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Cambrian explosion in 
hardware architectures



What runs on these chips?
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Introduction

• Strong demand for performant 
matrix/tensor kernels (including 
BLIS) on novel architectures


• Both cost of implementation per 
architecture and number of new 
architectures increasing rapidly
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Cost breakdown of developing new chips.

Image source: https://semiengineering.com/how-much-will-that-chip-cost/

Software cost



What makes performant kernels hard to implement?

• Tedious, difficult to debug, and requires extensive experimentation 
and tuning


• Hardware-specific optimizations (and knowledge of HW architecture) 
often required


• Few performance programming experts
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Ease of implementation and portability between architectures critical!



The story so far…
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Performance-critical code
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Performance-critical code

}→GEMM

}→SYRK
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BLAS routines

SYRK

GEMM
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BLAS routine

SYRK

With BLIS… implement as 
scaffolding + architecture-
specific microkernel
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BLAS routine

SYRK

With BLIS… implement as 
scaffolding + architecture-
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BLIS Microkernel



The story so far…
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Hardware-specific 
implementation.


BLIS 
Microkernel



The story so far…
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Hardware-specific 
implementation.


BLIS 
Microkernel



The story so far…

15

Hardware-specific implementation - still time-
consuming to optimize!

BLIS 
Microkernel

Image source: The Deep Learning Compiler: A Comprehensive Survey (Li et. al ‘20), https://arxiv.org/abs/2002.03794 
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How do we make writing 
microkernels easier? 
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Code generation

• Instead of writing hand-optimized code, have the compiler do it for you.


• Compiler optimizations (-O3, -Ofast in GCC/clang, etc.)


• How do you control them or optimize them for new hardware?


• Write your own compiler (or fork an existing one)… if you have the 
compiler experts to build and maintain it.
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An Optimizing Compiler

Program 
description (“what 
do you compute?”)

Optimization decisions 
(“how do you optimize it?”)

IR representation Transformed IR

Output Code (machine code, CUDA, etc.)

Problems still there - just

moved inside compiler

New optimizations

Needs experts in 
algos and compilers

New/changed 
hardware Needs experts in HW 

and compilers

Performance 
debugging

inscrutable IR

black-box optimizing compiler



user-schedulable compiler

User Scheduling

Program 
description (“what 
do you compute?”)

Optimization decisions 
(“how do you optimize it?”)

IR representation Transformed IR

Output Code (machine code, CUDA, etc.)



User-schedulable compilers

• Halide (Ragan-Kelley et al. PLDI ’13), TVM (Chen et al. OSDI ’18), Rise/Elevate 
(Hagedorn et al. ICFP ‘20), etc.


• Not suited for BLIS/new HW application:


• difficulty of writing HW backends


• aimed at different domains (image processing, ML graphs)


• not designed for library kernels (e.g. TVM prefers numpy ndarray input) 
or interoperability with existing flows
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Exo: a user-schedulable compiler 
for the accelerator era
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Simple application code



Simple application code
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Human- 
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Optimized Code

Simple application code
HW-specific schedule

Human- 

written 


schedule

Model-

based 


optimizer

Autotuner + 
crowdsourced 

perf data

HW backend



Why Exo?

• Quickly implement, experiment with, and iterate on fast code targeting varied 
architectures.


• Generates C(++) with HW intrinsics: fully embeddable as libraries, compatible 
with C-based workflows


• Simple definition of HW backends separate from compiler (easily add new 
architectures, separate proprietary architectures from compilers)


• Allows reuse of code optimizations across multiple operations
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Here’s how.
32

one 
undergrad

six 
weeks

Exo
70% of peak 
on 3 L3 BLIS 

routines.
+ + =



1. Extensive use of re-usable kernels
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The BLIS approach

• Cast BLAS ops in terms of reusable GEMM kernel (Goto and Van de Geijn)
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Microkernel: Areg[mreg,kblk]×Breg[kblk,nreg]

