
Portable Code Generation and
Semi-Automatic Scheduling for BLIS

Julian Bellavita1, Grace Dinh1

1University of California, Berkeley

1

Cambrian explosion in
hardware architectures

What runs on these chips?

3

Introduction

• Strong demand for performant
matrix/tensor kernels (including
BLIS) on novel architectures

• Both cost of implementation per
architecture and number of new
architectures increasing rapidly

4

Cost breakdown of developing new chips.

Image source: https://semiengineering.com/how-much-will-that-chip-cost/

Software cost

What makes performant kernels hard to implement?

• Tedious, difficult to debug, and requires extensive experimentation
and tuning

• Hardware-specific optimizations (and knowledge of HW architecture)
often required

• Few performance programming experts

5

Ease of implementation and portability between architectures critical!

The story so far…

6

Performance-critical code

The story so far…

7

Performance-critical code

The story so far…

8

Performance-critical code

}→GEMM

}→SYRK

The story so far…

9

Performance-critical code

BLAS routines

SYRK

GEMM

The story so far…

10

BLAS routine

SYRK

The story so far…

11

BLAS routine

SYRK

With BLIS… implement as
scaffolding + architecture-
specific microkernel

The story so far…

12

BLAS routine

SYRK

With BLIS… implement as
scaffolding + architecture-
specific microkernel

BLIS Microkernel

The story so far…

13

Hardware-specific
implementation.

BLIS
Microkernel

The story so far…

14

Hardware-specific
implementation.

BLIS
Microkernel

The story so far…

15

Hardware-specific implementation - still time-
consuming to optimize!

BLIS
Microkernel

Image source: The Deep Learning Compiler: A Comprehensive Survey (Li et. al ‘20), https://arxiv.org/abs/2002.03794

16

17

How do we make writing
microkernels easier?

18

Code generation

• Instead of writing hand-optimized code, have the compiler do it for you.

• Compiler optimizations (-O3, -Ofast in GCC/clang, etc.)

• How do you control them or optimize them for new hardware?

• Write your own compiler (or fork an existing one)… if you have the
compiler experts to build and maintain it.

19

An Optimizing Compiler

Program
description (“what
do you compute?”)

Optimization decisions
(“how do you optimize it?”)

IR representation Transformed IR

Output Code (machine code, CUDA, etc.)

Problems still there - just

moved inside compiler

New optimizations

Needs experts in
algos and compilers

New/changed
hardware Needs experts in HW

and compilers

Performance
debugging

inscrutable IR

black-box optimizing compiler

user-schedulable compiler

User Scheduling

Program
description (“what
do you compute?”)

Optimization decisions
(“how do you optimize it?”)

IR representation Transformed IR

Output Code (machine code, CUDA, etc.)

User-schedulable compilers

• Halide (Ragan-Kelley et al. PLDI ’13), TVM (Chen et al. OSDI ’18), Rise/Elevate
(Hagedorn et al. ICFP ‘20), etc.

• Not suited for BLIS/new HW application:

• difficulty of writing HW backends

• aimed at different domains (image processing, ML graphs)

• not designed for library kernels (e.g. TVM prefers numpy ndarray input)
or interoperability with existing flows

22

Exo: a user-schedulable compiler
for the accelerator era

23

Simple application code

Simple application code

HW-specific schedule

Human-

written

schedule

Model-

based

optimizer

Autotuner +
crowdsourced

perf data

Simple application code
HW-specific schedule

Human-

written

schedule

Model-

based

optimizer

Autotuner +
crowdsourced

perf data

Simple application code
HW-specific schedule

Human-

written

schedule

Model-

based

optimizer

Autotuner +
crowdsourced

perf data

HW backend

Simple application code
HW-specific schedule

Human-

written

schedule

Model-

based

optimizer

Autotuner +
crowdsourced

perf data

HW backend

Simple application code
HW-specific schedule

Human-

written

schedule

Model-

based

optimizer

Autotuner +
crowdsourced

perf data

HW backendOptimized Code

Optimized Code

Simple application code
HW-specific schedule

Human-

written

schedule

Model-

based

optimizer

Autotuner +
crowdsourced

perf data

HW backend

Why Exo?

• Quickly implement, experiment with, and iterate on fast code targeting varied
architectures.

