
Low Precision GEMM

Mithun Mohan K M, Nallani Bhaskar, Eashan Dash,

HariharaSudhan S

2 |

[Public]

Contents

Introduction

LPGEMM APIs

Instruction friendly packing

Matrix reordering

LPGEMM Reorder APIs

Reordered matrix access in multi-threaded LPGEMM

Clubbing math operations with LPGEMM

Q&A

3 |

[Public]

Introduction

• AOCL (AMD optimizing CPU Libraries) is AMD’s CPU Math Library tuned for AMD processors.

• AOCL-BLAS is a fork of BLIS library optimized as part of AOCL.

• Problem Statement:

• Low Precision GEMM (LPGEMM) is not available as part of BLIS.
• Used within this context as a blanket term for GEMM for integer (int8/int16/int32) and half precision floating point (bfloat16/float16) datatypes.

• Performing math operations along with GEMM (as part of a sequence/pipeline) is inefficient due to separate calls to

each operation.
• Results in inefficient reuse of cached memory.

• Solution:

• An addon (BLIS feature) based solution to enable multiple LPGEMM APIs/computations.

• An extensive framework to support clubbing math operations along with LPGEMM.
• Framework level support to setup the operations to perform along with the relative order after LPGEMM.

• Supporting the math operation computation inside the LPGEMM micro-kernel.

4 |

[Public]

LPGEMM APIs

LPGEMM API typeof(A) typeof(B) Accumulation Type typeof(C) Instruction type

aocl_gemm_u8s8s32os32 uint8_t int8_t int32_t int32_t AVX512

aocl_gemm_u8s8s32os8 uint8_t int8_t int32_t int8_t AVX512

aocl_gemm_s8s8s32os32 int8_t int8_t int32_t int32_t AVX512

aocl_gemm_s8s8s32os8 int8_t int8_t int32_t int8_t AVX512

aocl_gemm_u8s8s16os16 uint8_t int8_t int16_t int16_t AVX2

aocl_gemm_u8s8s16os8 uint8_t int8_t int16_t int8_t AVX2

aocl_gemm_s8s8s16os16 int8_t int8_t int16_t int16_t AVX2

aocl_gemm_s8s8s16os8 int8_t int8_t int16_t int8_t AVX2

aocl_gemm_bf16bf16f32of32 bfloat16 bfloat16 float float AVX512

aocl_gemm_bf16bf16f32obf16 bfloat16 bfloat16 float bfloat16 AVX512

aocl_gemm_f32f32f32of32 float float float float
AVX512 / AVX2

5 |

[Public]

Instruction friendly packing

• GEMM packing usually done as per the micro-kernel dimensions and 5 loop structure.

• In LPGEMM, packing further re-arranges data to leverage the fused operations provided by integer

instructions.

• Example:

• The aocl_gemm_u8s8s16os16 micro-kernel is implemented using VPMADDUBSW instruction.

• VPMADDUBSW instruction works on 2 elements along the k dimension at a time.

• B matrix packed further (apart from KCxNR in KCxNC panel) to have 2 elements along K dimension for each

element in NR.

6 |

[Public]

Matrix reordering

• Matrix reordering refers to packing the entire matrix (and then performing GEMM).

• One or both A & B matrix can be reordered and cached for reuse across multiple LPGEMM calls.

• Only B reordering is supported for now.

• Helps hide packing costs.

NR NR

KC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

KC 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

k =

2KC

NC NC

n = 2NC

Unpacked

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Packed

R
E
O
R
D
E
R

7 |

[Public]

LPGEMM Reorder APIs

LPGEMM REORDER API typeof(matrix)

aocl_get_reorder_buf_size_u8s8s32os32

aocl_get_reorder_buf_size_s8s8s32os32

aocl_get_reorder_buf_size_u8s8s16os16

aocl_get_reorder_buf_size_s8s8s16os16

aocl_get_reorder_buf_size_bf16bf16f32of32

aocl_get_reorder_buf_size_f32f32f32of32

aocl_reorder_u8s8s32os32 uint8_t/int8_t

aocl_reorder_s8s8s32os32 int8_t

aocl_reorder_u8s8s16os16 uint8_t/int8_t

aocl_reorder_s8s8s16os16 int8_t

aocl_reorder_bf16bf16f32of32 bfloat16

aocl_reorder_f32f32f32of32 float

8 |

[Public]

Reordered matrix access in multi-threaded LPGEMM

• Matrix reordering is implemented as a multi-threaded operation.

• Reordering can be done with x threads whereas LPGEMM can be computed using y threads:

• Reordered matrix access (write in reorder API / read in LPGEMM 5 loop) should be consistent irrespective of the

number of threads used.

• This invariant held by ensuring access to reorder matrix happens as if it is single threaded.

• Example using jc loop with 3 threads:

Current: Per thread jc loop access when B matrix packed on

the go inside 5 loop.

Proposed: Per thread jc loop access when B matrix is

reordered.

9 |

[Public]

Clubbing math operations with LPGEMM

• 2 phase design used to support computing math operations after LPGEMM computation

• Phase 1 – Framework level:

• User supplies a struct describing the operations to perform to the LPGEMM API.

• The struct is converted to a linked list of operations, with each node corresponding to an operation.

10 |

[Public]

Clubbing math operations with LPGEMM (cont.)

• 2 phase design used to support computing other operations after LPGEMM computation

• Phase 2 – Micro-Kernel level:

• Math operations applied within micro-kernel on the registers immediately after LPGEMM results(C = alpha*A*B +

beta*C) are computed.

• Example for 6x64 micro-kernel (24 ZMM/512-bit registers) used in aocl_gemm_u8s8s32os32 with Op1 and Op2

applied.

ZMM0 ZMM1 ZMM2 ZMM3 ZMM0 ZMM1 ZMM2 ZMM3

ZMM4 ZMM5 ZMM6 ZMM7 ZMM4 ZMM5 ZMM6 ZMM7

ZMM8 ZMM9 ZMM10 ZMM11 Op1 ZMM24 Op2 ZMM25 = ZMM8 ZMM9 ZMM10 ZMM11

ZMM12 ZMM13 ZMM14 ZMM15 ZMM12 ZMM13 ZMM14 ZMM15

ZMM16 ZMM17 ZMM18 ZMM19 ZMM16 ZMM17 ZMM18 ZMM19

ZMM20 ZMM21 ZMM22 ZMM23 ZMM20 ZMM21 ZMM22 ZMM23

NR

MR

11 |

[Public]

12 |

[Public]12

COPYRIGHT AND DISCLAIMER

©2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Low Precision GEMM
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: LPGEMM APIs
	Slide 5: Instruction friendly packing
	Slide 6: Matrix reordering
	Slide 7: LPGEMM Reorder APIs
	Slide 8: Reordered matrix access in multi-threaded LPGEMM
	Slide 9: Clubbing math operations with LPGEMM
	Slide 10: Clubbing math operations with LPGEMM (cont.)
	Slide 11
	Slide 12
	Slide 13