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]

GEPP: Apanel[m,kblk]×Bblk[kblk,n]



The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel


• Example: SYRK (symmetric rank-K update) on lower-triangular part of C
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Modified GEPP procedure writes 
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]
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Modified GEPP procedure writes 
to varied-length panels of C

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]

Updating a single row looks like 
this



The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel


• Example: SYRK (symmetric rank-K update) on lower-triangular part of C
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GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]



The BLIS approach

• All level 3 BLIS operations expressible in terms of GEPP, GEBP, and microkernel


• Example: SYRK (symmetric rank-K update) on lower-triangular part of C
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Update left panel with GEBP


Middle square (diagonal) is an edge case 


Do nothing for the right panel

GEBP: Ablk[mblk,kblk]×Bblk[kblk,n]GEPP: Apanel[m,kblk]×Bblk[kblk,n]



The GEBP kernel

Vanilla SGEMM…
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The GEBP kernel

Vanilla SGEMM…
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…with scheduling instructions

Refine to a specific block size

Tile loops Split off edge cases

Reorder loops

Substitute in optimized 
microkernel
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The GEBP kernel

Vanilla SGEMM…
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…with scheduling 
instructions

Refine to a specific kernel size

Tile loops Split off edge cases

Reorder loops

Substitute in optimized 
microkernel

…generates an optimized kernel…



The GEBP kernel
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…generates an 
optimized 
kernel…

…that can be called or inlined (e.g. in SYRK)



2. Easy Kernel Generation for 
Hardware
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Step 1: Hardware Backend

Mapping kernel to hardware done with hardware 
intrinsics specified by equivalent Python code


HW architecture specifiable in ~1kLoC, in user-written 
file (suitable for new/proprietary architectures)
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Step 1: Hardware Backend
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This HW 
instruction…

…operating on Neon 
vector registers…

…is equivalent to 
this Python code!



Step 2: Code substitution

Use code substitution 
instructions (similar to how we 
embedded GEBP kernel earlier) in 
scheduling to generate HW 
intrinsics in code.


Transformation formally 
guaranteed to be equivalent to 
original code.
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52This generates a microkernel with vector intrinsics



Step 2: Code substitution

This can be repeated for any new piece of hardware to generate hardware-
specific microkernels
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3. Simplified microkernel optimization
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Optimizing Performance

• Explore scheduling parameter space easily by using scheduling instructions 
to programmatically generate code with optimizations.


• Removes tedium of implementing optimized code (e.g. hand-coding edge 
cases for tilings)


• Formally verified correctness of transforms means no need to debug 
optimized code’s functionality - faster iteration
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Example: tuning register sizes
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A more extreme example

● I generated 64 microkernels using Exo
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Implications

• Generate procedures reusable across the level 3 BLIS: only need to optimize 
GEMM


• Define hardware interfaces by writing equivalent code: easier generation of 
HW-specific microkernels


• Easily re-generate microkernels with different parameters: simplifies 
tuning for hardware-dependent optimal performance 
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Implications

● The workflow now becomes…


● Make BLIS even more portable with Exo!
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Write  Hardware Backend Generate microkernel Benchmark

Repeat if poor performance
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70% of peak on SGEMM on 
AWS Graviton (with ARM Neon) 

in 300 lines of code



Future Work

• Add support for various precision BLAS operations and data layouts 
(dgemm, cgemm)


• Implement remaining BLAS3 operations (TRMM, TRSM, SYR2K, etc.) and 
extend to BLAS2


• Autotuner integration


• Code generation for non-performance reasons (e.g. improved 
exception handling)
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Thanks for listening!

Questions?
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Julian Bellavita: jbellavita@berkeley.edu

Grace Dinh: gnd@berkeley.edu


Thanks to: Gilbert Bernstein, James Demmel, Yuka Ikarashi, Alex Reinking, and many others 
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