Towards BLAS-3 Robust Solvers in LAPACK
Angelika Schwarz

BLIS Retreat 2022

Disclaimer: All results are from the oo ox
author’'s PhD thesis or the ongoing
integration into reference LAPACK
conducted in the author’s free time.

In particular, the work and the results Imorovi .
mproving the Efficiency of

are not related to the author’s current or Eigenvector-Related Computations

previous employer. e

©

UMEA UNIVERSITY

Motivation 1

An eigenvector corresponding to A can be obtained from the Schur form

Ti1 tiz T3

0 A tr3

0 0 Ts3
via solving (T11 — M)x = —t12.

[...] it appears that one could just use the Level 2 BLAS routine
[trsv] for solving triangular systems [...]. Unfortunately we can
not, because [...] we anticipate solving ill-conditioned systems
which could lead to overflow. In the case of condition estimation,
we want a condition estimate as a warning if overflow is possible,
since overflow is generally fatal and to be avoided.

[Demmel, 1992, p.13]

3/14

Motivation 2 ([Kjelgaard Mikkelsen et al., 2019, Sec.8])

T y = b
1o T oy] _
1 -2)% 0
I A Ym—1 0
I L ym 1 L1
The exact solution is . .
» dtrsv introduces inf when
[2m—1] m > 1025.
om=2 » The system is well-conditioned
y= : : _
N T 1T e,
0 e

4/14

To deal with potential overflow, we had to write new versions of
all the triangular solvers in LAPACK which scaled in the innermost
loop to avoid overflow.

[Demmel, 1992, p.13]

Instead of solving Ty = b, solve Tx = ab, a < 1, representing y = o~ 'x.

5/14

Robust Solvers in LAPACK

Purpose LAPACK Plan/Status
3.10

triangular solve Tx = ab LATRS PR up for LATRS3

triangular banded solve LATBS TODO

eigenvectors from Schur matrix TREVC(3) algorithm update, WIP
(S—=A)x=ab

eigenvectors from Hessenberg matrix ~HSEIN RQ-based replacement, WIP
(H—XNxW = ax©)

generalized eigenvectors TGEVC TODO
(S—AT)x=ab

triangular Sylvester equation TRSYL PR up for TRSYL3

51X + XS2 =aC

» LAPACK 3.10 solvers are at most BLAS-2
» Called from condition number estimators [ge,tr,po]con

» Used to solve the general Sylvester equation

6/ 14

Robust triangular solve LATRS — LATRS3 (PR)

Extend LATRS solving Tx = ab [Anderson, 1991] to multiple right-hand
sides using BLAS-3 [Kjelgaard Mikkelsen et al., 2019]:

T X = B diag(aa,...,an)

» LATRS3 structurally
DDDD@D%D identical to blocked
= triangular solve

» Small triangular
solve through LATRS

[
I
T

Preprocess linear

= EEE% updated to allow
usage of GEMM

» Local scale factors
for each column
segment

7/14

Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for ¢ + ky : k, do
Consistent scaling v, < min{aj, aje }
Scale bjg <= S xig; Xje < O%K’W
Compute & < 1 such that [[€bie]loc + || Tijllooll€eXjellso < Q
Scale bip < &uxi; Xjo < Euxe
Update local scale factor &; ¢ < Ve

Bix < By — Tu)gk (GEMM)

8/14

Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for { < ky : k, do
Consistent scaling v, <— min{aje, e}
Scale bjg <= S xig; Xje < O%Kxjf
Compute & < 1 such that [[€/bil|oo + || Tjillool|€exie]l 0 < Q2
Scale bjy < &exie; Xjo < Euxe
Update local scale factor &; ¢ < Ve
Bix < Bix — Tj Xk (GEMM)

Example with 2 columns:

(D[b [[@ [be]]-T

(H [oallGO x]]

8/14

Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for { < ky : k, do
Consistent scaling v, < mén{a;g,ajg}
Scale b,‘g Qe Xie; Xje < %XJ[

e

Compute & < 1 such that [|§¢bie||oc + [Tijlloo [€exjelloc < $2
Scale bip < &exies Xje < Eexie

Update local scale factor &; ¢ < Ve

Bix < By — Tu)gk (GEMM)
Example with 2 columns:

(D[3tn @ [be]]-T

(D[]G [§]]

8/14

Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for { < ky : k, do
Consistent scaling v, < min{aj, aje }
Scale bjg <= S xig; Xje < O%Kxjf
Compute & < 1 such that [|€bir|| o + || Tijlloo [[€exje]| o0 <
Scale bjp < &exio; Xjo +— EoXje
Update local scale factor &; ¢ < Ve
B,'k — B,‘k - Tinjk (GEMM)

Example with 2 columns:

(DT dbn @ [be]]-T

(D[]G [§]]

8/14

Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for £ < ky : k, do
Consistent scaling v, < min{aj, aje }
Scale bjg <= S xig; Xje < O%K’W
Compute & < 1 such that [[€rbje|o + || Tilloo | 6exjelloc < Q
Scale bjp + “Z Xiey Xjp %kxjf
Update local scale factor &; ¢ < ve&e
B,'k — B,‘k — Tinjk (GEMM)

