Portable Code Generation and Semi-Automatic Scheduling for BLIS

Julian Bellavita¹, Grace Dinh¹

¹University of California, Berkeley

F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption

Accelerated matrix

Next-generation 16-core architecture

Powerful machine learning accelerators

A14 *

AI Chin Landsson

Cambrian explosion in hardware architectures

NVIDIA Hopper GPU Architecture Accelerates Dynamic Programming Up to 40x Using New DPX Instructions

Dynamic programming algorithms are used in healthcare, robotics, quantum computing, data science and more.

YouTube is now building its own video-transcoding chips

Google throws custom silicon at YouTube's massive video-transcoding workload.

by Ron Amadeo - Apr 22, 2021 10:24am PST

SambaNova

CARDINAL

SNID

20N3-PRO1 18K977 42

1888 AHW34W0100065

What runs on these chips?

Introduction

- Strong demand for performant matrix/tensor kernels (including BLIS) on novel architectures
- Both cost of implementation per architecture *and* number of new architectures increasing rapidly

Image source: https://semiengineering.com/how-much-will-that-chip-cost/

Cost breakdown of developing new chips.

What makes performant kernels hard to implement?

• Tedious, difficult to debug, and requires extensive experimentation and tuning

• Hardware-specific optimizations (and knowledge of HW architecture) often required

• Few performance programming experts

Ease of implementation and portability between architectures critical!

BLAS routine

SYRK

BLAS routine

With BLIS... implement as scaffolding + architecturespecific microkernel

With BLIS... implement as scaffolding + architecturespecific microkernel

BLIS Microkernel

Hardware-specific implementation.

BLIS Microkernel

Hardware-specific implementation.

P develop - OpenBLAS / kernel /
🖿 alpha
🖿 arm
arm64
e2k
generic generic
ia64
loongarch64
inips mips
mips64
power
riscv64
imd simd
sparc sparc
x86
x86_64
arch zarch

Hardware-specific implementation - still timeconsuming to optimize!

Image source: The Deep Learning Compiler: A Comprehensive Survey (Li et. al '20), https://arxiv.org/abs/2002.03794 15

```
for (; i < m8; i += 8) {</pre>
for (i = 0; i < m32; i += 32) {</pre>
                                                                                                                                                                                        for (; i < m16; i += 16) {</pre>
                                                                                                                          for (j = 0; j < n6; j += 6) {</pre>
                                                                                                                                                                                            for (j = 0; j < n6; j += 6) {</pre>
    for (i = 0; i < n4; i += 4) {
                                                                                                                              DECLARE_RESULT_512(0, 0);
                                                                                                                                                                                                DECLARE RESULT 512(0, 0); DECLARE RESULT
        DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
                                                                                                                              DECLARE RESULT 512(0, 1);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 1); DECLARE_RESULT
        DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
                                                                                                                              DECLARE_RESULT_512(0, 2);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 2); DECLARE_RESULT
        DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
                                                                                                                              DECLARE_RESULT_512(0, 3);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 3); DECLARE_RESULT
        DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
                                                                                                                              DECLARE_RESULT_512(0, 4);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 4); DECLARE_RESULT
                                                                                                                              DECLARE_RESULT_512(0, 5);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 5); DECLARE_RESULT
        for (k = 0; k < K; k++) {
                                                                                                                              for (k = 0; k < K; k++) {
                                                                                                                                                                                               for (k = 0; k < K; k++) {</pre>
            LOAD A 512(0, x); LOAD A 512(1, x); LOAD A 512(2, x); LOAD A 512(3, x);
                                                                                                                                  LOAD A 512(0, x);
                                                                                                                                                                                                   LOAD_A_512(0, x); LOAD_A_512(1, x);
                                                                                                                                  BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
                                                                                                                                                                                                   BROADCAST LOAD B 512(x, 0); BROADCAS
                                                                                                                                  BROADCAST_LOAD_B_512(x, 2); BROADCAST_LOAD_B_512(x, 3);
                                                                                                                                                                                                    BROADCAST_LOAD_B_512(x, 2); BROADCAS
            BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
                                                                                                                                  BROADCAST_LOAD_B_512(x, 4); BROADCAST_LOAD_B_512(x, 5);
                                                                                                                                                                                                    BROADCAST_LOAD_B_512(x, 4); BROADCAS
            BROADCAST_LOAD_B_512(x, 2); BROADCAST_LOAD_B_512(x, 3);
                                                                                                                                  MATMUL_512(0, 0);
                                                                                                                                                                                                   MATMUL_512(0, 0); MATMUL_512(1, 0);
            MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
                                                                                                                                  MATMUL_512(0, 1);
                                                                                                                                                                                                   MATMUL_512(0, 1); MATMUL_512(1, 1);
            MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
                                                                                                                                  MATMUL_512(0, 2);
                                                                                                                                                                                                   MATMUL_512(0, 2); MATMUL_512(1, 2);
            MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
                                                                                                                                  MATMUL_512(0, 3);
                                                                                                                                                                                                   MATMUL_512(0, 3); MATMUL_512(1, 3);
            MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
                                                                                                                                 MATMUL_512(0, 4);
                                                                                                                                                                                                   MATMUL_512(0, 4); MATMUL_512(1, 4);
                                                                                                                                 MATMUL_512(0, 5);
                                                                                                                                                                                                    MATMUL_512(0, 5); MATMUL_512(1, 5);
                                                                                                                              }
        STORE 512(0, 0); STORE 512(1, 0); STORE 512(2, 0); STORE 512(3, 0);
                                                                                                                                                                                               }
                                                                                                                              STORE 512(0, 0);
                                                                                                                                                                                               STORE_512(0, 0); STORE_512(1, 0);
        STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
                                                                                                                              STORE 512(0, 1);
                                                                                                                                                                                               STORE_512(0, 1); STORE_512(1, 1);
        STORE_512(0, 2); STORE 512(1, 2); STORE_512(2, 2); STORE 512(3, 2);
                                                                                                                              STORE_512(0, 2);
                                                                                                                                                                                               STORE_512(0, 2); STORE_512(1, 2);
        STORE_512(0, 3); STORE_512(1, 3); STORE_512(2, 3); STORE_512(3, 3);
                                                                                                                              STORE_512(0, 3);
                                                                                                                                                                                               STORE_512(0, 3); STORE_512(1, 3);
                                                                                                                              STORE_512(0, 4);
                                                                                                                                                                                               STORE_512(0, 4); STORE_512(1, 4);
    for (; j < n2; j += 2) {</pre>
                                                                                                                              STORE 512(0, 5);
                                                                                                                                                                                               STORE_512(0, 5); STORE_512(1, 5);
        DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
                                                                                                                                                                                           }
        DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
                                                                                                                          for (; j < n2; j += 2) {</pre>
                                                                                                                                                                                           for (; j < n2; j += 2) {</pre>
        for (k = 0; k < K; k++) {
                                                                                                                              DECLARE_RESULT_512(0, 0);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 0); DECLARE_RESULT
            LOAD_A_512(0, x); LOAD_A_512(1, x); LOAD_A_512(2, x); LOAD_A_512(3, x);
                                                                                                                              DECLARE_RESULT_512(0, 1);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 1); DECLARE_RESULT
                                                                                                                              for (k = 0; k < K; k++) {
            BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
                                                                                                                                                                                               for (k = 0; k < K; k++) {</pre>
                                                                                                                                  LOAD A 512(0, x);
                                                                                                                                                                                                   LOAD_A_512(0, x); LOAD_A_512(1, x);
            MATMUL 512(0, 0); MATMUL 512(1, 0); MATMUL 512(2, 0); MATMUL 512(3, 0);
                                                                                                                                  BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);
                                                                                                                                                                                                   BROADCAST_LOAD_B_512(x, 0); BROADCAS
            MATMUL 512(0, 1); MATMUL 512(1, 1); MATMUL 512(2, 1); MATMUL 512(3, 1);
                                                                                                                                  MATMUL_512(0, 0);
                                                                                                                                                                                                   MATMUL_512(0, 0); MATMUL_512(1, 0);
        }
                                                                                                                                  MATMUL_512(0, 1);
                                                                                                                                                                                                   MATMUL_512(0, 1); MATMUL_512(1, 1);
        STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
                                                                                                                              }
                                                                                                                                                                                               }
        STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
                                                                                                                              STORE_512(0, 0);
                                                                                                                                                                                               STORE_512(0, 0); STORE_512(1, 0);
                                                                                                                              STORE_512(0, 1);
                                                                                                                                                                                               STORE_512(0, 1); STORE_512(1, 1);
    for (; j < N; j++) {</pre>
                                                                                                                                                                                           3
        DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0); for (; j < N; j++) {
                                                                                                                                                                                           for (; j < N; j++) {</pre>
                                                                                                                              DECLARE RESULT 512(0, 0);
                                                                                                                                                                                               DECLARE_RESULT_512(0, 0); DECLARE_RESULT
        for (k = 0; k < K; k++) {
                                                                                                                              for (k = 0; k < K; k++) {
                                                                                                                                                                                               for (k = 0; k < K; k++) {</pre>
            LOAD A 512(0, x): LOAD A 512(1, x): LOAD A 512(2, x): LOAD A 512(3, x):
                                                                                                                                                                                                   LOAD_A_512(0, x); LOAD_A_512(1, x);
                                                                                                                                  LOAD_A_512(0, x);
            BROADCAST_LOAD_B_512(x, 0);
                                                                                                                                                                                                   BROADCAST LOAD B 512(x, 0);
                                                                                                                                  BROADCAST_LOAD_B_512(x, 0);
            MATMUL 512(0, 0); MATMUL 512(1, 0); MATMUL 512(2, 0); MATMUL 512(3, 0);
                                                                                                                                  MATMUL_512(0, 0);
                                                                                                                                                                                                   MATMUL_512(0, 0); MATMUL_512(1, 0);
        }
        STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
                                                                                                                              STORE_512(0, 0);
                                                                                                                                                                                               STORE_512(0, 0); STORE_512(1, 0);
```

