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Motivation 1

An eigenvector corresponding to A can be obtained from the Schur form

Ti1 tiz T3

0 A tr3

0 0 Ts3
via solving (T11 — M)x = —t12.

[...] it appears that one could just use the Level 2 BLAS routine
[trsv] for solving triangular systems [...]. Unfortunately we can
not, because [...] we anticipate solving ill-conditioned systems
which could lead to overflow. In the case of condition estimation,
we want a condition estimate as a warning if overflow is possible,
since overflow is generally fatal and to be avoided.

[Demmel, 1992, p.13]
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Motivation 2 ([Kjelgaard Mikkelsen et al., 2019, Sec.8])

T y = b
1o T oy ] _
1 -2 )% 0
I A Ym—1 0
I L ym 1 L1
The exact solution is . .
» dtrsv introduces inf when
[ 2m—1 ] m > 1025.
om=2 » The system is well-conditioned
y= : : _
N T 1T e,
0 e
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To deal with potential overflow, we had to write new versions of
all the triangular solvers in LAPACK which scaled in the innermost
loop to avoid overflow.

[Demmel, 1992, p.13]

Instead of solving Ty = b, solve Tx = ab, a < 1, representing y = o~ 'x.
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Robust Solvers in LAPACK

Purpose LAPACK  Plan/Status
3.10

triangular solve Tx = ab LATRS PR up for LATRS3

triangular banded solve LATBS TODO

eigenvectors from Schur matrix TREVC(3) algorithm update, WIP
(S—=A)x=ab

eigenvectors from Hessenberg matrix ~HSEIN RQ-based replacement, WIP
(H—XNxW = ax©)

generalized eigenvectors TGEVC TODO
(S—AT)x=ab

triangular Sylvester equation TRSYL PR up for TRSYL3

51X + XS2 =aC

» LAPACK 3.10 solvers are at most BLAS-2
» Called from condition number estimators [ge,tr,po]con

» Used to solve the general Sylvester equation
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Robust triangular solve LATRS — LATRS3 (PR)

Extend LATRS solving Tx = ab [Anderson, 1991] to multiple right-hand
sides using BLAS-3 [Kjelgaard Mikkelsen et al., 2019]:

T X = B diag(aa,...,an)

» LATRS3 structurally
DDDD@D%D identical to blocked
= triangular solve

» Small triangular
solve through LATRS

[
I
T

Preprocess linear

= EEE% updated to allow
usage of GEMM

» Local scale factors
for each column
segment
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Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for ¢ + ky : k, do
Consistent scaling v, < min{aj, aje }
Scale bjg <= S xig; Xje < O%K’W
Compute & < 1 such that [[€bie]loc + || Tijllooll€eXjellso < Q
Scale bip < &uxi; Xjo < Euxe
Update local scale factor &; ¢ < Ve

Bix < By — Tu)gk (GEMM)

8/14



Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for { < ky : k, do
Consistent scaling v, <— min{aje, e}
Scale bjg <= S xig; Xje < O%Kxjf
Compute & < 1 such that [[€/bil|oo + || Tjillool|€exie]l 0 < Q2
Scale bjy < &exie; Xjo < Euxe
Update local scale factor &; ¢ < Ve
Bix < Bix — Tj Xk (GEMM)

Example with 2 columns:

(D[ b [[@ [be]]-T

(H [ oallGO x]]
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Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for { < ky : k, do
Consistent scaling v, < mén{a;g,ajg}
Scale b,‘g Qe Xie; Xje < %XJ[

e

Compute & < 1 such that [|§¢bie||oc + [ Tijlloo [€exjelloc < $2
Scale bip < &exies Xje < Eexie

Update local scale factor &; ¢ < Ve

Bix < By — Tu)gk (GEMM)
Example with 2 columns:

(D[ 3tn @ [be]]-T

(D[ ]G [§]]
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Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for { < ky : k, do
Consistent scaling v, < min{aj, aje }
Scale bjg <= S xig; Xje < O%Kxjf
Compute & < 1 such that [|€bir|| o + || Tijlloo [[€exje]| o0 <
Scale bjp < &exio; Xjo +— EoXje
Update local scale factor &; ¢ < Ve
B,'k — B,‘k - Tinjk (GEMM)

Example with 2 columns:

(DT dbn @ [be]]-T

(D[ ]G [ §]]
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Linear Update in LATRS3 (PR)

