
Cascading Gemm: High Precision from Low
Precision

Devangi N. Parikh and Greg Henry

UT Austin
Intel

BLIS Retreat 2022

1

Outline

Introduction

Cascading

Implementation

Performance experiments

Accuracy experiments

Opportunities

2

Introduction

3

Motivation

▶ Increase in new low-precision formats and accelerators to
keep up with the high computation demand.

▶ Can we leverage low-precision compute to obtain
high-precision accuracy?

4

Motivation

▶ Increase in new low-precision formats and accelerators to
keep up with the high computation demand.

▶ Can we leverage low-precision compute to obtain
high-precision accuracy?

4

Contributions

▶ Present a strategy for cascading FP64x2 matrices into
multiple FP64 matrices that enables computing of FP64x2
Gemm with ten FP64 Gemms.

▶ Describe a prototype implementation that makes the
proposed strategy practical.

▶ Present performance and accuracy results.
▶ Discuss opportunities of the proposed techniques.

5

Contributions

▶ Present a strategy for cascading FP64x2 matrices into
multiple FP64 matrices that enables computing of FP64x2
Gemm with ten FP64 Gemms.

▶ Describe a prototype implementation that makes the
proposed strategy practical.

▶ Present performance and accuracy results.
▶ Discuss opportunities of the proposed techniques.

5

Contributions

▶ Present a strategy for cascading FP64x2 matrices into
multiple FP64 matrices that enables computing of FP64x2
Gemm with ten FP64 Gemms.

▶ Describe a prototype implementation that makes the
proposed strategy practical.

▶ Present performance and accuracy results.

▶ Discuss opportunities of the proposed techniques.

5

Contributions

▶ Present a strategy for cascading FP64x2 matrices into
multiple FP64 matrices that enables computing of FP64x2
Gemm with ten FP64 Gemms.

▶ Describe a prototype implementation that makes the
proposed strategy practical.

▶ Present performance and accuracy results.
▶ Discuss opportunities of the proposed techniques.

5

Cascading

6

FP64x2 Scalars

Consider a 106-bit mantissa number χ.

χ = ±.β0 · · ·βD−1βD · · ·β2D−1 × 2e,

If χ is normalized1, then D >= 53.

We can represent χ exactly as two FP64 numbers (with the same
exponent):

χ = χ0 + χ1 × 2−D,

where χ0 = ±.β0β1 · · ·βD−1 × 2e and χ1 = ±.βD · · ·β2D−1 × 2e.

1A FP64x2 number χ is normalized when the rounding to double is just
the high part.

7

FP64x2 Scalars

Consider a 106-bit mantissa number χ.

χ = ±.β0 · · ·βD−1βD · · ·β2D−1 × 2e,

If χ is normalized1, then D >= 53.
We can represent χ exactly as two FP64 numbers (with the same
exponent):

χ = χ0 + χ1 × 2−D,

where χ0 = ±.β0β1 · · ·βD−1 × 2e and χ1 = ±.βD · · ·β2D−1 × 2e.

1A FP64x2 number χ is normalized when the rounding to double is just
the high part.

7

FP64x2 Multiplication

Consider a second FP64x2, ψ = ψ0 + ψ1 × 2−D.

The multiplication can be written as

χψ = χ0ψ0 + χ0ψ1 × 2−D + χ1ψ0 × 2−D + χ1ψ1 × 2−2D.

Each of these terms may incur floating point error, and thus to
get an accurate result, we must capture these errors.

8

FP64x2 Multiplication

Consider a second FP64x2, ψ = ψ0 + ψ1 × 2−D.

The multiplication can be written as

χψ = χ0ψ0 + χ0ψ1 × 2−D + χ1ψ0 × 2−D + χ1ψ1 × 2−2D.

Each of these terms may incur floating point error, and thus to
get an accurate result, we must capture these errors.

8

FP64x2 Multiplication

Consider a second FP64x2, ψ = ψ0 + ψ1 × 2−D.

The multiplication can be written as

χψ = χ0ψ0 + χ0ψ1 × 2−D + χ1ψ0 × 2−D + χ1ψ1 × 2−2D.

Each of these terms may incur floating point error, and thus to
get an accurate result, we must capture these errors.

8

Cascading Scalars

Instead, we consider

χ = ±.β0 · · ·βD0−1βD0 · · ·βD1−1βD1 · · ·βD2−1βD2 · · ·β2D−1 × 2e,

and “cascade” this FP64x2 number into four chunks,

χ = ±. β0 · · ·βD0−1 βD0
· · ·βD1−1 βD1

· · ·βD2−1 βD2
· · ·β2D−1 ×2e,

9

Cascading Scalars

Instead, we consider

χ = ±.β0 · · ·βD0−1βD0 · · ·βD1−1βD1 · · ·βD2−1βD2 · · ·β2D−1 × 2e,

and “cascade” this FP64x2 number into four chunks,

χ = ±. β0 · · ·βD0−1 βD0
· · ·βD1−1 βD1

· · ·βD2−1 βD2
· · ·β2D−1 ×2e,

9

Cascading Scalars (contd.)

Rewrite χ in terms of four FP64s:

χ = ±.β0 · · ·βD0−1 × 2e︸ ︷︷ ︸

χ0

+ ±.βD0 · · ·βD1−1 × 2e︸ ︷︷ ︸

χ1

× 2−D0︸ ︷︷ ︸

σ1

+ ±.βD1 · · ·βD2−1 × 2e︸ ︷︷ ︸

χ2

× 2−D1︸ ︷︷ ︸

σ2

+ ±.βD2 · · ·β2D−1 × 2e︸ ︷︷ ︸

χ3

× 2−D2︸ ︷︷ ︸

σ3

.

10

Cascading Scalars (contd.)