Example with 2 columns:

(&) " TaGo 11 (G) (b2 1]-Td

(&) [& 1[R[%o 1

8/14

op(A)X = Bdiag(a, ..., a,) — DLATRS(3)
B is 5000 x 100, no scaling required, serial execution, hsw kernels
blocks of B are 32 x 32 (proposed default block sizes)

DLATRS3 == DLATRS g=m DLATRS3 —— DLATRS
OpenBLAS OpenBLAS BLIS BLIS
3
E) 259 2.54
3
54
L2 .
g 1.64 L.76 1.66 1.73
b 1.37 1.39
=]
]
~o1
0.35 0.38 0.39 0.34 0.35 0.34 0.39 0.38
0 e e i 8 PR pssss R BS8sss
LT LN UuT UN
L: Lower N:op(A)=A)
U: Upper T: op(A) = AT blocks of B are 64 x 16
3
2.64 2.59
g
5 2
g 1.67 1.72 1.66 1.68
o 1.3 1.35
£
1
2=}
0.44 0.4 0.4 0.42
0 e e PR pssss BS8sss
LT LN uT UN

Issues LATRS Tx = acb [Anderson, 1991]

» Cause of a = 0 not clear: a;; = 0 or badly scaled?

SCALE is DOUBLE PRECISION

The scaling factor s for the triangular system A * x = s*b [...]If
SCALE = 0, the matrix A is singular or badly scaled, and the
vector x s an exact or approximate solution to A*x = 0.

DLATRS documentation (LAPACK 3.10)

» Upper bounds based on columns norms of T, x and b can
overestimate growth. Entries can be flushed unnecessarily.

030 1
-1
1y = L —_1074
@ X (2951> 2
0 flushed
0 flushed

10 / 14

Discussion

>

| 2

Should the new routines be a drop-in replacement of the existing
solvers? Should they produce identical scaled representations?

LATRS: o = 0 signals either that aj; = 0 or badly scaled matrices. It is
impossible to tell what the cause is. Should INFO = J be used to
signal aj; = 07

Upcoming change with NaN/Inf propagation: Should « be an integer

representing the scale factor a = %? This would de facto guarantee

a > 0 for all non-singular problems.

11/ 14

References

E

Anderson, E. (1991).
Robust triangular solves for use in condition estimation.
LAPACK Working Note 36, USA.

Demmel, J. (1992).
Open Problems in Numerical Linear Algebra.
LAPACK Working Note 47.

Kjelgaard Mikkelsen, C. C., Schwarz, A. B., and Karlsson, L. (2019).
Parallel robust solution of triangular linear systems.
Concurrency and Computation: Practice and Experience, 31(19):e5064.

Schwarz, A. (2022).
Robust Level-3 BLAS Inverse Iteration from the Hessenberg Matrix.
ACM Trans. Math. Softw., 48(3).

Schwarz, A. and Kjelgaard Mikkelsen, C. C. (2020).
Robust task-parallel solution of the triangular sylvester equation.

In Wyrzykowski, R., Deelman, E., Dongarra, J., and Karczewski, K., editors,

Parallel Processing and Applied Mathematics, pages 82—92, Cham. Springer
International Publishing.

12/ 14

TRSYL — TRSYL3 [Schwarz and Kjelgaard Mikkelsen, 2020]

AX + XB = aC - DTRSYL(3)
50% complex eigenvalues, no scaling required (o = 1), serial execution, hsw kernels

uniform square block size LWJ (proposed default)
43 414
4
= = DTRSYL3 = DTRSYL
-§ 3 OpenBLAS OpenBLAS
g — DTRSYL3 — DTRSYL
- BLIS BLIS
2 2
g
) Lol 084 083
3 0. 4 0.12 9 (J 17 0.24
0 0.03 0-11 0.04 0.07 0.09 0.07 0.09 7 et
m = 500, n = 500 = 1000, n = 500 m = 500,n = 1000 m =n = 1000
ATX + XBT = aC, scaling required (o < 1), 50% complex eigenvalues, serial execution
6 5.81
5.4
5
=
=4
3
3
% 3
£ 2.49
é 2
1
0 0.03 011 0.04 016 0.07 0.07 0.09 o7 ’M‘
=

m = 500, n = 500 m= 10(](), n = 500 m = 500,n = 1000 m =n = 1000

Preliminary results DHSEIN [Schwarz, 2022]

Computation of a single (right) eigenvectors by inverse iteration from the
Hessenberg matrix:
(H—-)\I)x(l) = ax(©

» 25% selected eigenvalues

> first start vector always leads to convergence in a single iteration
P only right eigenvectors

» Change algorithm from LU (LAPACK 3.10) to RQ factorization

» No drop-in replacement: difference workspace requirements

LAPACK 3.10 proposed
n = 1000 0.11s 0.78s
n = 2000 0.45s 10.20s

14 / 14

