
AOCL 3.2

Meghana Vankadari

AMD

2 |

[Public]

Agenda

Introduction to AOCL

Optimizations

New Features

Q&A

3 |

[Public]

Introduction

• AOCL – AMD optimizing CPU Libraries

• AOCL are a set of numerical libraries tuned specifically for AMD EPYC™ processor family

• BLIS is part of this AOCL

• https://developer.amd.com/amd-aocl/

• Latest source code for BLIS is available on GitHub https://github.com/amd/blis

• For any issues or queries regarding the libraries, please contact aoclsupport@amd.com

• Latest version is AOCL 3.2

• Includes optimizations for “Zen 3”

• GEMMT, Dynamic Parallelization and DGEMM

https://developer.amd.com/amd-aocl/
https://github.com/amd/blis
mailto:aoclsupport@amd.com

4 |

[Public]

GEMMT

• Consider a lower-triangular gemmt problem, the execution

of top 4 loops(jc, kc, ic, jr) is same as GEMM

• In the ‘ir’ loop, the execution for each block of c differs

based on the placement of the particular block w.r.t

diagonal

• SUP for gemmt is implemented to handle smaller sizes

If present below the diagonal, call gemm kernel

If present along the diagonal, use an extra buffer to
store alpha*A*B and copy only the lower triangular

part to C later

If present above the diagonal, ignore

5 |

[Public]

DGEMMT-ST performance

Below data is captured for the case where C is lower triangular matrix and alpha and beta are !=0 and !=1

0.48

12.78

40.33
36.15

38.46
44.8

47.81 48.84 48.15

G
F

L
O

P
S

{n,k}

DGEMMT ON MILAN

6 |

[Public]

DGEMMT-MT performance

Since C matrix is triangular, GEMMT uses weighted thread partitioning to divide workloads among threads.

0

200

400

600

800

1000

1200

1 2 4 8 16 32 64

P
e
rf

o
rm

a
n
c
e
 in

 G
F

L
O

P
S

Number of threads

7 |

[Public]

Parallelization in BLIS

Consider an example of application calling GEMM with following matrix dimensions.

n= 20,000, m = 60, k = 20, row-major order

num_threads = 64 ➔ jc_nt = 64

Workload per thread: n = 312, m = 60, k = 20

performance: 12.379 GFLOPS

num_threads=16 ➔ jc_nt = 16

workload per thread: n = 1256, m = 60, k = 20

performance: 43.302 GFLOPS

smaller

per_thread

workload

bandwidth

bounded

What if we

reduce the

number of

threads?

8 |

[Public]

Dynamic Parallelization

• Dynamic parallelization improves multi-threaded

performance of BLIS by calculating optimal number of

threads for a given input

• Bli_nthreads_optimum() determines optimal number

of threads using dimensions of matrices passed by
the application – m, n, k

• Available for

dgemm, zgemm, dsyrk, dtrsm, ztrsm, dgemmt, dtrmm

Application

bli_nthreads_optimum

GEMM

BLIS

m, n, k, num_threads

num_threads_opt

9 |

[Public]

Dynamic parallelization performance report

m n k Num

threads
default

Default Perf

(GFLOPS)

Num threads

optimum

Perf with

dynamic
threading
(GFLOPS)

%gain

2000 700 60 64 261.889 16 626.999 139.4

20000 60 10 64 12.379 16 43.302 249.8

100 10 256 64 26.126 8 50.300 92.5

200 40 500 64 261.028 32 393.740 50.8

700 8 72 64 32.652 4 56.246 72.2

30 20 24 64 1.458 1 22.821 1465.2

10 |

[Public]

DGEMM

•The GEMM operation is defined as

C = beta∗C + alpha∗op(A) ∗ op(B)

Where:

Op(X)=X or op(X)=X^T or op(X)=X^H alpha and beta are scalars A, B and C are matrices:

Op(A)is an m ×k matrix , Op(B) is an k ×n matrix C is an m×n matrix

•The performance of GEMM primarily depends on shapes of
the matrices defined by dimension of the matrices (m, k, n)

•To achieve consistent performance across wide spectrum of

matrix sizes, BLIS primarily employs multiple GEMM

implementations

Native GEMM algorithm in BLIS

Source: Huang, Jianyu & van de Geijn, Robert.
(2016). BLISlab: A Sandbox for Optimizing GEMM.

11 |

[Public]

Matrix shapes

Six Shape Scenarios of Skewed Matrices based on (mnk)

S: small, L: Large

m n k lda ldb ldc

6288 128 126 8202 480 9462

840 128 126 8202 480 9462

1864 128 126 8202 480 9462

Examples of Matrix shapes

m n k Op(A) Op(B)

128 128 128 n n

128 126 126 t n

128 128 126 t n

LSS

SSS

Source: https://www.cs.utexas.edu/users/flame/BLISRetreat2019/slides/Field.pdf

12 |

[Public]

Optimizations

• For large sizes – native DGEMM Implementation

• For skinny sizes – packing is expensive

• We use “sup” (small unpacked DGEMM implementation)

• For LSS matrix shape – matrix A is large, and Matrix B is small

• After internal transpose, A becomes small and B becomes large

• Since B is large, block-panel(var2m) implementation works effectively compared to

panel-block(var1n)

• Matrix A is L2 cache-blocked and matrix B is L3 blocked

m n k lda ldb ldc perf

with

var1n

perf

with

var2m

6288 128 126 8202 480 9462 39.94 43.44

840 128 126 8202 480 9462 40.26 46.05

1864 128 126 8202 480 9462 40.24 46.10

13 |

[Public]

Optimizations - continued

m n k Op(A) Op(B) BLIS_3.0 BLIS_3.2

128 128 128 n n 42.88 48.71

128 126 126 t n 43.75 48.65

128 128 126 t n 43.55 48.50

• For SSS – Developed dgemm_small

• Does only register blocking. No cache blocking

• Uses 16x3 kernel maximizing the SIMD usage along larger dimension

• Kernel is col-preferred

• Works efficiently for small and skinny sizes

14 |

[Public]

BLAS-like extensions

• Developed new BLAS-like extension APIs

• Copy routines:

• ?imatcopy: Performs scaling and in-place transposition/copying of matrices

• ?omatcopy: Performs scaling and out-of-place transposition/copying of matrices

• ?omatadd: Performs scaling and sum of two matrices including their out-of-place transposition/copying

• ?omatcopy2: Performs two-strided scaling and out-of-place transposition/copying of matrices

• GEMMT, Gemm3m and gemm_batch, dzgemm

• Level-1:

• amin: Finds the index of the element with the smallest absolute value

• axpby: Scales two vectors, adds them to one another and stores result in the vector

• Supports CBLAS and BLAS interfaces.

15 |

[Public]

16 |

[Public]

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information contained herein is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY

INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL

AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, [EPYCTM] and combinations thereof are trademarks of Advanced Micro

Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