}

for (i :	= 0; i < m32; i += 32) {
for	$(j = 0; j < n4; j += 4) $ {
	DECLARE RESULT 512(0, 0); DECLARE RESULT 512(1, 0); DECLARE RESULT 512(2, 0); DEC
	DECLARE RESULT 512(0, 1); DECLARE RESULT 512(1, 1); DECLARE RESULT 512(2, 1); DEC
	DECLARE RESULT 512(0, 2): DECLARE RESULT 512(1, 2): DECLARE RESULT 512(2, 2): DEC
	DECLARE RESULT 512(0, 3); DECLARE RESULT 512(1, 3); DECLARE RESULT 512(2, 3); DEC
	for $(k = 0; k < K; k++)$
	104D = 5, x + 1, x + 1, y + 104D = 512(1 - x) + 104D = 512(2 - x) + 104D = 512(3 - x
	COND_A_012(0, x); COND_A_012(1, x); COND_A_012(2; x); COND_A_012(0, x);
	REGARCAST LOAD B 512(x A) BROADCAST LOAD B 512(x 1)
	BROADCAST LOAD B 512(x, 2); BROADCAST LOAD B 512(x, 2);
	BROADCAST_LOAD_D_SIZ(X, Z), BROADCAST_LOAD_D_SIZ(X, S),
	MATMUH 512(0, 0): MATMUH 512(1, 0): MATMUH 512(2, 0): MATMUH 512(3, 0):
	MATMUL 512(0, 1); MATMUL 512(1, 1); MATMUL 512(2, 1); MATMUL 512(3, 1);
	MATNUE 512(0, 2); MATNUE 512(1, 2); MATNUE 512(2, 1); MATNUE 512(3, 1);
	MATHUE_512(0, 2), MATHUE_512(1, 2), MATHUE_512(2, 2), MATHUE_512(3, 2),
	MAIMUL_512(0, 3); MAIMUL_512(1, 3); MAIMUL_512(2, 3); MAIMUL_512(3, 3);
	J STORE 512(0, 0), STORE 512(1, 0), STORE 512(2, 0), STORE 512(2, 0),
	STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
	STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
	SIORE_512(0, 2); SIORE_512(1, 2); SIORE_512(2, 2); SIORE_512(3, 2);
	STORE_512(0, 3); STORE_512(1, 3); STORE_512(2, 3); STORE_512(3, 3);
}	
for	(;] < n2;] += 2) {
	DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DEC
	DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DEC
	for $(k = 0; k < K; k++)$ {
	LOAD_A_512(0, x); LOAD_A_512(1, x); LOAD_A_512(2, x); LOAD_A_512(3, x);
	<pre>BROADCAST_LOAD_B_512(x, 0); BROADCAST_LOAD_B_512(x, 1);</pre>
	MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
	<pre>MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);</pre>
	}
	STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
	STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
}	
for	(; j < N; j++) {
	DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DEC
	for $(k = 0; k < K; k++)$ {
	LOAD_A_512(0, x); LOAD_A_512(1, x); LOAD_A_512(2, x); LOAD_A_512(3, x);
	<pre>BROADCAST_LOAD_B_512(x, 0);</pre>
	MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
	}
	STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
}	
3	

}

🗋 dgen

🗋 dger

🗋 dgen

🗋 dger

🗋 dger

🗋 dger 🗋 dger

nm_beta_skylakex.c	. += 8) {		for (; i < m16; i += 16) {
nm_kernel_16x2_haswell.S	RESULT_512(0, 0);		1	<pre>for (j = 0; j < n6; j += 6) { DECLARE_RESULT_512(0, 0); DECLARE_RESULT</pre>
nm_kernel_16x2_skylakex.S	RESULT_512(0, 1); RESULT_512(0, 2);			DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(0, 2);
nm_kernel_16x2_skylakex.c	RESULT_512(0, 3);			DECLARE_RESULT_512(0, 3); DECLARE_RESULT DECLARE_RESULT_512(0, 3); DECLARE_RESULT
nm_kernel_4x4_haswell.S	RESULT_512(0, 5);			DECLARE_RESULT_512(0, 4); DECLARE_RESULT DECLARE_RESULT_512(0, 5); DECLARE_RESULT
nm_kernel_4x8_haswell.S	= 0; k < K; k++) { 0_A_512(0, x);			<pre>for (k = 0; k < K; k++) { LOAD_A_512(0, x); LOAD_A_512(1, x);</pre>
nm_kernel_4x8_sandy.S	DCAST_LOAD_B_512(x, @ DCAST_LOAD_B_512(x, 2	<pre>3); BROADCAST_LOAD_B_512(x, 1 2); BROADCAST_LOAD_B_512(x, 3</pre>	.); i);	<pre>BROADCAST_LOAD_B_512(x, 0); BROADCAS BROADCAST_LOAD_B_512(x, 2); BROADCAS</pre>
nm_kernel_4x8_skylakex.c	DCAST_LOAD_B_512(x, 4	<pre>\$ BROADCAST_LOAD_B_512(x, 5 BROADCAST_LOAD_B_512(x, 5 Section 2) </pre>	;);	BROADCAST_LOAD_B_512(x, 4); BROADCAS
nm_kernel_4x8_skylakex_2.c	UL_512(0, 0);			MATMUL_512(0, 0); MATMUL_512(1, 0);
nm_kernel_6x4_piledriver.S	UL_512(0, 1); UL_512(0, 2);			MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(0, 2); MATMUL_512(1, 2);
nm_kernel_8x2_bulldozer.S	UL_512(0, 3); UL_512(0, 4);			MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(0, 4); MATMUL_512(1, 4);
nm_kernel_8x2_piledriver.S	UL_512(0, 5);			MATMUL_512(0, 5); MATMUL_512(1, 5);
nm_kernel_8x8_skylakex.c	2(0, 0);			<pre>STORE_512(0, 0); STORE_512(1, 0);</pre>
nm_ncopy_2.S	.2(0, 1); .2(0, 2);			STORE_512(0, 1); STORE_512(1, 1); STORE_512(0, 2); STORE_512(1, 2);
1m_ncopy_4.S	.2(0, 3);			STORE_512(0, 3); STORE_512(1, 3); STORE 512(0, 4); STORE 512(1, 4);
nm_ncopy_8.S	.2(0, 5);			STORE_512(0, 5); STORE_512(1, 5);
n ncopy 8 bulldozer.S	2: i += 2) {)	for (· i < p2· i += 2) {
	RESULT_512(0, 0);			DECLARE_RESULT_512(0, 0); DECLARE_RESULT
nm_ncopy_8_skylakex.c	RESULT_512(0, 1);			DECLARE_RESULT_512(0, 1); DECLARE_RESULT
nm_small_kernel_nn_skylakex.c	: 0; k < K; k++) {)_A_512(0, x);			<pre>for (k = 0; k < K; k++) { LOAD_A_512(0, x); LOAD_A_512(1, x);</pre>
nm_small_kernel_nt_skylakex.c	DCAST_LOAD_B_512(x, 0	<pre>3); BROADCAST_LOAD_B_512(x, 1</pre>	.);	BROADCAST_LOAD_B_512(x, 0); BROADCAS
nm_small_kernel_permit_skylakex.c	UL_512(0, 1);			MATMUL_512(0, 1); MATMUL_512(1, 1);
nm_small_kernel_tn_skylakex.c	.2(0, 0);			; STORE_512(0, 0); STORE_512(1, 0);
nm_small_kernel_tt_skylakex.c	.2(0, 1);)	STORE_512(0, 1); STORE_512(1, 1);
nm_tcopy_16_skylakex.c	l; j++) {		1	for (; j < N; j++) {
nm_tcopy_2.S	RESULT_512(0, 0); 0; k < K; k++) {			<pre>DECLARE_RESULT_512(0, 0); DECLARE_RESULT for (k = 0; k < K; k++) {</pre>
nm_tcopy_4.S	_A_512(0, x); DCAST LOAD B 512(x, 0	a) •		LOAD_A_512(0, x); LOAD_A_512(1, x); BROADCAST_LOAD_B_512(x, 0):
nm_tcopy_8.S	UL_512(0, 0);			MATMUL_512(0, 0); MATMUL_512(1, 0);
nm_tcopy_8_bulldozer.S	.2(0, 0);			, STORE_512(0, 0); STORE_512(1, 0);
nm_tcopy_8_skylakex.c			}	•