Rewrite χ in terms of four FP64s:

χ = ±.β0 · · ·βD0−1 × 2e︸ ︷︷ ︸
χ0

+ ±.βD0 · · ·βD1−1 × 2e︸ ︷︷ ︸
χ1

× 2−D0︸ ︷︷ ︸
σ1

+ ±.βD1 · · ·βD2−1 × 2e︸ ︷︷ ︸
χ2

× 2−D1︸ ︷︷ ︸
σ2

+ ±.βD2 · · ·β2D−1 × 2e︸ ︷︷ ︸
χ3

× 2−D2︸ ︷︷ ︸
σ3

.

10

Cascading Scalars (contd.)

More concisely,

χ = χ0σ0 + χ1σ1 + χ2σ2 + χ3σ3,

where for simplicity σ0 = 1 in our discussion.

Similarly, ψ:

ψ = ψ0τ0 + ψ1τ1 + ψ2τ2 + ψ3τ3,

11

Cascading Scalars (contd.)

More concisely,

χ = χ0σ0 + χ1σ1 + χ2σ2 + χ3σ3,

where for simplicity σ0 = 1 in our discussion.

Similarly, ψ:

ψ = ψ0τ0 + ψ1τ1 + ψ2τ2 + ψ3τ3,

11

Scalar Multiplication with Cascading Scalars

The product of these two scalars:

χψ = χ0ψ0σ0τ0 + χ0ψ1σ0τ1 + χ0ψ2σ0τ2 + χ0ψ3σ0τ3

+ χ1ψ0σ1τ0 + χ1ψ1σ1τ1 + χ1ψ2σ1τ2 + χ1ψ3σ1τ3 +

+ χ2ψ0σ2τ0 + χ2ψ1σ2τ1 + χ2ψ2σ2τ2 + χ2ψ3σ2τ3 +

+ χ3ψ0σ3τ0 + χ3ψ1σ3τ1 + χ3ψ2σ3τ2 + χ3ψ3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

Bin p includes the product terms where i+ j = p.

If each scalar has 4 chunks, then there are a total of 7 bins, and
16 products.

If D0, D1, and D2 are chosen carefully, the first three bins can
be computed and stored exactly in FP64.

12

Scalar Multiplication with Cascading Scalars

The product of these two scalars:

χψ = χ0ψ0σ0τ0 + χ0ψ1σ0τ1 + χ0ψ2σ0τ2 + χ0ψ3σ0τ3

+ χ1ψ0σ1τ0 + χ1ψ1σ1τ1 + χ1ψ2σ1τ2 + χ1ψ3σ1τ3 +

+ χ2ψ0σ2τ0 + χ2ψ1σ2τ1 + χ2ψ2σ2τ2 + χ2ψ3σ2τ3 +

+ χ3ψ0σ3τ0 + χ3ψ1σ3τ1 + χ3ψ2σ3τ2 + χ3ψ3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

Bin p includes the product terms where i+ j = p.

If each scalar has 4 chunks, then there are a total of 7 bins, and
16 products.

If D0, D1, and D2 are chosen carefully, the first three bins can
be computed and stored exactly in FP64.

12

Scalar Multiplication with Cascading Scalars

The product of these two scalars:

χψ = χ0ψ0σ0τ0 + χ0ψ1σ0τ1 + χ0ψ2σ0τ2 + χ0ψ3σ0τ3

+ χ1ψ0σ1τ0 + χ1ψ1σ1τ1 + χ1ψ2σ1τ2 + χ1ψ3σ1τ3 +

+ χ2ψ0σ2τ0 + χ2ψ1σ2τ1 + χ2ψ2σ2τ2 + χ2ψ3σ2τ3 +

+ χ3ψ0σ3τ0 + χ3ψ1σ3τ1 + χ3ψ2σ3τ2 + χ3ψ3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

Bin p includes the product terms where i+ j = p.

If each scalar has 4 chunks, then there are a total of 7 bins, and
16 products.

If D0, D1, and D2 are chosen carefully, the first three bins can
be computed and stored exactly in FP64.

12

Scalar Multiplication with Cascading Scalars

The product of these two scalars:

χψ = χ0ψ0σ0τ0 + χ0ψ1σ0τ1 + χ0ψ2σ0τ2 + χ0ψ3σ0τ3

+ χ1ψ0σ1τ0 + χ1ψ1σ1τ1 + χ1ψ2σ1τ2 + χ1ψ3σ1τ3 +

+ χ2ψ0σ2τ0 + χ2ψ1σ2τ1 + χ2ψ2σ2τ2 + χ2ψ3σ2τ3 +

+ χ3ψ0σ3τ0 + χ3ψ1σ3τ1 + χ3ψ2σ3τ2 + χ3ψ3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

Bin p includes the product terms where i+ j = p.

If each scalar has 4 chunks, then there are a total of 7 bins, and
16 products.

If D0, D1, and D2 are chosen carefully, the first three bins can
be computed and stored exactly in FP64.

12

Scalar Multiplication with Cascading Scalars (contd.)

In our discussion here, σi = τi for i ∈ {0, 1, 2, 3}.

bin 0: σ0τ0 = 1

bin 1: σ0τ1 = σ1τ0 = 2−D0

bin 2: σ1τ1 ≈ σ0τ2 = σ2τ0 = 2−D1

bin 3: σ1τ2 = σ2τ1 ≈ σ0τ3 = σ3τ0 = 2−D2

bin 4: σ2τ2 ≈ σ1τ3 = σ3τ1 ≪ 2−D2

bin 5: σ2τ3 = σ3τ2 ≪ 2−D2

bin 6: σ3τ3 ≪ 2−D2 .

13

Cascading Vectors and Dot Products

Let x and y be vectors of size k with FP64x2 numbers as their
entries.

We wish to compute α = xT y.