Compute with overflow
Bidiag(dz}, ..., &) < Budiag(ag,, ..., apt) — Tyi(Xudiag(ay, . .., az})

for £ < ky : k, do
Consistent scaling v, < min{aj, aje }
Scale bjg <= S xig; Xje < O%K’W
Compute & < 1 such that [[€rbje|o + || Tilloo | 6exjelloc < Q
Scale bjp + “Z Xiey Xjp %kxjf
Update local scale factor &; ¢ < ve&e
B,'k — B,‘k — Tinjk (GEMM)

Example with 2 columns:

(&) " TaGo 11 (G) (b2 1]-Td

(&) [ & 1[R[ %o 1
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op(A)X = Bdiag(a, ..., a,) — DLATRS(3)
B is 5000 x 100, no scaling required, serial execution, hsw kernels
blocks of B are 32 x 32 (proposed default block sizes)

DLATRS3 == DLATRS g=m DLATRS3  —— DLATRS
OpenBLAS OpenBLAS BLIS BLIS
3
E) 259 2.54
3
54
L2 .
g 1.64 L.76 1.66 1.73
b 1.37 1.39
=]
]
~o1
0.35 0.38 0.39 0.34 0.35 0.34 0.39 0.38
0 e e i 8 PR pssss R BS8sss
LT LN UuT UN
L: Lower N:op(A)=A )
U: Upper  T: op(A) = AT blocks of B are 64 x 16
3
2.64 2.59
g
5 2
g 1.67 1.72 1.66 1.68
o 1.3 1.35
£
1
2=}
0.44 0.4 0.4 0.42
0 e e PR pssss BS8sss
LT LN uT UN



Issues LATRS Tx = acb [Anderson, 1991]

» Cause of a = 0 not clear: a;; = 0 or badly scaled?

SCALE is DOUBLE PRECISION

The scaling factor s for the triangular system A * x = s*b [...]If
SCALE = 0, the matrix A is singular or badly scaled, and the
vector x s an exact or approximate solution to A*x = 0.

DLATRS documentation (LAPACK 3.10)

» Upper bounds based on columns norms of T, x and b can
overestimate growth. Entries can be flushed unnecessarily.

030 1
-1
1y = L —_1074
@ X (2951> 2
0 flushed
0 flushed
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Discussion

>

| 2

Should the new routines be a drop-in replacement of the existing
solvers? Should they produce identical scaled representations?

LATRS: o = 0 signals either that aj; = 0 or badly scaled matrices. It is
impossible to tell what the cause is. Should INFO = J be used to
signal aj; = 07

Upcoming change with NaN/Inf propagation: Should « be an integer

representing the scale factor a = %? This would de facto guarantee

a > 0 for all non-singular problems.
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TRSYL — TRSYL3 [Schwarz and Kjelgaard Mikkelsen, 2020]

AX + XB = aC - DTRSYL(3)
50% complex eigenvalues, no scaling required (o = 1), serial execution, hsw kernels

uniform square block size LWJ (proposed default)
43 414
4
= = DTRSYL3 = DTRSYL
-§ 3 OpenBLAS OpenBLAS
g — DTRSYL3 — DTRSYL
- BLIS BLIS
2 2
g
) Lol 084 083
3 0. 4 0.12 9 (J 17 0.24
0 0.03 0-11 0.04 0.07 0.09 0.07 0.09 7 et
m = 500, n = 500 = 1000, n = 500 m = 500,n = 1000 m =n = 1000
ATX + XBT = aC, scaling required (o < 1), 50% complex eigenvalues, serial execution
6 5.81
5.4
5
=
=4
3
3
% 3
£ 2.49
é 2
1
0 0.03 011 0.04 016 0.07 0.07 0.09 o7 ’M‘
=

m = 500, n = 500 m= 10(](), n = 500 m = 500,n = 1000 m =n = 1000



Preliminary results DHSEIN [Schwarz, 2022]

Computation of a single (right) eigenvectors by inverse iteration from the
Hessenberg matrix:
(H—- )\I)x(l) = ax(©

» 25% selected eigenvalues

> first start vector always leads to convergence in a single iteration
P only right eigenvectors

» Change algorithm from LU (LAPACK 3.10) to RQ factorization

» No drop-in replacement: difference workspace requirements

LAPACK 3.10 proposed
n = 1000 0.11s 0.78s
n = 2000 0.45s 10.20s
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