How do we make writing microkernels easier?

Code generation

- Instead of writing hand-optimized code, have the compiler do it for you.
 - Compiler optimizations (-03, -0fast in GCC/clang, etc.)
- How do you control them or optimize them for new hardware?
 - Write your own compiler (or fork an existing one)... if you have the compiler experts to build and maintain it.

User Scheduling

Output Code (machine code, CUDA, etc.)

User-schedulable compilers

- Halide (Ragan-Kelley et al. PLDI '13), TVM (Chen et al. OSDI '18), Rise/Elevate (Hagedorn et al. ICFP '20), etc.
- Not suited for BLIS/new HW application:
 - difficulty of writing HW backends
 - aimed at different domains (image processing, ML graphs)
 - not designed for library kernels (e.g. TVM prefers numpy ndarray input) or interoperability with existing flows

Exo: a user-schedulable compiler for the accelerator era

<pre>def new_sgemm():</pre>
(proc
def sgemm_full(
N: size,
M: size,
K: size,
C: f32[N, M] @ DRAM,
A: <u>f32[N, K] @ DRAM</u> ,
B: f32[K, M] @ DRAM,
):
for i in par(0, N):
for j in par(0, M):
for k in par(0, K):
C[i, j] += A[i, k] * B[k, j
return sgemm_full

HW-specific schedule

matmul_c_i8 = matmul_c_i8.split('i #0',16,['i','i_in'], perfect=True)
matmul_c_i8 = matmul_c_i8.reorder('i_in #0','j')
matmul_c_i8 = matmul_c_i8.split('j #0',16,['j','j_in'], perfect=True)
matmul_c_i8 = matmul_c_i8.lift_alloc('res : _ #0', n_lifts=1)
matmul_c_i8 = matmul_c_i8.lift_alloc('res : _ #0', n_lifts=1, mode='col', size=16)
matmul_c_i8 = matmul_c_i8.lift_alloc('res : _ #0', n_lifts=2)
matmul_c_i8 = matmul_c_i8.fission_after('res[_] = 0.0 #0', n_lifts=2)
matmul_c_i8 = matmul_c_i8.fission_after('for k in _:_ #0', n_lifts=2)
matmul_c_i8 = matmul_c_i8.fission_after('for k in _:_ #0', n_lifts=2)
matmul_c_i8 = matmul_c_i8.reorder('i_in #0','k')
matmul_c_i8 = matmul_c_i8.reorder('i_in #0','k')

Humanwritten schedule Autotuner + crowdsourced perf data Modelbased optimizer

HW-sp	ecific sc	hedule			
<pre>matmul_c_i8 = matmul_c_i8.split('i#0',16,['i','i_in'], perfect=True) matmul_c_18 = matmul_c_18.reorder('i_in #0', j') retrul = i0 = retru</pre>					
<pre>matmut_c_is = matmut_c_is.spir(') #0 ,10,('); 'j_in'; perfect=/nue) matmut_c_is = matmut_c_is.lift_alloc('res : _ #0', n_lifts=1) matmut_c_is = matmut_c_is.lift_alloc('res : _ #0', n_lifts=1) matmut_c_is = matmut_c_is.lift_alloc('res : _ #0', n_lifts=1)</pre>					
<pre>matmul_c_i8 = matmul_c_i8.lift_alloc('res : _ #0', n_lifts=2) matmul_c_i8 = matmul_c_i8.lift_alloc('res[_] = 0.0 #0', n_lifts=2)</pre>					
<pre>matmul_c_i8 = matmul_c_i8.fission_after('for k in _:_ #0', n_lifts=2) matmul_c_i8 = matmul_c_i8.reorder('i_in #0','k')</pre>					
<pre>matmul_c_i8 = matmul_c_i8</pre>	.reorder('j_in #0','k')				
Human-	Autotuner +	Model-			
written	crowdsourced	based			
schedule	perf data	optimizer			

HW backend

```
@instr('{C_data} = _mm512_mask_fmadd_ps
def mm512_mask_fmadd_ps(
        N: size,
        A: f32[16] @ AVX512,
        B: f32[16] @ AVX512,
        C: [f32][16] @ AVX512,
):
    assert N >= 1
    assert N < 16
    assert stride(A, 0) == 1
    assert stride(B, 0) == 1
    assert stride(C, 0) == 1
    for i in par(0, 16):
        if i < N:
```

C[i] += A[i] * B[i]

Simple a

Optimized Code

backend

gproc def sgem_kernel_avx512_6x4(K: size, A: [f32][6, K] @ DRAM,

	at trazite, ou glower, c. trazite, ou glower,
	assert $K \ge 1$
	assert stride(8, 1) == 1
	assert stride(C, 1) == 1
	C_reg: R(6, 4, 16) @ AVA512 for i in par(0, 6):
	for jo in par(0, 4):
	em512_loadu_ps(C_reg[i, jo, 0:16], C[i, 16 = jo:16 = jo + 16])
	for k in parto, K):
	A_vec: R[16] @ AVX512
	em512_set1_ps(A_vec, A[i, k:k + 1])
	B vec: B[16] 8 AVX512
	mm512_loadu_ps(B_vec[0:16], B[k, 16 * jo:16 * jo + 16])
	mnSI2_fmadd_ps(A_vec, B_vec, C_reg[i, jo, 0:16])
	for 1 in par(0, 0):
	em512_storeu_ps(C[i, 16 * jo:16 * jo + 16], C_reg[i, jo, 8:16])
f	bottom_panel_kernel_scheduled(#: size, K: size, A: [f32][N, K] @ DRAM,
	8: [132][K, 64] @ DRAM,
	C: [132][H, 64] @ DRAH):
	assert K >= 1
	assert stride(A, 1) == 1
	assert stride(C, 1) == 1
	if N == 1: comm kernel purch2 lodik A[0:1 0:4] B[0:4 0:64] (for out)
	else:
	sgeme_kernel_avx512_2x4(K, A[8:2, 0:K], B[0:K, 0:64], C[0:2, 0:64])
	sgemm_kernel_avx512_4x4(K, A[0:4, 0:K], B[0:K, 0:64],
	clo:4, 0:641)
	sgemm_kernel_avx512_5x4(K, A[0:5, 0:K], B[0:K, 0:64],
	for k in par(0, K):
	for i in par(0, N):
1	right_panel_kernel_scheduled(N: size, K: size, A: [f32][6, K] @ DRAM,
	8: [f32][K, N] @ DRAM, C: [f32][6, N] @ DRAM):
	assert K >= 1
	assert stride(A, 1) == 1
	assert stride(8, 1) == 1
	assert N / 16 < 4
	if N / 16 0:
	C_reg: R16, 1, 16] @ AVX512 C reg 1: R16, 16] @ AVX512
	for i in per(0, 6):
	mmSI2_maskz_loadu_ps(N, C_reg_1[i, 0:16], C[i, 0:N])
	for k in parto, K):
	A_reg2: R[16] @ AVX512
	mmS12_mask_set1_ps(N, A_reg2, A[i, k:k + 1])
	mmS12 maskz loadu ps(N, B reg2[0:16], B[k, 0:N])
	mn512_mask_fmadd_ps(N, A_reg2, B_reg2, C_reg_1[i, 0:16])
	for i in par(0, 6): mp[]] mack charge an(NC[i0,N]) C real(i0,16])
	else:
	C_reg: Rto, 2, 161 @ AVX512
	for i in par(0, 6):
	for jo in par(0, 1):
	<pre>me512_(oadv_pstC_reg[1, jo, 0:16], C[i,</pre>
	mm512_maskz_loadu_ps(N % 16, C_reg_1[i, 0:16], C[i, 16:N])
	for k in par(0, K):
	for 1 in parts, 67:

mm512_set1_ps(A_reg, A[i, k:k + 1])

m512_sot1_ps(A_reg, A[i, k:k + 1]) B_reg: R[i6] # AVS12 ar532_load_ps(B_reg[0:10], B[k, 16 + jo:16 + jo + 16]) ar532_foud_ps(A_reg, B_reg, C_reg[i, jo, 0:16]) A_reg2: R[i6] # AVS12 N/ (1 = 2); Cress B(1; 3) = 200212 Cress B(1; 3) = 200212 for 1: north, 3); for 1: no $\begin{array}{l} \label{eq:response} \left\{ \begin{array}{l} e_{1} e_{2} i \left(ti \right) \in \left[i \in [0, t] \right] \\ e_{1} e_{2} i \left(ti \right) e_{2} i \left(ti \right) e_{1} i \left(ti \right) e_{2} i \left(ti \right) e_{2}$ for k in par(4, 4): for j = 1 (a par(4, 7): A_reg2: R[18] @ AVX512 ar512_rask_set2_as(N % 16, A_reg2, A[i, k:k + 1]) B_reg2: R[16] @ AVX512 ar512_raskz_loadu_ps(N % 16, B_reg2[0:16], B[k, d(n)] $\begin{array}{l} close \\ cress: R(s, N \ / \ i 6 \ + \ j, \ 10 \ 0 \ AV0512 \\ Cress: R(s, 10 \ 0 \ AV0512 \) \\ cress: R(s, 10 \ 0 \ AV0512 \) \\ cress: R(s, 10 \ 0 \ AV0512 \) \\ cress: R(s, 10 \ 0 \ AV0512 \) \\ ress: R(s, 10 \ A$

 A_reg2: R(16) # AVX512
 6:16)

 ms512_mosk_set1_pc(N + 16, A_reg2, A(1, k:k + 1))
 B_reg2: R(16) # AVX512

 ms512_mosk_set1_pc(N + 16, A_reg2, B_reg2(b:16), B_1(k, 16 + (N / 16):N)
 B(k, 16 + (N / 16):N)

 ms512_mosk_set0(s + 16, A_reg2, B_reg2, B_ intervent (i, i); for i s is part(0, N / 10); mod2_store_part(0, i) (i = jo:15 * jo + 16); C_reg(1, jo =16); mod2_store_part(1 * jo:16); mod2_mod2_store_part(1 * jo:16) (i = N / 16);N); c_reg_1(1, b:16); assert N == 1 assert X == 1 assert stride(A, 1) == 1 assert stride(A, 1) == 1 assert stride(C, 1) == 1 A1_cache: f32(24, 35) @ DRAW_STATIC for Ko in pair (S, 15) & (0) DRAW_STATIC for Ko in pair (S, 15) & (0) DRAW_STATIC for (B) in pair (S, 15) & (0) DRAW_STATIC for (B) in pair (S, 15) & (0) DRAW_STATIC for (B) in pair (S, 15) & (0) DRAW_STATIC for 10 in par(0, 264): for 11 in par(0, 5 ii perte, 2007: ii in perte, 512): A1 cache[i0, i1] = A[264 + io + i0, 512 = ko + i1] for jo in par(0, N / 64): for i0 in par(0, 512): r i1 in par(0, 64):
B1_cache[i0, i1] = B[512 + ko + i0, 64 + jo + i1] for ko in par(0, K / 512): B2_cache: f32(512, 64) 0 DRAM_STATIC D2_croses (22(51), 64) = 0000_(2571)C for 10 = in prof(5, 51) = 6 = 100 (2570) + if M % 264 > 0: for ko in par(0, K / 514) for ko in par(0, K / 514) for ko in par(0, K / 64): B3_cache: f32[512, 64] @ DRAM_STATIC for 10 in par(0, 512):

N % 65 > 8: for ko in por(0, K / 512): B4_cache: f32[512, 66] 0 BBM_STATIC for 10: in por(0, 512): for 11: in por(0, N = 66 + (N / 64)): B4_cache(10; N = 10 = 8[512 + ko + 10, 66 + (N / 64) + 11] BT_dttdetter, Arr BT_dttdetter, Arr S12 + ko:512 + ko + 512], B4_cache[8:512, 8:N - 64 + (N / 64]], (254 + (M / 264);H, B4_cache[8:512, 8:N - 64 + (N / 64]], (254 + (M / 64);H) $\begin{array}{l} K + 512 = 41; \\ for i \ i \ i \ m \ order \left(5, \ M \ / \ 2501 \right) \\ for \ i \ o \ m \ order \left(5, \ M \ / \ 2501 \right) \\ H \ (s, \ m \ order \ 125112), \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 125112, \\ for \ i \ s \ order \ 12512, \\ for \ s \ order \ 12512, \ s \ order \ s \$ genm_above_kernel(
 264, 64, K % 512, A[264 * io:264 * io + 264,
 204, 04, K
 512, KI / 512; KI,

 512 + (K / 512); KI,

 85_cache[0:K - 512 × (K / 512); 0:64],

 C[264 + io:264 + io + 264, 64 + jo:64 + jo + 64])
 A12 ≥ 47 for 10 in por(6), N / 26(1) R of 480 por(6), N / 26(1) R of 480 por(6), K > 512 × (K / 512)); for 41 in por(6), N = 64 × (M / 66)); B6, cache(10, 11) = 85(3 × (K / 512) + 10, 64 × (N / 64) + 11] 64 * (N / 64) + i1] 5gess.above_kernel(264, N % 64, K % 512, A[264 * io:264 * io - 264, 512 * (K / 512) * (N, B6_cache[8:K - 512 * (K / 512), 0:N - 64 * (N / 64)], C[264 * io:264 * io + 264, 64 * (N / 64)N]) K + 512 - 8: for if N > 613 - 8: for concert f32[337, 64] g DBAM_STATIC for concert f32[337, 64] g DBAM_STATIC for ii in par(0, 431; for ii in par(0, 431; for ii in par(0, 431; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for ii in - 131; for ii in par(0, 131; for ii in - 131; for iin B7_cache[0:K - 512 + (K / 512), 0:64], C[264 + (H / 264):H, 64 + 10:64 + 10 + 64])

for i0 in par(0, 512):
 for i1 in par(0, 64):
 B3_cache[i0, i1] = B[512 + ko + i0, 64 + jo + i1]

Optimized Code

- Quickly implement, experiment with, and iterate on fast code targeting varied architectures.
- Generates C(++) with HW intrinsics: fully embeddable as libraries, compatible with C-based workflows
- Simple definition of HW backends separate from compiler (easily add new architectures, separate proprietary architectures from compilers)
- Allows reuse of code optimizations across multiple operations

Exo + undergrad + weeks = on 3 L3 BLIS routines.

Here's how.

1. Extensive use of re-usable kernels

The BLIS approach

• Cast BLAS ops in terms of reusable GEMM kernel (Goto and Van de Geijn)

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Modified GEPP procedure writes to varied-length panels of C

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Modified GEPP procedure writes to varied-length panels of C

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Modified GEPP procedure writes to varied-length panels of C

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Modified GEPP procedure writes to varied-length panels of C

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Modified GEPP procedure writes to varied-length panels of C

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Modified GEPP procedure writes to varied-length panels of C Updating a single row looks like this

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

- All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel
- Example: SYRK (symmetric rank-K update) on lower-triangular part of C

Update left panel with GEBP

Middle square (diagonal) is an edge case

Do nothing for the right panel

Vanilla SGEMM...

```
(dproc
def SGEMM(M: size, N: size, K: size, A: f32[M, K], B: f32[K, N], C: f32[M, N]):
    assert M >= 1
    assert N >= 1
    assert K >= 1
    assert stride(A, 1) == 1
    assert stride(B, 1) == 1
    assert stride(C, 1) == 1
    for i in par(0, M):
        for j in par(0, N):
            for k in par(0, K):
                C[i, j] += A[i, k] * B[k, j]
```

Vanilla SGEMM...

Vanilla SGEMM...

