BLAS / CBLAS compatibility layers

Two native APIs

— Typed (BLAS-like)

— Object-based (libflame-like)

Support for level-3 multithreading

— via OpenMP or POSIX threads

— Quadratic partitioning: herk, syrk, her2k, syr2k, trmmm
Comprehensive test suite

— Control operations, parameters, problem sizes,
datatypes, storage formats, and more

So What’'s New?

* Five broad categories
— Framework
— Kernels
— Build system
— Testing
— Documentation

So What’'s New?

* Five broad categories

— Framework

Runtime kernel management

* Runtime management of configurations
(kernels, blocksizes, etc.)

— Rewritten/generalized configuration system

— Allows multi-configuration builds (“fat” libraries)
e CPUID used at runtime to choose between targets
— Examples:
 ./configure intel64
 ./configure x86 64
« ./configure haswell # still works
— Or define your own!
 ./configure skx _knl # with ~5m of work

Runtime kernel management

 For more details:
— docs/ConfigurationHowTo.md

Self-initialization

e Library self-initialization
— Previously status quo

» User of typed/object APIs had to call bli_init () prior to calling
any other function or part of BLIS

* BLAS/CBLAS were already self-initializing

— How does it work now?

* Typical usage of typed/object API results in exactly one thread
calling bli_init() automatically, exactly once

* Library stays initialized; bli_finalize() is optional
— Why is this important?

* Application doesn’t have to worry anymore about whether BLIS is
initialized (esp. with constants BLIS ZERO, BLIS ONE, etc.)

— Implementation
 pthread once()

Basic + Expert Interfaces

e Separate “basic” and “expert” interfaces
— applies to both typed and object APIs

e What is the difference?

Basic

// Typed API (basic)

void bli dgemm

(

)5

trans_t
trans_t
dim_t

dim_t

dim_t

double*
double*
double*
double*
double*

transa,

transb,

m,

n,

K,

alpha,

a, inc_t rsa, inc_t csa,
b, inc_t rsb, inc_t csb,
beta,

c, inc_t rsc, inc_t csc

Interfaces

// Object API
void bli gemm

(

)s

obj t*
obj t*
obj t*
obj t*
obj t*

Expert Interfaces

// Typed API (expert) // Object API (expert)
void bli dgemm ex void bli gemm ex
((
trans_t transa, obj t* alpha,
trans_t transb, obj t* a,
dim_t m, obj t* b,
dim_t n, obj t* beta,
dim t k, obj t* «c,
double* alpha, cntx_t* cntx,
double* a, inc_t rsa, inc_t csa, rntm_t* rntm
double* b, inc_t rsb, inc_t csb,);

double* beta,
double* c, inc_t rsc, inc_t csc,
cntx_t* cntx,
rntm_t* rntm

)s

Basic + Expert Interfaces

* What are cntx_t and rntm_t?

— cntx_t: context encapsulates all architecture-
specific information obtained from the build
system about the configuration (blocksizes, kernel
addresses, etc.)

— rntm_t: more on thisin a bit

— Bottom line: experts can exert more control over
BLIS without impeding everyday users

Basic + Expert Interfaces

 For more details:
— docs/BLISTypedAPI.md
— docs/BLISObjectAPI.md

Controlling Multithreading

* Reminder
— How does multithreading work in BLIS?

— BLIS’s gemm algorithm has five loops outside the
microkernel and one loop inside the microkernel
* JC
e PC (not yet parallelized)
* IC
* JR
* IR

* PR (microkernel)

Ve 5% loop around micro-kernel

JC loop c 4= | 4

Ve 4t loop around micro-kernel
PCI “l
oop : A
—
ke ~
Pack B, — B,
-~ 3'd Joop around micro-kernel
IC loo o
p 4=
Pack A; — A,
2" |oop around micro-kernel
Ngr C. /Z {} Ng
— i i —
| me{ (VA
JR loop += (VWA
WA
pa
— 1%tloop around pkernel i
Ng <
—= %
I R | Fmg W4
oop += WA ke
Update C; WA
micro-kernel
1 main memory
[L3 cache I:] [M:m &
PR IOO [L2 cache += by
p 3 L1 cache - 1
[registers
-

Controlling Multithreading

* Previously, BLIS had one method to control
threading: Global specification via environment
variables

— Affects all application threads equally

— Automatic way
« BLIS _NUM_THREADS

— Manual way
« BLIS_JC_NT,BLIS IC_NT,BLIS JR NT,BLIS IR _NT
« BLIS PC _NT (notyetimplemented)

Controlling Multithreading

 Example: Global specification via environment
variables

Use either the automatic way or manual way of requesting
parallelism.