Cascading each of the vectors:

x = x0σ0 + x1σ1 + x2σ2 + x3σ3

y = y0 τ0 + y1 τ1 + y2 τ2 + y3 τ3

14

Cascading Vectors and Dot Products

Let x and y be vectors of size k with FP64x2 numbers as their
entries.

We wish to compute α = xT y.

Cascading each of the vectors:

x = x0σ0 + x1σ1 + x2σ2 + x3σ3

y = y0 τ0 + y1 τ1 + y2 τ2 + y3 τ3

14

Cascading Vectors and Dot Products

Let x and y be vectors of size k with FP64x2 numbers as their
entries.

We wish to compute α = xT y.

Cascading each of the vectors:

x = x0σ0 + x1σ1 + x2σ2 + x3σ3

y = y0 τ0 + y1 τ1 + y2 τ2 + y3 τ3

14

Cascading Vectors and Dot Products

xT y = xT0 y0σ0τ0 + xT0 y1σ0τ1 + xT0 y2σ0τ2 + xT0 y3σ0τ3

+ xT1 y0σ1τ0 + xT1 y1σ1τ1 + xT1 y2σ1τ2 + xT1 y3σ1τ3 +

+ xT2 y0σ2τ0 + xT2 y1σ2τ1 + xT2 y2σ2τ2 + xT2 y3σ2τ3 +

+ xT3 y0σ3τ0 + xT3 y1σ3τ1 + xT3 y2σ3τ2 + xT3 y3σ3τ3.

︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

15

Computing xTi yj Exactly

To compute xTi yj exactly, for chunks i, j ∈ {0, 1, 2}:

xTi yj = χ0,iψ0,j + χ1,iψ1,j + · · ·+ χk−1,iψk−1,j ,

▶ Chunk each element in xi into the same ranges.
▶ Track the ⌈log2 k⌉ additional bits that the addition of k

terms in the dot product that might yield.
▶ Track any additional bits that the addition of the terms

within a bin may result in.
For e.g. Bin 2 is when i+ j = 2, and there may be several
different xi or yj to add into this bin.

16

Computing xTi yj Exactly

To compute xTi yj exactly, for chunks i, j ∈ {0, 1, 2}:

xTi yj = χ0,iψ0,j + χ1,iψ1,j + · · ·+ χk−1,iψk−1,j ,

▶ Chunk each element in xi into the same ranges.

▶ Track the ⌈log2 k⌉ additional bits that the addition of k
terms in the dot product that might yield.

▶ Track any additional bits that the addition of the terms
within a bin may result in.
For e.g. Bin 2 is when i+ j = 2, and there may be several
different xi or yj to add into this bin.

16

Computing xTi yj Exactly

To compute xTi yj exactly, for chunks i, j ∈ {0, 1, 2}:

xTi yj = χ0,iψ0,j + χ1,iψ1,j + · · ·+ χk−1,iψk−1,j ,

▶ Chunk each element in xi into the same ranges.
▶ Track the ⌈log2 k⌉ additional bits that the addition of k

terms in the dot product that might yield.

▶ Track any additional bits that the addition of the terms
within a bin may result in.
For e.g. Bin 2 is when i+ j = 2, and there may be several
different xi or yj to add into this bin.

16

Computing xTi yj Exactly

To compute xTi yj exactly, for chunks i, j ∈ {0, 1, 2}:

xTi yj = χ0,iψ0,j + χ1,iψ1,j + · · ·+ χk−1,iψk−1,j ,

▶ Chunk each element in xi into the same ranges.
▶ Track the ⌈log2 k⌉ additional bits that the addition of k

terms in the dot product that might yield.
▶ Track any additional bits that the addition of the terms

within a bin may result in.
For e.g. Bin 2 is when i+ j = 2, and there may be several
different xi or yj to add into this bin.

16

Tracking bits

▶ Given these constraints, each chunk can accommodate
22, 21, 21, and 53 bits respectively. The first chunk is
slightly larger because there’s only one product in Bin 0.

▶ Therefore, the total number of bits is now actually 22 + 21
+ 21 + 53 = 117 which is more than the number of bits in
the mantissa of a FP64x2 number.

▶ This means intermediate results are potentially
accumulated in a precision higher than FP64x2
accommodates. But we may also potentially lose bits
because of fixed point.

17

Tracking bits

▶ Given these constraints, each chunk can accommodate
22, 21, 21, and 53 bits respectively. The first chunk is
slightly larger because there’s only one product in Bin 0.

▶ Therefore, the total number of bits is now actually 22 + 21
+ 21 + 53 = 117 which is more than the number of bits in
the mantissa of a FP64x2 number.

▶ This means intermediate results are potentially
accumulated in a precision higher than FP64x2
accommodates. But we may also potentially lose bits
because of fixed point.

17

Tracking bits

▶ Given these constraints, each chunk can accommodate
22, 21, 21, and 53 bits respectively. The first chunk is
slightly larger because there’s only one product in Bin 0.

▶ Therefore, the total number of bits is now actually 22 + 21
+ 21 + 53 = 117 which is more than the number of bits in
the mantissa of a FP64x2 number.

▶ This means intermediate results are potentially
accumulated in a precision higher than FP64x2
accommodates. But we may also potentially lose bits
because of fixed point.

17

Additional Details

▶ If we chose our bit-contraints carefully (22,21,21,53), then
summation within bins can be in FP64 arithmetic.

▶ Summation across bins 0 through 2 must be performed in
FP64x2 addition or with “quick two-sum arithmetic”1.

▶ Summation across bins 3 through 6 can be done in FP64
arithmetic, since the last chunk is 53 bits, which implies
that these terms are not even attempted to be done
error-free.

▶ To further preserve accuracy, the adding of contributions
across bins starts with bin 6 and ends with bin 0.

1T. Dekker, Numer. Math., 18 (1971), pp. 224–242.