...with scheduling instructions

Vanilla SGEMM...

```
goroc
def SGEMM(M: size, N: size, K: size, A: f32[M, K], B: f32[K, N], C: f32[H, N]):
    assert N >= 1
    assert N >= 1
    assert stride(A, 1) == 1
    assert stride(B, 1) == 1
    assert stride(C, 1) == 1
```

for i in par(0, M):
 for j in par(0, N):
 for k in par(0, K):
 C[i, j] += A[i, k] * B[k, j]

...with **scheduling instructions**

```
def generate_GEBP(Kernel, H_blk, K_
                 GEBP = (Kernel
                         .partial eval(K=K c)
                          split('i', M_r, ['io', 'ii'], tail='cut_and_guar
                                                                        Split off edge cases
    Tile loops
                          fission_after('for jo in _:
                          fission_after('for io in .
                           reorder('ii','jo')
Reorder loops
                         .replace_all(microkernel)
                         .call_eqv(neon_microkernel, 'microkernel(_)')
                         .reorder('io', 'jo')
.stage_mem(f'B[0:{K_c},
                                                                  Substitute in optimized
                                f'{N_r}*io:{N_r}*io+{N_r}]'.
                                                                         microkernel
                  cetuco GERP
```

....generates an optimized kernel....

```
// GEBPC
// N : size,
// A : [f32][64,64] @ORAM,
// B : [f32][64,N] @ORAM,
// C : [f32][64,N] @ORAM
// )
void GEBP( c_code_str_Context *ctxt, int_fast32_t N, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C ) {
EXO_ASSUME(N >= 1);
EXO_ASSUME(A.strides[1] == 1);
EXO_ASSUME(A.strides[1] == 1);
EXO_ASSUME(C.strides[1] == 1);
for (int jo = 0; jo < ((N) / (16)); jo++) {
float *8_strip = mallco(64 * 16 * sizeof(*8_strip));
for (int i = 0; i1 < 16; i1++) {
        B_strip[(10) * (16) + (11) * (1)] = 8.data[(10) * (B.strides[8]) + (11 + 16 * jo) * (B.strides[1])];
}</pre>
```

```
for (int io = 0; io < 16; io++) {
    neon_microkernel(ctxt,(struct exo_win_2f32){ (float*)&A.data[(4 * io) * (A.strides[0]) + (0) * (A.strides[1])], { A.strides[0], A.strides[1] } },(struct exo_win_2f32){ (float*)&B_strip[(0)</pre>
```

```
free(B_strip);
```

}

...

...generates an optimized kernel...

...that can be **called** or **inlined** (e.g. in SYRK)

```
void GEPP_syrk( c_code_str_Context *ctxt, int_fast32_t M, struct exo_win_2f32 A, struct exo_win_2f32 A_t, struct exo_win_2f32 C ) {
EX0_ASSUME(M >= 1);
EX0_ASSUME(A.strides[1] == 1);
EX0_ASSUME(A_t.strides[1] == 1);
EX0_ASSUME(C.strides[1] == 1);
 记r (int i = 0; i < M; i++) ┨
                           if (i == 6) {
                                                            1; jo++) {
                                   GEBP_scheduled(ctx], (struct exo_win_2f32){ (float*)&A.data[(6) * (A.strides[0]) + (0) * (A.strides[1])], { A.strides[0], A.strides[1] } }, (struct exo_win_2f32){ (float*)&A_t.
                               for (int j = 0; j < 3; j++) {</pre>
                                   for (int k = 0; k < 4; k++) {
                                      C.data[(6) * (C.strides[0]) + (j + 4) * (C.strides[1])] += A.data[(6) * (A.strides[0]) + (k) * (A.strides[1])] * A_t.data[(j + 4) * (A_t.strides[0]) + (k) * (A_t.strides[1])]
                               3
                           l else {
                               if (i == 7) {
                                                                 _____< 1; jo++) {
                                      GEBP_scheduled(ctx], (struct exo_win_2f32){ (float*)&A.data[(7) * (A.strides[8]) + (0) * (A.strides[1])], { A.strides[8], A.strides[1] } }, (struct exo_win_2f32){ (float*)&A.
                                   for (int j = 0; j < 4; j++) {</pre>
                                      for (int k = 0; k < 4; k++) {
                                          C.data[(7) * (C.strides[0]) + (j + 4) * (C.strides[1])] += A.data[(7) * (A.strides[0]) + (k) * (A.strides[1])] * A_t.data[(j + 4) * (A_t.strides[0]) + (k) * (A_t.strides[0])
                                   ે
                               } else
                                   if (i == 8) {
                                                                2; jo++) {
                                          GEBP_scheduled(ctx], (struct exo_win_2f32){ (float*)&A.data[(8) * (A.strides[0]) + (0) * (A.strides[1])], { A.strides[0], A.strides[1] } }, (struct exo_win_2f32){ (float*)&
                                       for (int j = 0; j < 1; j++) {
                                          for (int k = 0; k < 4; k++) {
                                              C.data[(8) * (C.strides[0]) + (j + 8) * (C.strides[1])] += A.data[(8) * (A.strides[0]) + (k) * (A.strides[1])] * A_t.data[(j + 8) * (A_t.strides[0]) + (k) * (A_t.strides[0])
                                   } else {
                                      if (i == 9) {
                                                                     2; jo++) {
                                              GEBP_scheduled(ctx, (struct exo_win_2f32){ (float*)&A.data[(9) * (A.strides[0]) + (0) * (A.strides[1])], { A.strides[0], A.strides[1] } }, (struct exo_win_2f32){ (float*
                                           for (int j = 0; j < 2; j++) {</pre>
                                              for (int k = 0; k < 4; k++) {
                                                   C.data[(9) * (C.strides[0]) + (j + 8) * (C.strides[1])] += A.data[(9) * (A.strides[0]) + (k) * (A.strides[1])] * A_t.data[(j + 8) * (A_t.strides[0]) + (k) * (A_t.strides[0
```

2. Easy Kernel Generation for Hardware

Step 1: Hardware Backend

Mapping kernel to hardware done with **hardware intrinsics** specified by **equivalent Python code**

HW architecture specifiable in **~1kLoC**, in **user-written file** (suitable for new/proprietary architectures)

```
# FMA
```

Step 1: Hardware Backend

Step 2: Code substitution

Use code substitution

instructions (similar to how we embedded GEBP kernel earlier) in scheduling to generate HW intrinsics in code.

Transformation **formally guaranteed** to be **equivalent** to original code.

```
def generate_microkernel(kernel, N_reg, M_reg, K_blk):
        if N_reg%4:
                raise Exception(f"Error: N_req must be a multiple of 4, got {N_reg}")
        return (kernel
                .partial_eval(M_reg,N_reg)
                .partial_eval(K=K_blk)
                .reorder('j','k')
                .reorder('i','k')
                .split('j', 4, ['jo','ji'], perfect=True)
                .par_to_seg('for k in _: _')
                .stage_assn('C_reg', 'C[_] += _')
                .lift_alloc('C_reg : _', n_lifts=4)
                .double_fission('C_reg[_] = C[_]', 'C_reg[_] += _', n_lifts=4)
                .replace(neon_vld_4xf32, 'for ji in _: _ #0')
                .replace(neon_vst_4xf32, 'for ji in _: _ #1')
                .set_memory('C_reg', Neon4f)
                .stage_expr('A_vec', 'A[_,_]', memory=Neon4f)
                .stage_expr('B_vec', 'B[_,_]', memory=Neon4f)
                .replace_all(neon_vld_4xf32)
                .replace_all(neon_broadcast_4xf32)
                .replace_all(neon_vfmadd_4xf32_4xf32)
                .lift_alloc('A_vec : _', n_lifts=2)
                .fission_after('neon_broadcast_4xf32(_)', n_lifts=2)
                .lift_alloc('B_vec : _', n_lifts=2)
                .fission_after('neon_vld_4xf32(_) #1', n_lifts=2)
                .simplify())
```

Step 2: Code substitution

Use code substitution

instructions (similar to how we embedded GEBP kernel earlier) in scheduling to generate HW intrinsics in code.