Automatic way.
$ export BLIS_NUM_THREADS = 6

Expert way.
$ export BLIS IC NT = 2; export BLIS JR NT = 3

// Call a level-3 operation (basic interface is enough).
bli gemm(&alpha, &a, &b, &beta, &c);

Controlling Multithreading

e We now have a second method: Global
specification via runtime API

— Affects all application threads equally

— Automatic way
* bli_thread_set_num_threads(dim_t nt);

— Manual way

 bli thread set ways(dim_t jc, dim_t pc,
dim_t ic, dim_t jr, dim_t ir);

Controlling Multithreading

 Example: Global specification via runtime API

// Use either the automatic way or manual way of requesting
// parallelism.

// Automatic way.
bli_thread_set_num_threads(6, &rntm);

// Manual way.
bli thread set ways(1, 1, 2, 3, 1, &rntm);

// Call a level-3 operation (basic interface is still enough).
bli gemm(&alpha, &a, &b, &beta, &c);

Controlling Multithreading

* And also a third method: Thread-local specification
via runtime API

— Affects only the calling thread!

— Requires use of expert interface (typed or object)
* User initializes and passes in a “runtime” object: rntm_t

— Automatic way
 bli rntm_set num _threads(dim_t nt, rntm t*
rntm);
— Manual way

* bli rntm_set ways(dim_t jc, dim_t pc, dim t
ic, dim_t jr, dim_t ir, rntm_t* rntm);

Controlling Multithreading

 Example: Thread-local specification via runtime API

// Declare and initialize a rntm_t object.
rntm_t rntm = BLIS RNTM _INITIALIZER;

// Call ONE (not both) of the following to encode your

// parallelization into the rntm_t.

bli rntm_set num_threads(6, &rntm); // automatic way
bli rntm_set ways(1, 1, 2, 3, 1, &ntm); // manual way

// Call a level-3 operation via an expert interface and pass
// in your rntm_t. (NULL below requests default context.)
bli gemm ex(&alpha, &a, &b, &beta, &c, NULL, &rntm);

Controlling Multithreading

e For more details:
— docs/Multithreading.md

Thread Safety

* Unconditional thread safety

e What does this mean?

— BLIS always uses mechanisms provided by
pthreads APl to ensure synchronous access to
globally-shared data structures

— Independent of multithreading option

--enable-threading={pthreads|openmp}
* Works with OpenMP
* Works when multithreading is disabled entirely

Sandboxes

* Motivation: what if you could provide your own
implementation of gemm?

— You could use as little or as much of the existing
implementation code as you like

— But you want to preserve everything else: build system,
testsuite, utility functions, etc.

* Enter BLIS sandbox
— Integrated into build system (no additional makefiles)
— Requires only one header file (which can be empty)
— Requires only one function: bli_gemmnat()
— Use C (or even C++)

Sandboxes

* Enabling a sandbox in BLIS

Enable sandbox named ‘ref99’ (with automatic configuration
selection).
$./configure --enable-sandbox=ref99 auto

Shorthand:
$./configure -s ref99 auto

Sandboxes

* Possible uses
— Trying a different algorithmic path (not Goto)

— Trying a different implementation of packm (not
just packm kernels)

— Try various optimizations: avoiding obj_t at a
higher level, or inlining functions.

— Create experimental implementations of new
operations

Sandboxes

NOT for doing any of the following:

— Defining a new datatype (half-precision, quad-
precision, short integer, etc.)

— Changing existing APIs

— Removing support for one or more datatypes (to
reduce library size)

— Change implementation of other level-3 operations
such as herk or trmm

* This may be allowed in the future

Sandboxes

e For more details:
— docs/Sandboxes.md

So What’'s New?