18

Additional Details

▶ If we chose our bit-contraints carefully (22,21,21,53), then
summation within bins can be in FP64 arithmetic.

▶ Summation across bins 0 through 2 must be performed in
FP64x2 addition or with “quick two-sum arithmetic”1.

▶ Summation across bins 3 through 6 can be done in FP64
arithmetic, since the last chunk is 53 bits, which implies
that these terms are not even attempted to be done
error-free.

▶ To further preserve accuracy, the adding of contributions
across bins starts with bin 6 and ends with bin 0.

1T. Dekker, Numer. Math., 18 (1971), pp. 224–242.
18

Additional Details

▶ If we chose our bit-contraints carefully (22,21,21,53), then
summation within bins can be in FP64 arithmetic.

▶ Summation across bins 0 through 2 must be performed in
FP64x2 addition or with “quick two-sum arithmetic”1.

▶ Summation across bins 3 through 6 can be done in FP64
arithmetic, since the last chunk is 53 bits, which implies
that these terms are not even attempted to be done
error-free.

▶ To further preserve accuracy, the adding of contributions
across bins starts with bin 6 and ends with bin 0.

1T. Dekker, Numer. Math., 18 (1971), pp. 224–242.
18

Additional Details

▶ If we chose our bit-contraints carefully (22,21,21,53), then
summation within bins can be in FP64 arithmetic.

▶ Summation across bins 0 through 2 must be performed in
FP64x2 addition or with “quick two-sum arithmetic”1.

▶ Summation across bins 3 through 6 can be done in FP64
arithmetic, since the last chunk is 53 bits, which implies
that these terms are not even attempted to be done
error-free.

▶ To further preserve accuracy, the adding of contributions
across bins starts with bin 6 and ends with bin 0.

1T. Dekker, Numer. Math., 18 (1971), pp. 224–242.
18

Reformulating the Cascading Dot Product


σ0x

T
0

σ1x
T
1

σ2x
T
2

σ3x
T
3


(
τ0y0 τ1y1 τ2y2 τ3y3

)

=


σ0τ0x

T
0 y0 σ0τ1x

T
0 y1 σ0τ2x

T
0 y2 σ0τ3x

T
0 y3

σ1τ0x
T
1 y0 σ1τ1x

T
1 y1 σ1τ2x

T
1 y2 σ1τ3x

T
1 y3

σ2τ0x
T
2 y0 σ2τ1x

T
2 y1 σ2τ2x

T
2 y2 σ2τ3x

T
2 y3

σ3τ0x
T
3 y0 σ3τ1x

T
3 y1 σ3τ2x

T
3 y2 σ3τ3x

T
3 y3



19

Ten Dot Products

bin 3–6 = xT0 y3σ0τ3 +

xT1 y2σ1τ2 + xT1 y3σ1τ3 +

xT2 y1σ2τ1 + xT2 y2σ2τ2 + xT2 y3σ2τ3 +

xT3 y0σ3τ0 + xT3 y1σ3τ1 + xT3 y2σ3τ2 + xT3 y3σ3τ3︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

= xT0 σ0y3τ3 +

xT1 σ1 (y2τ2 + y3τ3)︸ ︷︷ ︸
y4τ4

+

xT2 σ2 (y1τ1 + y2τ2 + y3τ3)︸ ︷︷ ︸
y5τ5

+

xT3 σ3 (y0τ0 + y1τ1 + y2τ2 + y3τ3) .︸ ︷︷ ︸
y6τ6

20

Ten Dot Products

bin 3–6 = xT0 y3σ0τ3 +

xT1 y2σ1τ2 + xT1 y3σ1τ3 +

xT2 y1σ2τ1 + xT2 y2σ2τ2 + xT2 y3σ2τ3 +

xT3 y0σ3τ0 + xT3 y1σ3τ1 + xT3 y2σ3τ2 + xT3 y3σ3τ3︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

= xT0 σ0y3τ3 +

xT1 σ1 (y2τ2 + y3τ3)︸ ︷︷ ︸
y4τ4

+

xT2 σ2 (y1τ1 + y2τ2 + y3τ3)︸ ︷︷ ︸
y5τ5

+

xT3 σ3 (y0τ0 + y1τ1 + y2τ2 + y3τ3) .︸ ︷︷ ︸
y6τ6

20

Ten Dot Products (contd.)


σ0x

T
0

σ1x
T
1

σ2x
T
2

σ3x
T
3


(
τ0y0 τ1y1 τ2y2 τ3y3 τ4y4 τ5y5 τ6y6

)

=


σ0τ0x

T
0 y0 σ0τ1x

T
0 y1 σ0τ2x

T
0 y2 σ0τ3x

T
0 y3 ⋆ ⋆ ⋆

σ1τ0x
T
1 y0 σ1τ1x

T
1 y1 ⋆ ⋆ σ1τ4x

T
1 y4 ⋆ ⋆

σ2τ0x
T
2 y0 ⋆ ⋆ ⋆ ⋆ σ2τ5x

T
2 y5 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ σ3τ6x
T
3 y6



21

Ten Dot Products (contd.)


σ0x

T
0

σ1x
T
1

σ2x
T
2

σ3x
T
3


(
τ0y0 τ1y1 τ2y2 τ3y3 τ4y4 τ5y5 τ6y6

)

=


σ0τ0x

T
0 y0 σ0τ1x

T
0 y1 σ0τ2x

T
0 y2 σ0τ3x

T
0 y3 ⋆ ⋆ ⋆

σ1τ0x
T
1 y0 σ1τ1x

T
1 y1 ⋆ ⋆ σ1τ4x

T
1 y4 ⋆ ⋆

σ2τ0x
T
2 y0 ⋆ ⋆ ⋆ ⋆ σ2τ5x

T
2 y5 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ σ3τ6x
T
3 y6



21

Cascading matrices and gemm

Now, consider C = AB, where the “inner size” of the matrix is
restricted to k.