• Generates C(++) with HW intrinsics: fully embeddable as libraries, compatible
with C-based workflows

• Simple definition of HW backends separate from compiler (easily add new
architectures, separate proprietary architectures from compilers)

• Allows reuse of code optimizations across multiple operations

31

Here’s how.
32

one
undergrad

six
weeks

Exo
70% of peak
on 3 L3 BLIS

routines.
+ + =

1. Extensive use of re-usable kernels

33

The BLIS approach

• Cast BLAS ops in terms of reusable GEMM kernel (Goto and Van de Geijn)

34

Microkernel: Areg[mreg,kblk]×Breg[kblk,nreg]

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]

GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

35

Modified GEPP procedure writes
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

36

Modified GEPP procedure writes
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

37

Modified GEPP procedure writes
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

38

Modified GEPP procedure writes
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

39

Modified GEPP procedure writes
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

40

Modified GEPP procedure writes
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

Updating a single row looks like
this

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

41

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel

• Example: SYRK (symmetric rank-K update) on lower-triangular part of C

42

Update left panel with GEBP

Middle square (diagonal) is an edge case

Do nothing for the right panel

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

The GEBP kernel

Vanilla SGEMM…

43

The GEBP kernel

Vanilla SGEMM…

44

The GEBP kernel

Vanilla SGEMM…

45

…with scheduling instructions

Refine to a specific block size

Tile loops Split off edge cases

Reorder loops

Substitute in optimized
microkernel

}
The GEBP kernel

Vanilla SGEMM…

46

…with scheduling
instructions

Refine to a specific kernel size

Tile loops Split off edge cases

Reorder loops

Substitute in optimized
microkernel

…generates an optimized kernel…

The GEBP kernel

47

…generates an
optimized
kernel…

…that can be called or inlined (e.g. in SYRK)

2. Easy Kernel Generation for
Hardware

48

Step 1: Hardware Backend

Mapping kernel to hardware done with hardware
intrinsics specified by equivalent Python code

HW architecture specifiable in ~1kLoC, in user-written
file (suitable for new/proprietary architectures)

49

Step 1: Hardware Backend

50

This HW
instruction…

…operating on Neon
vector registers…

…is equivalent to
this Python code!

Step 2: Code substitution

Use code substitution
instructions (similar to how we
embedded GEBP kernel earlier) in
scheduling to generate HW
intrinsics in code.

Transformation formally
guaranteed to be equivalent to
original code.

51

Step 2: Code substitution

Use code substitution
instructions (similar to how we
embedded GEBP kernel earlier) in
scheduling to generate HW
intrinsics in code.

Transformation formally
guaranteed to be equivalent to
original code.

52This generates a microkernel with vector intrinsics

Step 2: Code substitution

This can be repeated for any new piece of hardware to generate hardware-
specific microkernels

53

3. Simplified microkernel optimization

54

Optimizing Performance

• Explore scheduling parameter space easily by using scheduling instructions
to programmatically generate code with optimizations.

• Removes tedium of implementing optimized code (e.g. hand-coding edge
cases for tilings)

• Formally verified correctness of transforms means no need to debug
optimized code’s functionality - faster iteration

55

Example: tuning register sizes

56

A more extreme example

● I generated 64 microkernels using Exo

57

A more extreme example

● I generated 64 microkernels using Exo

58

A more extreme example

● I generated 64 microkernels using Exo

59

A more extreme example

● I generated 64 microkernels using Exo

60

A more extreme example

● I generated 64 microkernels using Exo

61

A more extreme example

● I generated 64 microkernels using Exo

62

A more extreme example

● I generated 64 microkernels using Exo

63

A more extreme example

● I generated 64 microkernels using Exo

64

A more extreme example

● I generated 64 microkernels using Exo

65

A more extreme example

● I generated 64 microkernels using Exo

66

A more extreme example

● I generated 64 microkernels using Exo

67

A more extreme example

● I generated 64 microkernels using Exo

68

A more extreme example

● I generated 64 microkernels using Exo

69

Implications

• Generate procedures reusable across the level 3 BLIS: only need to optimize
GEMM

• Define hardware interfaces by writing equivalent code: easier generation of
HW-specific microkernels

• Easily re-generate microkernels with different parameters: simplifies
tuning for hardware-dependent optimal performance

70

Implications

● The workflow now becomes…

● Make BLIS even more portable with Exo!

71

Write Hardware Backend Generate microkernel Benchmark

Repeat if poor performance

72

70% of peak on SGEMM on
AWS Graviton (with ARM Neon)

in 300 lines of code

Future Work

• Add support for various precision BLAS operations and data layouts
(dgemm, cgemm)

• Implement remaining BLAS3 operations (TRMM, TRSM, SYR2K, etc.) and
extend to BLAS2

• Autotuner integration

• Code generation for non-performance reasons (e.g. improved
exception handling)

73

Thanks for listening!

Questions?

74

Julian Bellavita: jbellavita@berkeley.edu

Grace Dinh: gnd@berkeley.edu

Thanks to: Gilbert Bernstein, James Demmel, Yuka Ikarashi, Alex Reinking, and many others

mailto:jbellavita@berkeley.edu
mailto:gnd@berkeley.edu

