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Introduction to AOCL-BLIS

• AOCL (AMD optimizing CPU Libraries) are a set of numerical libraries tuned specifically for AMD EPYC™

processor family

• AOCL-BLIS is part of AMD optimized CPU Libraries 

• AOCL-BLIS is a fork of BLIS library optimized for AMD processors.

• AOCL-BLIS resources:

• Latest release of BLIS can downloaded from https://developer.amd.com/amd-aocl/

• Source code for BLIS is available on GitHub https://github.com/amd/blis

• Technical support is available via https://developer.amd.com/amd-optimizing-cc-compiler-aocc-technical-support/

https://developer.amd.com/amd-aocl/
https://github.com/amd/blis
https://developer.amd.com/amd-optimizing-cc-compiler-aocc-technical-support/
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What is DTL (Debug and Trace Library)?

• DTL is primarily a thread safe logging feature

• DTL logs provides a mechanism for the end user to:

• Understand program flow

• Application profiling

• Timing (hotspot) analyses

• Debugging

• Crash analyses

• DTL logs are stored in plain text files, no specific tools, profilers are needed with DTL

• DTL is implemented as a static library

• DTL is integrated in AOCL-BLIS and AOCL-libFLAME
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DTL Features

• Logging of input values, All input logs are printed as per BLAS API’s order

• Logging of thread, timing information

• Function call traces

• Logging of user defined messages, data structures

• Input logs & timing information, Traces and Data dump can be enabled separately

• Thread Safe Logging

• Compile time enable/disablement

• OS and Compiler independent implementation

• DTL is implemented as a library

• Zero impact on performance when DTL is disabled (the DTL code is excluded at the compile time)
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DTL Architecture
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DTL – Thread Safe Logging

• Thread safe logging suitable for

• Single threaded 

• Multi threaded

• Multi instance

• Multi node

• Thread safety is achieved by separating logs for 

each thread in a separate file.

• File name determine the unique source of the 

logs.

File names for input and debug logs. 

P<Process id>_T<Thread id>_aocldtl_log.txt

e.g. P3504033_T0_aocldtl_log.txt

File names for traces. 

P<Process id>_T<Thread id>_aocldtl_trace.txt

e.g. P3504033_T4_aocldtl_trace.txt
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Challenges in Application profiling

• Different applications use BLIS differently, understanding the application profile is important for 

application specific, highly optimized solution.

• BLIS has around 40 API

• Each API has multiple variants:

• For example, TRSM (Triangular Solve Matrix Equations)  

• There will be around 16 variants of TRSM and the benchmarks performance can depend on any of these 

variants.

• Performance also depends on dimensions (m, n, lda and ldb ) of the matrices.  Based on dimensions 

we need different algorithm for a given variant.

dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
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Challenges in Application profiling

• Traditionally we use system level profiles like uprof.

• These reports can give a general idea, but it is not enough.

• For example, the dgemmsup kernels can be invoked from GEMM as well as TRSM code paths.

• The DTL logs identify critical API’s and inputs that contributes most to the performance.

54.52%  xhpl libblis-mt.so              [.] bli_dgemmsup_rv_haswell_asm_6x8m
13.86%  xhpl libgomp.so.1.0.0           [.] 0x000000000001fb56
6.32%  xhpl [unknown]                  [k] 0xffffffffbb10df3c
3.31%  xhpl mca_btl_vader.so           [.] mca_btl_vader_component_progress
1.87%  xhpl xhpl [.] HPL_rand
1.67%  xhpl xhpl [.] HPL_lmul
1.46%  xhpl libopen-pal.so.40          [.] opal_progress
1.22%  xhpl xhpl [.] HPL_dlaswp10N
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DTL Usage - Application Profile

Example Profiling logs:

• Profile logs can help identify critical API’s and input sizes.

• What API’s are called?

• At what frequency?