Matrices A and B can be chunked as follows:

A=A0σ0 +A1σ1 +A2σ2 +A3σ3

B=B0 τ0 +B1 τ1 +B2 τ2 +B3 τ3

22

Cascading matrices and gemm

Now, consider C = AB, where the “inner size” of the matrix is
restricted to k.

Matrices A and B can be chunked as follows:

A=A0σ0 +A1σ1 +A2σ2 +A3σ3

B=B0 τ0 +B1 τ1 +B2 τ2 +B3 τ3

22

Cascading matrices and gemm

Now, consider C = AB, where the “inner size” of the matrix is
restricted to k.

Matrices A and B can be chunked as follows:

A=A0σ0 +A1σ1 +A2σ2 +A3σ3

B=B0 τ0 +B1 τ1 +B2 τ2 +B3 τ3

22

Cascading Matrices and GEMM (contd.)

AB = A0B0σ0τ0 + A0B1σ0τ1 + A0B2σ0τ2 + A0B3σ0τ3

+ A1B0σ1τ0 + A1B1σ1τ1 + A1B2σ1τ2 + A1B3σ1τ3 +

+ A2B0σ2τ0 + A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

+ A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

We can approximate the FP64x2 gemm in terms of 16 FP64
gemms, extending the observations about dot products.
This means that
▶ D0, D1, and D2 are picked as discussed in previous slides.
▶ Elements within rows of A must be chunked conformally.
▶ Elements within columns of B must be chunked

conformally.
▶ The terms in bins 0–2 are computed exactly.

23

Cascading Matrices and GEMM (contd.)

AB = A0B0σ0τ0 + A0B1σ0τ1 + A0B2σ0τ2 + A0B3σ0τ3

+ A1B0σ1τ0 + A1B1σ1τ1 + A1B2σ1τ2 + A1B3σ1τ3 +

+ A2B0σ2τ0 + A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

+ A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

We can approximate the FP64x2 gemm in terms of 16 FP64
gemms, extending the observations about dot products.
This means that

▶ D0, D1, and D2 are picked as discussed in previous slides.
▶ Elements within rows of A must be chunked conformally.
▶ Elements within columns of B must be chunked

conformally.
▶ The terms in bins 0–2 are computed exactly.

23

Cascading Matrices and GEMM (contd.)

AB = A0B0σ0τ0 + A0B1σ0τ1 + A0B2σ0τ2 + A0B3σ0τ3

+ A1B0σ1τ0 + A1B1σ1τ1 + A1B2σ1τ2 + A1B3σ1τ3 +

+ A2B0σ2τ0 + A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

+ A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

We can approximate the FP64x2 gemm in terms of 16 FP64
gemms, extending the observations about dot products.
This means that
▶ D0, D1, and D2 are picked as discussed in previous slides.

▶ Elements within rows of A must be chunked conformally.
▶ Elements within columns of B must be chunked

conformally.
▶ The terms in bins 0–2 are computed exactly.

23

Cascading Matrices and GEMM (contd.)

AB = A0B0σ0τ0 + A0B1σ0τ1 + A0B2σ0τ2 + A0B3σ0τ3

+ A1B0σ1τ0 + A1B1σ1τ1 + A1B2σ1τ2 + A1B3σ1τ3 +

+ A2B0σ2τ0 + A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

+ A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

We can approximate the FP64x2 gemm in terms of 16 FP64
gemms, extending the observations about dot products.
This means that
▶ D0, D1, and D2 are picked as discussed in previous slides.
▶ Elements within rows of A must be chunked conformally.

▶ Elements within columns of B must be chunked
conformally.

▶ The terms in bins 0–2 are computed exactly.

23

Cascading Matrices and GEMM (contd.)

AB = A0B0σ0τ0 + A0B1σ0τ1 + A0B2σ0τ2 + A0B3σ0τ3

+ A1B0σ1τ0 + A1B1σ1τ1 + A1B2σ1τ2 + A1B3σ1τ3 +

+ A2B0σ2τ0 + A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

+ A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

We can approximate the FP64x2 gemm in terms of 16 FP64
gemms, extending the observations about dot products.
This means that
▶ D0, D1, and D2 are picked as discussed in previous slides.
▶ Elements within rows of A must be chunked conformally.
▶ Elements within columns of B must be chunked

conformally.

▶ The terms in bins 0–2 are computed exactly.

23

Cascading Matrices and GEMM (contd.)

AB = A0B0σ0τ0 + A0B1σ0τ1 + A0B2σ0τ2 + A0B3σ0τ3

+ A1B0σ1τ0 + A1B1σ1τ1 + A1B2σ1τ2 + A1B3σ1τ3 +

+ A2B0σ2τ0 + A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

+ A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3.︸ ︷︷ ︸
bin 0

︸ ︷︷ ︸
bin 1

︸ ︷︷ ︸
bin 2

︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

We can approximate the FP64x2 gemm in terms of 16 FP64
gemms, extending the observations about dot products.
This means that
▶ D0, D1, and D2 are picked as discussed in previous slides.
▶ Elements within rows of A must be chunked conformally.
▶ Elements within columns of B must be chunked

conformally.
▶ The terms in bins 0–2 are computed exactly.

