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Examples of handling exceptions badly
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https://www.reddit.com/r/formula1/comments/jk9jrg/
ot_roborace_driverless_racecar_drives_straight/gai295l/

• USS Yorktown out-of-service
• Ariane 5 Rocket crash 
• Air France Flight crash

“During this initialization lap
something happened which
apparently cause the steering
control signal to go to NaN”



Outline

• Basic high level goals: handle exceptions 
“consistently”

• Goals for BLAS
• Goals for LAPACK
• Comments welcome!
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High level goals

• Handle exceptions “consistently”
– Always terminate, despite exceptions
– Report exceptions for which problem “ill-posed”

• Ex: eig(NaN), not inv(Inf)
– Propagate exceptions “consistently” (see later examples)

• Do not change default interface semantics
– Allow options for more detailed reporting

• NaN and/or Inf appear in inputs, outputs, or internally
• Do not slow down (much)
• Accommodate inconsistent building blocks
– Eg: How compilers implement max or complex/complex, how 

vendors optimize BLAS,  summation order, …
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“Bug” 1/3 in BLAS: IxAMAX

● IxAMAX returns index of first entry of largest 
“absolute value”

● ISAMAX:
○ ISAMAX([0,NaN,2]) = 3 and ISAMAX([NaN,0,2]) = 1
○ NaNs do not propagate consistently

● ICAMAX
○ OV = overflow threshold
○ ICAMAX([OV + i*OV, Inf + i*0]) = 1
○ ICAMAX points to finite entry instead of Inf



“Bug” 2/3 in BLAS: GER and SYR

● GER computes 𝐴 = 𝐴 + 𝛼𝑥𝑦!
● GER checks if 𝑦 𝑖 = 0, does not multiply by it

○ Inf/NaN in 𝑥 does not propagate to column 𝑖 of 𝐴
○ If all 𝑦 𝑖 = 0, no Infs/NaNs in 𝑥 propagate
○ No checking for zeros in 𝑥

● SYR computes 𝐴 = 𝐴 + 𝛼𝑥𝑥!when 𝐴 = 𝐴!
○ Can update upper or lower triangle of 𝐴
○ Code only checks for 0 in 𝑥!, so can get different 

answer for upper and lower triangle



“Bug” 3/3 in BLAS: TRSV

● TRSV solves 𝑇 ∗ 𝑥 = 𝑏 or 𝑇! ∗ 𝑥 = 𝑏
● TRSV checks for zeros in x like GER and SYR

● Ex: 𝑇 =
1 𝑁𝑎𝑁 1
0 1 1
0 0 1

, 𝑏 =
2
1
1

yields 𝑥 =
1
0
1

● NaN does not propagate
● Solving (𝑇!)!∗ 𝑥 = 𝑏 does not check for zeros, 

so NaN does propagate
● BLAS Bugs 1,2 and 3 combine so that SGESV 

does not propagate NaNs



Not Bugs in BLAS

• C = 0*A*B + beta*C = beta*C:  expected semantics
• Different rules for complex*complex in C vs Fortran: 

live with it
• Different orders of summation, algorithms (Strassen, 

Gauss’s complex*complex) may cause different 
exceptions: live with it

• Goals: 
– Provide new reference BLAS that propagates NaN and Inf

“consistently”, 
– Provide test code for exception handling
– Encourage vendor adoption
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”Bug” in SGESV

● Assume version that calls GER to update Schur 
complement, not newer recursive version that 
uses GEMM

● Solve 
● ISAMAX chooses 1 as pivot, not NaN
● GER updates 2 – NaN*0 = 2, NaN does not 

propagate
● TRSV does not multiply by 0 in x, NaN does not 

propagate, get x = [0; .5]

1 0
𝑁𝑎𝑁 2 * x = 01



Goals for LAPACK (1/2)

• Use INFO for all exception reporting
• Modify LAPACK drivers that already compute 

norm(A) to report Inf and/or NaN in inputs, 
possibly return immediately if ill-posed (eg eig)
– Add option to CLANGE
– Consistency with LAPACKE
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Goals for LAPACK (2/2)

• Some users want more reporting and control over 
exception handling, some want no changes

• Provide wrappers that allow more detailed 
reporting options using INFO: 
1. INFO behaves as usual (except for last slide)
2. Check inputs and outputs for NaNs/Infs, report first 

one found
3. Also report if any internal subroutine reported 

NaNs/Infs (and no input/output NaN/Inf to report)
• Provide test code for exception handling
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Example of LAPACK Exception Handling

• Example: Solving Ax=B with
SGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
1. INFO = 0 means no error (current practice)
2. INFO = -1 if N<0 (current)
3. INFO = -2 if NRHS < 0 (and INFO not already set, current)
4. INFO = -4 if LDA < max(1,N) (ditto)
5. INFO = -7 if LDB < max(1,N) (ditto)
6. INFO = 𝑘, 1 ≤ 𝑘 ≤ N, if 𝑘 is first zero pivot (ditto)
7. INFO = -3 if A contains NaN/∞ on input (and INFO not set, new)
8. INFO = -6 if B contains NaN/∞ on input (ditto)
9. INFO = N+3 if A contains NaN/∞ on output (ditto)
10. INFO = N+6 if B contains NaN/∞ on output (ditto)
11. INFO = N+9 if SGETRF reports a NaN/∞ (ditto)
12. INFO = N+10 if SGETRS reports a NaN/∞ (ditto)
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How to build test code

• BLAS 
– Test both examples with NaN/Inf inputs, and 

unexceptional inputs that generate Infs (at least) 
internally

• LAPACK
– Harder to generate unexceptional inputs that lead 

to Infs or NaNs at selected locations internally
– Possible solution: “Fuzzing”, artificially insert Infs

or NaNs at selected locations during execution
• “Fluzzing”?

13



• More details available at:

https://people.eecs.berkeley.edu/~demmel/Exception_Handling
_for_the_BLAS_and_LAPACK_130721.pdf

Comments welcome!
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https://people.eecs.berkeley.edu/~demmel/Exception_Handling_for_the_BLAS_and_LAPACK_130721.pdf