• With what inputs?

dgemm_ D N T 4536 108 0 -1.000000 0.000000 4536 216 1.000000 0.000000 4536 nt=4 0.058 ms 0.000 GFLOPS
dgemm_ D N T 4536 56 0 -1.000000 0.000000 4536 216 1.000000 0.000000 4536 nt=-4 0.003 ms 0.000 GFLOPS
idamax_ D 4536 1
dcopy_ D 216 4536 1
dger_ d 4535 2 -1.000000 0.000000 1 1 4536
dcopy_ D 216 4536 1
dcopy_ D 216 4536 1
dscal_ D 1.526621 0.000000 4534 1
daxpy_ D 4534 -0.466632 0.000000 1 1
idamax_ D 4534 1
dger_ d 4534 1 -1.000000 0.000000 1 1 4536
dcopy_ D 216 4536 1
dcopy_ D 220 1 1
dscal_ D -1.019477 0.000000 4532 1
dtrsm_ d R U N U 4 4 216 216 1.000000 0.000000
dgemm_ D N T 4532 4 4 -1.000000 0.000000 4536 216 1.000000 0.000000 4536 nt=4 0.058 ms 2.500 GFLOPS
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DTL Usage – Timing/Performance Analyses

• The DTL logs for selected Level 3 APIs include performance information such as

• Input values

• Number of threads used

• Time taken by the API

• FLOPS achieved

$BLIS_NUM_THREADS=1 ./test_gemm_blis.x input.txt output.txt

BLIS Library version is : AOCL BLIS 3.1

~~~~~~~~~~_BLAS  m       n       k       cs_a    cs_b    cs_c    gflops

data_gemm_aocl  1000     2000    3000    4000    5000    6000    13.481, 0.890153

$ls P*.txt

P183294_T0_aocldtl_log.txt  P183294_T0_aocldtl_trace.txt 

$cat P183294_T0_aocldtl_log.txt              

dgemm_ D N N 1000 3000 2000 0.900000 0.000000 4000 5000 -1.100000 0.000000 6000 nt=1 890.131 ms 13.481 GFLOPS



13 |

[Public]

DTL Usage - Traces

Function call tracing with configurable nested levels

• DTL supports call traces for up to 9 nested 

levels.

• The logging levels are configured at compile 

time.

• Optional time stamping for each trace.

Logging limited to 5 nested levels

In bli_gemm()...
In bli_gemmsup()...

In bli_gemmsup_ref()...
In bli_gemmsup_int()...

In bli_gemmsup_ref_var2m()...
In bli_spackm_sup_b()...
<< output snipped>>
Out of bli_gemmsup_ref_var2m()

Out of bli_gemmsup_int()
Out of bli_gemmsup_ref()

Out of bli_gemm()

Logging Limited to 1 nested level

In bli_gemm()...
Out of bli_gemm()
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DTL Usage – Crash Identification

• DTL logs can help in debugging a crash by identifying:

• Input which caused crash.

• Last function called before the crash.

• Function Name Identification

• Each function logs entry (In) and exit (Out) traces.

• The crashed function will have the entry trace but not the exit trace.

• Inputs Identification (Supported For selected API’s)

• The input logs have two parts i.e., the inputs values and the stats.

• The inputs are available when the API is invoked.

• Stats are available only if the API has completed successfully.

• If the API with given input has crashed, only input values are printed (stats will be not printed).

• Please check the example on the next slide.
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DTL Usage – Crash Identification

$ BLIS_NUM_THREADS=1 ./test_gemm_blis.x input.txt output.txt

~~~~~~~~~~_BLAS  m       n       k       cs_a    cs_b    cs_c    gflops

data_gemm_aocl  1000     2000    3000    4000    5000    6000    13.481, 0.890153

Segmentation fault (core dumped) -> Crash

$ ls P*.txt

P183294_T0_aocldtl_log.txt  P183294_T0_aocldtl_trace.txt    -> DTL output files

$ cat P183294_T0_aocldtl_log.txt              

dgemm_ D N N 1000 3000 2000 0.900000 0.000000 4000 5000 -1.100000 0.000000 6000 nt=1 890.131 ms 13.481 GFLOPS

dgemm_ D N N 100 100 100 0.900000 0.000000 104 104 -1.100000 0.000000 104 -> Inputs which caused the crash

$ cat P183294_T0_aocldtl_trace.txt

In bli_gemm_packa()...

In bli_gemm_int()...

In bli_gemm_ker_var2()...

In bli_dgemm_ker_var2()...

In bli_dgemm_haswell_asm_6x8()...->Crash location (Function Name)



16 |

[Public]

DTL Limitation

• The input and trace logs needs to added manually in each function of interest.

• Runtime control is not available to minimize performance impact.

• Timing logging is supported only for selected level – 3 APIs.

• Based on input dataset, DTL logs may take huge disk space.

• Performance will degrade when DTL traces are enabled.
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