23

Ten Gemms

bin 3–6 = A0B3σ0τ3 +

A1B2σ1τ2 + A1B3σ1τ3 +

A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

= A0σ0B3τ3 +

A1σ1 (B2τ2 + B3τ3)︸ ︷︷ ︸
B4τ4

+

A2σ2 (B1τ1 + B2τ2 + B3τ3)︸ ︷︷ ︸
B5τ5

+

A3σ3 (B0τ0 + B1τ1 + B2τ2 + B3τ3) .︸ ︷︷ ︸
B6τ6

24

Ten Gemms

bin 3–6 = A0B3σ0τ3 +

A1B2σ1τ2 + A1B3σ1τ3 +

A2B1σ2τ1 + A2B2σ2τ2 + A2B3σ2τ3 +

A3B0σ3τ0 + A3B1σ3τ1 + A3B2σ3τ2 + A3B3σ3τ3︸ ︷︷ ︸
bin 3

︸ ︷︷ ︸
bin 4

︸ ︷︷ ︸
bin 5

︸ ︷︷ ︸
bin 6

= A0σ0B3τ3 +

A1σ1 (B2τ2 + B3τ3)︸ ︷︷ ︸
B4τ4

+

A2σ2 (B1τ1 + B2τ2 + B3τ3)︸ ︷︷ ︸
B5τ5

+

A3σ3 (B0τ0 + B1τ1 + B2τ2 + B3τ3) .︸ ︷︷ ︸
B6τ6

24

Ten Gemms


σ0A0

σ1A1

σ2A2

σ3A3


(
τ0B0 τ1B1 τ2B2 τ3B3 τ2B4 τ1B5 τ0B6

)

=


σ0τ0A0B0 σ0τ1A0B1 σ0τ2A0B2 σ0τ3A0B3 ⋆ ⋆ ⋆

σ1τ0A1B0 σ1τ1A1B1 ⋆ ⋆ σ1τ4A1B4 ⋆ ⋆

σ2τ0A2B0 ⋆ ⋆ ⋆ ⋆ σ2τ5A2B5 ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ σ3τ6A3B6



25

Implementation

26

A Näive Approach

▶ Convert A and B into cascading matrices upfront.
▶ Use GEMM to compute the various cross products.
▶ Compute the resulting C.

This approach does not fully reuse data brought through the
memory hierarchy.

Using BLIS, we can do better!

27

A Näive Approach

▶ Convert A and B into cascading matrices upfront.
▶ Use GEMM to compute the various cross products.
▶ Compute the resulting C.

This approach does not fully reuse data brought through the
memory hierarchy.

Using BLIS, we can do better!

27

High-Performance Gemm
5th loop around micro-kernel

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around μkernel

micro-kernel

+=

mC

mR

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

nR

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

Update Cij

▶ Most of the library is
written in C99.

▶ BLIS isolates the
computation kernel
(microkernel) to one small
loop around a rank-1
update written in assembly.

▶ Blocks for various levels of
cache.

▶ Packs blocks of A and B to
improve data locality.

28

High-Performance Gemm
5th loop around micro-kernel

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around μkernel

micro-kernel

+=

mC

mR

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

nR

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

Update Cij

▶ Most of the library is
written in C99.

▶ BLIS isolates the
computation kernel
(microkernel) to one small
loop around a rank-1
update written in assembly.

▶ Blocks for various levels of
cache.

▶ Packs blocks of A and B to
improve data locality.

28

High-Performance Gemm
5th loop around micro-kernel

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around μkernel

micro-kernel

+=

mC

mR

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

nR

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

Update Cij

▶ Most of the library is
written in C99.

▶ BLIS isolates the
computation kernel
(microkernel) to one small
loop around a rank-1
update written in assembly.

▶ Blocks for various levels of
cache.

▶ Packs blocks of A and B to
improve data locality.

28

High-Performance Gemm
5th loop around micro-kernel

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around μkernel

micro-kernel

+=

mC

mR

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

nR

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

Update Cij

▶ Most of the library is
written in C99.

▶ BLIS isolates the
computation kernel
(microkernel) to one small
loop around a rank-1
update written in assembly.

▶ Blocks for various levels of
cache.

▶ Packs blocks of A and B to
improve data locality.

28

Phase 1: Converting and Packing the Cascading Matrices

▶ Phase 0: Compute the
maximum absolute value
for each row of A and
column of B. Each row of
A and column of B is
quantized independently.

▶ Phase 1: Convert each
entry of FP64x2 B and A
into its corresponding entry
of the cascading matrix and
then pack these cascading
matrices in the data layout
required for BLIS.

29

Phase 1: Converting and Packing the Cascading Matrices

▶ Phase 0: Compute the
maximum absolute value
for each row of A and
column of B. Each row of
A and column of B is
quantized independently.

▶ Phase 1: Convert each
entry of FP64x2 B and A
into its corresponding entry
of the cascading matrix and
then pack these cascading
matrices in the data layout
required for BLIS.

Packing layout for a panel of B.

29

Phase 1: Converting and Packing the Cascading Matrices

▶ Phase 0: Compute the
maximum absolute value
for each row of A and
column of B. Each row of
A and column of B is
quantized independently.

▶ Phase 1: Convert each
entry of FP64x2 B and A
into its corresponding entry
of the cascading matrix and
then pack these cascading
matrices in the data layout
required for BLIS. Packing layout for a block of A.

29

Phase 2: dgemm()

Operation performed with cascaded matrices by first loop around the
micro-kernel.

30

Phase 3: Putting it back together

▶ The accumulation back to C is done after the first loop
around the microkernel.

▶ This loop is selected to ensure the temporary buffers of C
fit in the L2 cache.

▶ The accumulation is done using a “quick two-sum”2

addition.

2T. Dekker, Numer. Math., 18 (1971), pp. 224–242.

31

Phase 3: Putting it back together

▶ The accumulation back to C is done after the first loop
around the microkernel.

▶ This loop is selected to ensure the temporary buffers of C
fit in the L2 cache.

▶ The accumulation is done using a “quick two-sum”2

addition.

2T. Dekker, Numer. Math., 18 (1971), pp. 224–242.

31

Phase 3: Putting it back together

▶ The accumulation back to C is done after the first loop
around the microkernel.

▶ This loop is selected to ensure the temporary buffers of C
fit in the L2 cache.

▶ The accumulation is done using a “quick two-sum”2

addition.