Transformation **formally guaranteed** to be **equivalent** to original code.

```
erate microkernel(kernel, N reg. M reg. K blk)
     vaise Exception(f"Error: N reg must be a multiple of 4. got {N reg}"
     partial eval(M reg.N reg)
            , ['jo','ji'], perfect=True]
          oid neon_microkernel( c_code_str_Context *ctxt, struct exo_win_2f32 A,
                                   struct exo_win_2f32 B, struct exo_win_2f32 C ) {
        EX0_ASSUME(A.strides[1] == 1);
     rep
        EX0_ASSUME(B.strides[1] == 1);
        EX0_ASSUME(C.strides[1] == 1);
        float32x4_t C_reg[4][4];
        for (int i = 0; i < 4; i++) {
          for (int jo = 0; jo < 4; jo++) {</pre>
     .fis:
             C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
        for (int k = 0: k < 128: k++) {
           float32x4_t A_vec[4];
           for (int i = 0; i < 4; i++) {
             A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
           float32x4_t B_vec[4];
           for (int jo = 0; jo < 4; jo++) {</pre>
             B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
           for (int i = 0; i < 4; i++) {</pre>
             for (int jo = 0; jo < 4; jo++) {</pre>
               C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
        for (int i = 0; i < 4; i++) {
           for (int jo = 0; jo < 4; jo++) {</pre>
             vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
```

This generates a microkernel with vector intrinsics

Step 2: Code substitution

This can be **repeated** for any new piece of hardware to generate **hardwarespecific microkernels**

3. Simplified microkernel optimization

Optimizing Performance

- Explore scheduling parameter space **easily** by using scheduling instructions to **programmatically generate code with optimizations**.
 - Removes tedium of implementing optimized code (e.g. hand-coding edge cases for tilings)
 - Formally verified correctness of transforms means no need to debug optimized code's functionality – faster iteration

```
Example: tuning register sizes
    generate_sgemm_microkernel(kernel=SGEMM_ N_reg=16, M_reg=4, K_blk=128)
                                                                                                 generate_sgemm_microkernel(kernel=SGEMM, N_reg=32, M_reg=4, K_blk=64)
 void neon_microkernel( c_code_str_Context *ctxt, struct exo_win_2f32 A,
                                                                                             void neon_microkernel( c_code_str_Context *ctxt, struct exo_win_2f32 A,
                                                                                                                     struct exo_win_2f32 B, struct exo_win_2f32 C ) {
                         struct exo_win_2f32 B, struct exo_win_2f32 C ) {
 EX0_ASSUME(A.strides[1] == 1);
                                                                                             EX0_ASSUME(A.strides[1] == 1);
 EX0_ASSUME(B.strides[1] == 1);
                                                                                             EX0_ASSUME(B.strides[1] == 1);
 EX0_ASSUME(C.strides[1] == 1);
                                                                                             EX0_ASSUME(C.strides[1] == 1);
 float32x4_t C_reg[4][4]:
                                                                                             float32x4_t C_reg[4][8];
 for (int i = 0; i < 4; i++) {
                                                                                             for (int i = 0; i < 4; i++) {
   for (int jo = 0; jo < 4; jo++) {</pre>
                                                                                               for (int jo = 0; jo < 8; jo++) {</pre>
     C_req[i][jo] = vld1q_f32(&0.data[(i) * (0.strides[0]) + (4 * jo) * (0.strides[1])]);
                                                                                                 C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
 for (int k = 0; k < 128; k++) {
                                                                                              for (int k = 0; k < 64; k++) {
   float32x4_t A_vec[4];
                                                                                               float32x4_t A_vec[4];
   for (int i = 0; i < 4; i++) {
                                                                                               for (int i = 0; i < 4; i++) {</pre>
     A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
                                                                                                 A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
   float32x4_t B_vec[4];
                                                                                               float32x4_t B_vec[8];
   for (int jo = 0; jo < 4; jo++) {</pre>
                                                                                               for (int jo = 0; jo < 8; jo++) {</pre>
     B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
                                                                                                 B_vec[jo] = vld1q_f32(\&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
   for (int i = 0; i < 4; i++) {</pre>
                                                                                               for (int i = 0; i < 4; i++) {</pre>
     for (int jo = 0; jo < 4; jo++) {</pre>
                                                                                                 for (int jo = 0; jo < 8; jo++) {</pre>
       C_reg[i][jo] = vmlag_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
                                                                                                   C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
 for (int i = 0; i < 4; i++) {
                                                                                             for (int i = 0; i < 4; i++) {</pre>
   for (int jo = 0; jo <_4:_jo++) {</pre>
                                                                                               for (int jo = 0; jo < 8; jo++) {</pre>
     vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
                                                                                                 vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
```

• I generated 64 microkernels using Exo

```
void gebp_edge_neon_microkernel_1x32( c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C ) {
               EX0_ASSUME(A.strides[1] == 1);
        Qer EX0_ASSUME(B.strides[1] == 1);
EX0_ASSUME(C.strides[1] == 1);
               float32x4_t C_reg[64][8];
               for (int i = 0; i < 64; i++) {</pre>
                 for (int jo = 0; jo < 8; jo++) {</pre>
                    C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
                for (int k = 0; k < 64; k++) {
                 float32x4_t A_vec[64];
                 for (int i = 0; i < 64; i++) {</pre>
                    A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
                  }
                 float32x4_t B_vec[8];
                 for (int jo = 0; jo < 8; jo++) {</pre>
                   B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
                 for (int i = 0; i < 64; i++) {</pre>
                    for (int jo = 0; jo < 8; jo++) {</pre>
                      C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
                    }
                for (int i = 0; i < 64; i++) {</pre>
                 for (int jo = 0; jo < 8; jo++) {</pre>
                    vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
                  }
```

I generated 64 microkernels using Exo ightarrow

sts ppm.sep_ens.ctreaser(1) = 0.1 (...com_str_Gottat ext, iterat es.sts.272 i, struct e

```
void gebp_edge_neon_microkernel_1x16( c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C ) {
                       EX0_ASSUME(A.strides[1] == 1);
                       EX0_ASSUME(B.strides[1] == 1);
                      EX0_ASSUME(C.strides[1] == 1);
gener
                       float32x4_t C_reg[64][4];
                       for (int i = 0; i < 64; i++) {</pre>
                         for (int jo = 0; jo < 4; jo++) {</pre>
                           C_req[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
     C_reg[i][jo] = vld1q_f32(60.data[(i)
                       for (int k = 0; k < 64; k++) {
                         float32x4_t A_vec[64];
                         for (int i = 0; i < 64; i++) {</pre>
     for (int i = 0; i < 04; i++) {
for (int jo = 0; jo < 8; jo++) {
    C_reg[i][jo] = vmlaq_f32(C_reg[i][j
                           A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
                         float32x4_t B_vec[4];
      vstlg_f32(60.date[(i) * (0.strides[0]
                         for (int jo = 0; jo < 4; jo++) {</pre>
                           B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
                         ્ર
                         for (int i = 0; i < 64; i++) {
                           for (int jo = 0; jo < 4; jo++) {</pre>
                             C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
                           }
                      for (int i = 0; i < 64; i++) {</pre>
                         for (int jo = 0; jo < 4; jo++) {</pre>
                           vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
                         }
```

I generated 64 microkernels using Exo ightarrow

wids dms_seq_sens_indexeased_list(c_com_str_Content ex:t, itrust en_std_272 #, itrust en

```
void gebp_edge_neon_microkernel_1x8( c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C ) {
                       EX0_ASSUME(A.strides[1] == 1);
                       EX0_ASSUME(B.strides[1] == 1);
Qene EX0_ASSUME(C.strides[1] == 1);
                        float32x4_t C_reg[64][2];
    void gebp_edge_nesn_microkernet_1x32( c_c) for (int i = 0; i < 64; i++) {</pre>
                          for (int jo = 0; jo < 2; jo++) {</pre>
                            C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
                          }
     C_reg[i][jo] = vld1q_f32(6C.data[(i)
                       for (int k = 0; k < 64; k++) {
                          float32x4_t A_vec[64];
                          for (int i = 0; i < 64; i++) {</pre>
                            A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
                          float32x4_t B_vec[2];
                          for (int jo = 0; jo < 2; jo++) {</pre>
      vstlo_f32(6C,data[(i) * (C,strides[0]
                            B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
                          }
                          for (int i = 0; i < 64; i++) {</pre>
                            for (int jo = 0; jo < 2; jo++) {</pre>
                              C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
                        for (int i = 0: i < 64: i++) {</pre>
                          for (int jo = 0; jo < 2; jo++) {</pre>
                            vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
```

I generated 64 microkernels using Exo igodol

mid photosequence.storestaron1.http://dom/st victo, stroit exe.sth.2722 /, stroit exe.

void man_peng_aven_diseawer_llabid (_com__int__fonted versi, intred ma_sis_JPI2), street ma_sis_JPI2), ma_sisme(-version[] = 1); ma_sisme(-version[] = 1

function = 0; i < 64; i++) {
 A_vec[i] = vid[q,dup_f12(60,data[(i) * (0.strides[0]) + (k) * (0.strides[1])]);
}</pre>