* Five broad categories

— Kernels

Kernels

* |Intel SkylakeX and Knight’s Landing (AVX-512)
— native: s/d (all level-3 operations)
— induced 1m: c/z (all level-3)

* Intel Penryn, Sandybridge, Ivy Bridge, Haswell,
Broadwell, Skylake, Kaby Lake, Coffee Lake
— native: s/d/c/z (all level-3; some level-1v, -1f)

e AMD Bulldozer, Piledriver, Steamroller,
Excavator, Zen
— native: s/d/c/z (all level-3)

So What’'s New?

* Five broad categories

— Build system

Build system

Monolithic header generation

— All headers (~500) recursively inlined into blis.h
— Faster compilation time

— Easier to distribute build products

Rewritten configure-time hardware detection
Configuration blacklisting (assembler/binutils)

ARG_MAX hack
— ./configure --enable-arg-max-hack

Compile/link against installed copy of BLIS
— make BLIS INSTALL PATH=/usr/local

So What’'s New?

* Five broad categories

— Testing

Testing

* |Integrated netlib BLAS test drivers
— Carefully translated from Fortran-77 to C

— Integrated into build system
* make checkblas

e Simulate application-level multithreading in
testsuite
— Execute with arbitrary number of threads

* Travis Cl now uses Intel SDE emulator to test
all x86_64 kernels
— Exception: FMA4-based Bulldozer

So What’'s New?

* Five broad categories

— Documentation

Documentation

 Example code
— Typed API: examples/tapi
— Object API: examples/oap1i
— Makefiles included

— Set up like a tutorial: read code alongside the
executable output

e Documentation

— typed API, object API, build system, configurations,
hardware support, kernels, multithreading,
sandboxes, testsuite, release notes

GFLOPS

Performance

gemm, single-precision (1 thread) gemm, double-precision (1 thread)

100 f 50 F
80 -
60 -
40 | :
| ——sgemm BLIS / ——dgemm BLIS
20 | —cgemm BLIS | 10l —zgemm BLIS |
| ——cgemm OpenBLAS ——zgemm OpenBLAS
——cgemm MKL ——zgemm MKL
0 ' ' : 0 ' ' '
0 500 1000 1500 2000 O 500 1000 1500 2000

problem size (m = n = k) problem size (m = n = k)

(00)
o

GFLOPS/core
N
o

N
o

Performance

gemm, single-precision (24 threads)

(®)]
o

——-sgemm BLIS
—cgemm BLIS |
——cgemm OpenBLAS
——cgemm MKL

' ' ' ' 0
2000 4000 6000 8000 10000 O

problem size (m = n = k)

40 ¢

30

20 ¢

10

gemm, double-precision (24 threads)

——dgemm BLIS
—zgemm BLIS |
—o—zgemm OpenBLAS
——zgemm MKL

2000 4000 6000 8000 10000
problem size (m = n = k)

GitHub Stats

Total BLIS contributors to-date: 62
— non-UT contributors: 52

Issues closed: 115

— by non-UT contributors: 86

Pull requests closed: 88

— virtually all accepted

Average unique clones per two-week period: ~50
— total clones per two-week period: ~500

Average unique visitors per two-week period: ~350
— total visitors per two-week period: ~1500

What’s new? (review)

* Five broad categories

— Framework: runtime config management; library self-init;
basict+expert APls; per-call multithreading specification;
unconditional thread safety; sandboxes

— Kernels: zen support; Devin’s assembly macro language

— Build system: monolithic header generation (faster build

time); rewritten configure-time hardware detection; config
blacklisting; ARG_MAX hack; BLIS INSTALL PATH

— Testing: integrated netlib BLAS test drivers (translated to
C); simulate application-level threads in testsuite; Travis Cl
now uses Intel SDE

— Documentation: example code (typed and object APIs);
APl documentation (typed and object APIs); moved wikis
into source distribution

Conclusion

 BLIS...
— is rapidly maturing
— is feature-rich
— is well-documented
— has a community to support its developers/users
— has been embraced by industry

— provides competitive (or superior) performance
relative to other leading open-source solutions
(and some vendor libraries!)

Further Information

e Website:
— http://github.com/flame/blis/

 Dijscussion:

— http://eroups.soogle.com/group/blis-devel

— http://eroups.soogle.com/group/blis-discuss

* Contact:
— field@cs.utexas.edu

48

Thank you!