2T. Dekker, Numer. Math., 18 (1971), pp. 224–242.
31

Performance experiments

32

Setup

Platform
▶ Intel Core i7-7700K CPU with 4 cores.
▶ Each core runs at 4.20 GHz with a max turbo frequency of

4.50 GHz.
▶ A single-core peak performance of 72 GFLOPS in double

precision.
Comparison
▶ The best comparison is against DGEMM performance.
▶ if our algorithm runs 10x slower than DGEMM, this has a

lot more meaning than just saying it has 10x the flop count.

33

Performance (GFLOPS)

0 500 1000 1500
0

20

40

60

Problem size

G
F

L
O

P
S

DGEMM

DDGEMM cascaded

GFLOPS attained for both BLIS DGEMM and
FP64x2 cascaded matrices at various problem sizes (m = n = k).

34

Performance–Slowdown compared to DGEMM

0 500 1000 1500

10

11

12

13

14

15

16

Problem size

x
tim

es
 s

lo
w

er
 th

an
 B

L
IS

 D
G

E
M

M observed

ideal

Ratio of the execution time of FP64x2 cascaded matrix GEMM vs
BLIS DGEMM. Ideally, 10x slowdown is expected.

35

Accuracy experiments

36

Types of Accuracy Experiments

▶ Gemm with matrices filled with uniformly distributed
random data in a given range.

▶ Matrices constructed so that gemm is ill-conditioned.

37

Uniformly Random Data

Generating Data
▶ Pick a random FP64 number in a given range.
▶ Add random bits in the mantissa past the 53-rd bit, upto

113-th bit.
▶ This becomes an FP128 number in the prescribed range.
▶ This FP128 number is converted into non-overlapping

FP64x2 format.

38

Ill-Conditioning Experiments

▶ Expect error to be worst when so-called catastrophic
cancellation is encountered.

▶ Generate A and B s.t we get ill-conditioned results at most
entries of C = AB.

▶ Compare our algorithm with a triple-nested loop FP64x2
GEMM.

▶ Gold standard: FP128x2 GEMM.
▶ To show the results, we show the ratio of the maximum

relative component-wise computed error.

39

Ill-Conditioning Experiments

▶ Expect error to be worst when so-called catastrophic
cancellation is encountered.

▶ Generate A and B s.t we get ill-conditioned results at most
entries of C = AB.

▶ Compare our algorithm with a triple-nested loop FP64x2
GEMM.

▶ Gold standard: FP128x2 GEMM.
▶ To show the results, we show the ratio of the maximum

relative component-wise computed error.

39

Ill-Conditioning Experiments

▶ Expect error to be worst when so-called catastrophic
cancellation is encountered.

▶ Generate A and B s.t we get ill-conditioned results at most
entries of C = AB.

▶ Compare our algorithm with a triple-nested loop FP64x2
GEMM.

▶ Gold standard: FP128x2 GEMM.
▶ To show the results, we show the ratio of the maximum

relative component-wise computed error.

39

Ill-Conditioning Experiments

▶ Expect error to be worst when so-called catastrophic
cancellation is encountered.

▶ Generate A and B s.t we get ill-conditioned results at most
entries of C = AB.

▶ Compare our algorithm with a triple-nested loop FP64x2
GEMM.

▶ Gold standard: FP128x2 GEMM.

▶ To show the results, we show the ratio of the maximum
relative component-wise computed error.

39

Ill-Conditioning Experiments

▶ Expect error to be worst when so-called catastrophic
cancellation is encountered.

▶ Generate A and B s.t we get ill-conditioned results at most
entries of C = AB.

▶ Compare our algorithm with a triple-nested loop FP64x2
GEMM.

▶ Gold standard: FP128x2 GEMM.
▶ To show the results, we show the ratio of the maximum

relative component-wise computed error.

39

Ill-conditioned Experiments

▶ Each entry of C = AB is a dot product of a row of A with
a column of B.

▶ Examine the case when a dot product of two vector, x and
y, with reasonable length yields a small result. Recall that
this happens when, for example, ∥x∥2 ≈ ∥y∥2 = 1 and xT y
is small.

▶ Existing (XBLAS) generators that create matrices so that
multiplication with them is ill-conditioned are dot product
generators. Therefore, the matrices generated via this
technique leads to problems on the diagonal alone.

40

Generating Ill-Conditioned Matrices

▶ Assume that the matrices are square (m = n = k).

▶ Create A to have mutually orthogonal rows.
▶ Generate a random matrix, compute its QR factorization,

and setting A equal to the resulting Q.
▶ Generate a matrix Ĉ

▶ Generate each element such that it has magnitude in the
range (t, 10t), where t is some small positive tolerance.

▶ Randomly pick the sign of each element.
▶ Randomly pick one location in every column of Ĉ to be one.

▶ Set B = QT Ĉ.

41

Generating Ill-Conditioned Matrices

▶ Assume that the matrices are square (m = n = k).
▶ Create A to have mutually orthogonal rows.

▶ Generate a random matrix, compute its QR factorization,
and setting A equal to the resulting Q.

▶ Generate a matrix Ĉ
▶ Generate each element such that it has magnitude in the

range (t, 10t), where t is some small positive tolerance.
▶ Randomly pick the sign of each element.
▶ Randomly pick one location in every column of Ĉ to be one.

▶ Set B = QT Ĉ.

41

Generating Ill-Conditioned Matrices

▶ Assume that the matrices are square (m = n = k).
▶ Create A to have mutually orthogonal rows.

▶ Generate a random matrix, compute its QR factorization,
and setting A equal to the resulting Q.

▶ Generate a matrix Ĉ
▶ Generate each element such that it has magnitude in the

range (t, 10t), where t is some small positive tolerance.
▶ Randomly pick the sign of each element.
▶ Randomly pick one location in every column of Ĉ to be one.