Tlasf25%_5 B_vec[4]; for (int js = 0; js < 4; jo++) { B_vec[js] = vldig_f25(&=.data[(k) * (8.strides[8]) + (4 * js) * (8.strides[1])];

for (int i = 0; i < 64; i*+) {
 for (int jo = 0; jo < 4; jo++) {
 C_reg[i][jo] = vmlag_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
}</pre>

} for (int i= 0; i < 64; i++) { for (int j= 0; j< 4; j=++) { vstig_f32(6c.deta[(i) + (0.strides[0]) + (4 + j=) + (0.strides[1])], C_reg[i][j=]); } 200_ASSUMP(.strides[1] = 1); RantXvi_t_c_reg(46[2]); For (int i = 0; i < 44; i=) { for (int i = 0; i < 42; i=) { for (int i = 0; i < 0; 2; 2; 2; 1) { c_reg[1][5] = vida_cf2(62,63ta][1] * (C.strides[0]) + (4 * je) * (C.strides[1])]

r (int k = 0; k < 64; k++) { float32x4_t A_vec[64]; for (int i = 0; i < 64; i++) { A_vec[i] = vind_nov_f37(6A.data[(i) + (A.strides[0]) + (k) + (A.strides[1])]);

lost32x4_t 8_vec[2]; sr (int jo = 8; jo < 2; jo++) { 8.vec[i] = v(als.f22(60.data[{k} ≠ (0.strides[0]) + (4 × jo) * (0.strides[1])]);

sr (int i = 0; i < 64; i++) {
for (int jo = 0; jo < 2; jo++) {
 C_reg[i](jo] = vmtaq_f32(C_reg[i](jo], A_vec[i], B_vec[jo]);
 C_reg[i](jo] = vmtaq_f32(C_reg[i](jo], A_vec[i], B_vec[jo]);
</pre>

} for (int i = 0; 1 < 64; i++) { for (int jo = 0; jo < 2; jo++) { vstlq.r32(60.data[(i) * (0.strides[0]) + (6 * jo) * (0.strides[1])], C_reg[i][jo]])

```
void gebp_edge_neon_microkernel_1x60( c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C ) {
                      EX0_ASSUME(A.strides[1] == 1);
          Gener EX0_ASSUME(B.strides[1] == 1);
EX0_ASSUME(C.strides[1] == 1);
    void gebp_edge_nesn_microkernel_1x32( c_co float32x4_t C_reg[64][15];
                      for (int i = 0; i < 64; i++) {</pre>
                        for (int jo = 0; jo < 15; jo++) {</pre>
                          C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
     A_vec[i] = vldlq_dup_f32(6A.data[(i) *
                      for (int k = 0; k < 64; k++) {
                        float32x4_t A_vec[64];
     for (int i = 0; i < 64; i++) {</pre>
                          A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
      vstlo_f32(6C,data[(i) * (C,strides[8])
                        float32x4_t B_vec[15];
                        for (int jo = 0; jo < 15; jo++) {</pre>
                          B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
                        3
                        for (int i = 0; i < 64; i++) {</pre>
                          for (int jo = 0; jo < 15; jo++) {</pre>
                            C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
                        }
                      for (int i = 0; i < 64; i++) {</pre>
                        for (int jo = 0; jo < 15; jo++) {</pre>
                          vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
                        }
                      }
                      7
```

I generated 64 microkernels using Exo \bullet

<pre>void gebp_edge_mean_microkernel_1x32(c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2t EXO_ASSUME(A.strides(1) == 1);</pre>
<pre>EX0_ASSUME(0.strides[1] == 1);</pre>
EX0_ASSUME(C.strides[1] == 1);
float32x4_t C_reg[64][8];
for (int i = 0; i < 64; i++) {
for (int jo = 8; jo < 8; jo++) {
C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]); }
float32x4_t A_vec[64];
<pre>A_vec[1] = vldlq_dup_f52(6A.data[(1) * (A.strides[8]) + (k) * (A.strides[1])]); }</pre>
float32x4_t B_vec[8];
for (int in = 0; in < 8; in++) {
B_vec[jo] = vld1q_f32(68.data[(k) + (8.strides[8]) + (4 + jo) + (8.strides[1])]);
for (int je = 0; je < 8; je++) {
C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
for (int i = 0; i < 64; i++) {
for (int jo = 8; jo < 8; jo++) {
vstlq_r32(60.data[[1] * (0.strides[0]) + (4 * jo] * (0.strides[1])], C_reg[1][jo]);

vii peg.app.mex.iteraered_life (_com_itr_Contert +tri, itruit exg.db_202 i, itruit exg.d

llasf25%_f B_vec[4]; for (int js = 0; js < 4; jo++) { B_vec[js] = vlaia_f25(&=.data[(k) * (8.strides[8]) + (4 * js) * (8.strides[1])]

for (int i = 0; i < 64; i++) { for (int jo = 0; jo < 4; jo++) { C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);

} for (int i = 0; i < d4; i +=) { for (int jo = 0; jo < 4; jo++) { | vstig_132(&C.deta[(i) * (C.strides[0]) + (4 * jo) + (C.strides[1])], C_reg[i][jo]); } void gebp_sdgs_mean_microkernel_lx8(c_code_str_Context Actxt, struct exo_min_2f52 Å, struct exo_min_2f52 Å, struct exo_min_2f52 Å, struct exo_min_2f52 Å) {
EX0_ASSUME(A.strides[1] == 1);

200_45309(C.Wride(1) = 1); Toattike:c=C-we(6)[0]; for (int 1 = 0; 1 < 46; i+) = 4 for (int jo = 0; jo < 2; jo+) { _Cregi(1)[j = x,0:x, 722(6:), dta((1) + (C.strides(0)) + (4 + jo) + (C.strides(1))

or (int k = 0; k < 66; k++) {
 flast32x4_t A_vec[64];
 for (int i = 0; i < 64; i++) {
 A_vec[1] + vin(a,ou,r32(6A,data[(1) + (A,strides[0]) + (k) + (A,strides[1])]);
 }
}

lost32x4_t B_vec[2]; sr (in: jo = 8; jo < 2; jo++) { B_vec[i] = vials.r32(68.data[(k) * (0.striges[0]) + (4 * jo) * (0.striges[1])]);

sr (int i = 8; i < 64; i++) {
for (int js = 0; js < 2; js++) {
 C_reg[i][js] = vmlag_f32(C_reg[i][js], A_vec[i], B_vec[js]);
</pre>

}
for (int i = 0; i < 64; i++) {
 for (int jo = 0; jo < 2; jo++) {
 vstiq_rf32(&G.dsta[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]).
 vstiq_rf32(&G.dsta[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]).
 }
}</pre>

```
wide despectations accesses to 100 (_sSSS,ST_CANTAK +RIC, STORT BALANCE 2, STORT BALAN
```

```
void gebp_edge_neon_microkernel_1x52( c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C ) {
                    EX0_ASSUME(A.strides[1] == 1);
QCN EX0_ASSUME(B.strides[1] == 1);
                    EX0_ASSUME(C.strides[1] == 1);
    void gebp_edge_neon_microkernel_1
                    float32x4_t C_reg[64][13];
                    for (int i = 0; i < 64; i++) {</pre>
                      for (int jo = 0; jo < 13; jo++) {</pre>
                         C_reg[i][jo] = vld1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
     \frac{|f_{00}(int j_0 = 0; k < 64; k++)}{|g_{vecj0}| = vid_{12}(s).data} for (int k = 0; k < 64; k++) {
                      float32x4_t A_vec[64];
      C regfilliol = ymlag f32(C
                      for (int i = 0; i < 64; i++) {
                         A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);
      vst10_f32(60.data[(i) * (0.st
                       float32x4_t B_vec[13];
                      for (int jo = 0; jo < 13; jo++) {</pre>
                         B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);
    void gebp_edge_neon_microkernel_1
                       for (int i = 0; i < 64; i++) {
                         for (int jo = 0; jo < 13; jo++) {</pre>
                           C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
    for (int jo = 8; jo < 15; jo++)

B_vec[jo] = vld1q_f32(68.data
     for (int i = 0; i < 64; i++) { for (int i = 0; i < 64; i++) {</pre>
                      for (int jo = 0; jo < 13; jo++) {</pre>
      C_reg[i][jo] = vmlaq_f32(C
                         vst1q_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
     vstin f32(&C.date[fi] * (C.st
```