▶ Set B = QT Ĉ.

41

Generating Ill-Conditioned Matrices

▶ Assume that the matrices are square (m = n = k).
▶ Create A to have mutually orthogonal rows.

▶ Generate a random matrix, compute its QR factorization,
and setting A equal to the resulting Q.

▶ Generate a matrix Ĉ
▶ Generate each element such that it has magnitude in the

range (t, 10t), where t is some small positive tolerance.
▶ Randomly pick the sign of each element.
▶ Randomly pick one location in every column of Ĉ to be one.

▶ Set B = QT Ĉ.

41

Ill-Conditioned Experiments

In our experiments, we focus on three choices for tolerance t:
▶ t = 10−9, which can wipe out all accuracy when computing

in single precision (FP32).
▶ t = 10−14, which can wipe out all accuracy when computing

in double precision (FP64).
▶ t = 10−19, which can lead to significant loss of accuracy

when computing in double-double precision (FP64x2), but
will leave some accuracy.

Ran experiments for a range of problem sizes, reporting the
average worst case component-wise errors over many runs.

42

Results

0 200 400 600
0

100

200

300

400

Problem size

M
ax

. e
le

m
en

tw
iz

e
re

l.
er

ro
r

t=10-07 FP64x2

t=10-14 FP64x2

t=10-19 FP64x2

t=10-07 cascade

t=10-14 cascade

t=10-19 cascade

Maximum component-wise error for various
choices of tolerance, for computation with

FP64x2 arithmetic and with cascaded matrices.
43

Results

0 200 400 600
10-1

100

101

102

103

R
at

io
 o

f m
ax

. e
le

m
en

tw
iz

e
re

l.
er

ro
rs

Problem size

n=
2

5
6

t=10-07

t=10-14

t=10-19

data3

Same data, presented as the ratio of error when
computing with FP64x2 arithmetic and with

cascaded multiplication.
44

Element-wise Accuracy Results

10000 20000 30000 40000 50000
10-2

10-1

100

101

102

103

R
at

io
 o

f r
el

. e
rr

or

well-conditioned problem

cond = 1019

wide ranging

▶ The ratios (Cascaded
divided by FP64x2) of
relative accuracies of
all elements of matrix
C = AB are reported,
where all matrices
involved are 240× 240.

▶ The elements of the
results in each
experiment are sorted
by the value of the
ratio.

▶ Values less than 100

mean that FP64x2 is
more accurate.

45

Element-wise Accuracy Results
▶ We report the relative error of all elements of the result for

m = n = k = 240.
▶ The elements are sorted by the relative error incurred by the

cascading matrix multiplication.
▶ The corresponding error incurred by FP64x2 is also reported.

10000 20000 30000 40000 50000
10-36

10-35

10-34

10-33

10-32

10-31

10-30

Matrix element

R
el

at
iv

e
er

ro
r

FP64x2

Cascading

10000 20000 30000 40000 50000
10-26

10-25

10-24

10-23

10-22

10-21

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

Matrix element

R
el

at
iv

e
er

ro
r

FP64x2

Cascading

well-conditioned experiments experiments with conditioning in the 1019 range

46

Opportunities

47

Opportunities

▶ More generally cast high precision in terms of low precision.
▶ Mix operand precision within cascaded matrix

multiplication.
▶ Scale and balance the matrices to limit absorption errors.
▶ Drop lower bins when doing lower precision.
▶ Auto-correction.
▶ Threading opportunities.

48

Summary

▶ Cascading matrices provides the opportunities to compute
BLAS operations at higher precision, using lower precision
computations.

▶ What would we need to support cascading matrices in
BLIS?

49

Thank you!

50

Backup Slides

51

Generalizing and Mixing Precisions

▶ FP32 in terms of FP16: cascading matrices of FP16x2 or
BFLOAT16x3.

▶ FP64 in terms of lower precision: cascading matrices of
FP32x2, INT8x7, FP16x5, BFLOAT16x6.

▶ Mixed Precision: If A is FP16, and B is FP64 , BLIS
normally would promote A to FP64, and call DGEMM.
Instead, we could transform B into FP16x5, and do 5
FP16-gemms instead.

52

Scale and Balance

Let,

A =

(
1 β

1 ϵ

)
B =

(
1 δ

0.5 1

)

Now AB has δ + ϵ in the (2,2) position.

If these terms are too small, then we may end up dropping bits
and the relative accuracy of this computation will be lost.

But if we scale the columns of A by a diagonal matrix F
(consisting of powers of two) and the rows of B by F−1, we
might achieve a better balance.

53

Drop Lower Bins

If A,B is BFLOAT16x3 with FP32 accumulation, then AB can
simulate sgemm.
The same “cascading matrix” code can be used to mimic more
than just qgemm, but sgemm or dgemm or even bf16gemm.

54

Auto-correction

55

Threading Concepts

if A and B are too small to thread, perhaps one can also thread
over the number of multiplies when one breaks this into
cascading equations.

56

Generated Ill-Conditioned Matrix Observations

▶ In exact arithmetic Ĉ = AB.
▶ The columns of Ĉ have length approximately equal to one

and hence so do the columns of B, since multiplication by a
unitary matrix QT preserves length.

▶ The computation of AB inherently involves many dot
products that have the desired property of triggering
cancellation.

57

Badness Case

Consider, A =

(
1 ϵ

ϵ 1

)
and B =

(
ϵ ϵ

1 1

)
.

When using these proposed techniques, such a scenario can
result in catastrophically inaccurate answers.

We can minimize hitting this badness case in general by
quantizing every row of A and every column of B separately.

We can auto-detect this badness case (computationally free),
and report this has occurred.

58

	Introduction
	Cascading
	Implementation
	Performance experiments
	Accuracy experiments
	Opportunities
	Backup Slides