I generated 64 microkernels using Exo \bullet

stat spin.seg.mes.streamers.ltp1 = 0.5(= 0.500 _cf _cons.str ext., streat es.sts.272 %, streat es.sts.272 %,

 $\begin{array}{l} \text{vist} a pis-sequence acceleration (1) = 0; \\ \text{explosited} (1$

rlost25%_t A_vec[60]; for (int i = 0; i < 64; i++) { _ A_vec[i] = vlol_dog_for_52(6A.dsta[(i) * (A.strides[0]) + (k) * (A.strides[1])]);

llasf25%_f B_vec[4]; for (int js = 0; js < 4; jo++) { B_vec[js] = vlaig_f25(8:.data[(k) * (8.strides[8]) + (4 * js) * (8.strides[i])]

for (int i = 0; i < 64; i++) {
 for (int jo = 0; jo < 4; jo++) {
 C_reg[i][jo] = vmlag_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);
</pre>

void gebp_sdgs_neon_microkernet_lx8(c_code_str_Context Actxt, struct exo_min_2f32 Å, struct exo_min_2f32 Å, struct exo_min_2f32 Å, struct exo_min_2f32 Å) {
EX0_ASSUME(A.strides[1] == 1);

lost32x4_t 8_vec[2]; sr (int jo = 8; jo < 2; jo++) { 8.vec[i] = v(alm.f32(68.data[(k) ★ (0.strides[0]) + (4 ★ 10) ★ (0.strides[1])])

r (int i = 8; i < 64; i++) { for (int jo = 0; jo < 2; jo++) { | C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);

}
for (int i = 0; i < 64; i++) {
 for (int jo = 8; jo < 2; jo++) {
 vstiq.f32(6c.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
 vstiq.f32(6c.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
 }
}</pre>

vsis projections.attervative.list().attervation.a

ł

	void gebp_edge_neon_microkernel_1x48(c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C) {	
	EXO_ASSUME(A.strides[1] == 1);	
laono	EX0_ASSUME(B.strides[1] == 1);	
i yene	EX0_ASSUME(0.strides[1] == 1);	
	float32x4_t C_reg[64][12];	
<pre>void gebp_edge_neon_microkernel_1x32(c, EX0_ASSUME(A.strides[1] == 1); EX0_ASSUME(8.strides[1] == 1);</pre>	for (int i = 0; i < 64; i++) {	ruct exo_win_
EX0_ASSUME(C.strides[1] == 1); float32x4_t C_reg[64][8];	for (int jo = 0; jo < 12; jo++) {	
<pre>for (int jo = 8; jo < 8; jo++) { C_reg[i][jo] = vld1q_f32(60.data[(i)) </pre>	C_reg[i][jo] = vld1q_f32(&0.data[(i) * (0.strides[0]) + (4 * jo) * (0.strides[1])]);	
	}	
float32x4_t A_vec[64]; for (int i = 8; i < 64; i++) {	}	
<pre>} float32x4_t 8_vec[8]; for (int io = 0; io < 8; io++) {</pre>	for (int k = 0; k < 64; k++) {	
<pre>B_vec[jo] = vldiq_f32(6B.data[(k) + } fer (int i = 8; i < 64; i++) f</pre>	float32x4_t A_vec[64];	
<pre>for (int jo = 0; jo < 8; jo++) { C_reg[i][jo] = vmlaq_f32(C_reg[i])</pre>	for (int i = 0; i < 64; i++) {	
	A_vec[i] = vld1q_dup_f32(&A.data[(i) * (A.strides[0]) + (κ) * (A.strides[1])]);	
<pre>for (int 1 = 0; 1 < 64; 1++) { for (int jo = 8; jo < 8; jo++) { vstlq_f32(60.data[(i) * (0.strides[)</pre>	}	
	float32x4_t B_vec[12];	
	for (int jo = 0; jo < 12; jo++) {	
	B_vec[jo] = vld1q_f32(&B.data[(k) * (B.strides[0]) + (4 * jo) * (B.strides[1])]);	
void gebp_edge_neon_microkernel_1x68(c,	}	
EX0_ASSUME(A.strides[1] == 1); EX0_ASSUME(0.strides[1] == 1); EX0_ASSUME(C.strides[1] == 1);	for (int i = 0; i < 64; i++) {	
float32x4_t C_reg[64][15]; for (int i = 0; i < 64; i++) {	for (int jo = 0; jo < 12; jo++) {	
C_reg[i][jo] = vldlq_f32(60.data[(i)	C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);	
<pre>} for (int k = 0; k < 64; k++) { float32x4_t A_vec[64];</pre>		
<pre>for (int i = 8; i < 64; i++) {</pre>		
<pre>float32x4_t 8_vec[15]; for (int jo = 8; jo < 15; jo++) { 8 vec[io] = vidio f32(60.data[(k) + </pre>		
} for (int i = 8; i < 64; i++) {	for (int i = 0; i < 64; i++) {	
C_reg[1][jo] = vmlaq_f32(C_reg[1]) }	for (int jo = 0; jo < 12; jo++) {	
	vstlq_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);	
<pre>for (int jo = 8; jo < 15; jo++) { vstlq_f32(&C.data[(i) * (C.strides[()) }</pre>		

I generated 64 microkernels using Exo \bullet

void gebp_edge_neon_microkernel_1x32(c_code_str_Context wotxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C) { C_reg[i][jo] = vld1q_f32(6C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]); A vec[i] = vldlo_dup_f32(64,data[(i) + (A,strides[0]) + (k) + (A,strides[1])]); C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]); vstlo_f32(60.data[(i) * (0.strides[0]) + (4 * io) * (0.strides[1])], 0.reg[i][io]);

void gebp_edge_neon_microkernel_1x68(c_code_str_Context *ctxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 G) { B_vec[jo] = vld1q_f32(68.data[(k) * (8.strides[0]) + (4 * jo) * (8.strides[1])]); vstin f32(60.dete[[i] * (0.strides[0]) + (4 * io) * (0.strides[1])]. 0 realil[io]);

void gebp_edge_meon_microkernel_ixi6(c_code_str_Context +otxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C) { C.reg[i][io] = vldlg_f32(60.data[(i) * (0.strides[0]) + (4 * io) * (0.strides[1])]);

A_vec[i] = vldlq_dup_f32(&A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);

for (int jo = 0; jo < 4; jo++) {
 vstiq_f32(&C.data[(3) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);
}</pre>

void gebp_edge_neon_microkernel_1x8(c_code_str_Context Actxt, struct exo_win_2f32 A, struct exo_win_2f32 B, struct exo_win_2f32 C) { EX0 ASSUME(A.strides[1] == 1)

A_vec[i] = vldiq_dup_f32(6A.data[(i) * (A.strides[0]) + (k) * (A.strides[1])]);

C_reg[i][jo] = vmlaq_f32(C_reg[i][jo], A_vec[i], B_vec[jo]);

vstlo_f32(&C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);

void mebbiedse neonimicrokernel 1852(c.code.str.Context wotxt, struct exc.win.2752 A, struct exc.win.2752 B, struct exc.win.2752 B) { vstiq_f32(60.data[(i) * (0.strides[8]) * (4 * jo) * (0.strides[1])], 0_reg[i][jo]);

void gebp_edge_meen_microkernel_1x48(c_code_str_Context *ctxt, struct exo_min_2f32 A, struct exo_min_2f32 B, struct exo_min_2f32 C) { for (int jo = 8; jo < 12; jo++) {
 C.rea[i][jo] = v[d10_f32(&C.dsta[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])]);
}</pre> vstlg_f32(6C.data[(i) * (C.strides[0]) + (4 * jo) * (C.strides[1])], C_reg[i][jo]);

Implications

- Generate procedures reusable across the level 3 BLIS: only need to optimize GEMM
- Define hardware interfaces by writing equivalent code: easier generation of HW-specific microkernels
- Easily **re-generate** microkernels with **different parameters:** simplifies tuning for hardware-dependent optimal performance

Implications

• The workflow now becomes...

• Make BLIS even more portable with Exo!

70% of peak on SGEMM on AWS Graviton (with ARM Neon) in 300 lines of code
Future Work

- Add support for various precision BLAS operations and data layouts (dgemm, cgemm)
- Implement remaining BLAS3 operations (TRMM, TRSM, SYR2K, etc.) and extend to BLAS2
- Autotuner integration
- Code generation for non-performance reasons (e.g. improved exception handling)

Thanks for listening! Questions?

Julian Bellavita: jbellavita@berkeley.edu Grace Dinh: gnd@berkeley.edu

Thanks to: Gilbert Bernstein, James Demmel, Yuka Ikarashi, Alex Reinking, and many others