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Introduction

• The Euclidean norm (or vector-2 norm) of a vector             ,  is the function defined as 

• For complex numbers, the absolute value of                  is defined as                                , so computing the 

norm of    is equivalent of the norm of computing a real vector    with twice the size, as shown below

 

• Used in error analysis, Singular Value Decomposition (SVD) and eigenvalue solvers.
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Overflow and Underflow in Norm Computation

• Let     be the largest positive floating-point number. Then, for any positive number    , such that                 , 

will overflow.

For example, for x = 1e+200, x*x = inf on double precision.

• Let     be the smallest positive floating-point number. Then, for any positive number   , such that               , 

will underflow.

    For example, for x = 1e-200, x*x = 0 on double precision.

• A simple fix to avoid overflow is scaling all elements using the maximum vector element. That is, if 

, then the norm of x can be computed as 

• Similarly, there is a fix to avoid underflow and the two fixes can be combined to compute the norm 

accurately.
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Initial Implementation and Limitations

• Initial implementation of Euclidean norm is based on ?lassq() and uses the sum of squares in a scaled form.

• Norm is computed as                                 , where             and                  are set, before iterating through the 

elements of    . 

• For each  , we compare      to     , and update scale to have the maximum value of       .

• Since we compare and update  at each iteration, there is a dependency between the  -th element and the 

(  -1)-th element, through  .

• This algorithm uses many divisions, which are relatively expensive.

Parallelizing this algorithm is not trivial.
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Blue’s Algorithm

• Iterate through the elements of     and compute the sums as follows

: accumulator for large values, using scaling to avoid overflow

: accumulator for small values, using scaling to avoid underflow

: accumulator for medium values

• If there are only medium values, then                        .

• If there are large values, scale medium value accumulator and compute the norm.

• Similarly, for small values when large values are not present.

• The scalars               and      are computed using machine constants.

Since the thresholds and the scaling factors are independent of the elements of x, the 

iterations are independent, and parallelizing this algorithm is easier.



7 |

[Public]

AVX2 Implementation of Blue’s Algorithm 

• Since the operations for each element of the vector are independent, we can use vectorization.

• Use partial sums for each of the                               to optimize further.

• Use masks and blend operations to compute the partial sums correctly.
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Benchmark Results
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Final Notes

• For complex numbers, we use the same algorithm on a vector y with double the size of x.

• For simplification, the details of NaN and Inf checks have been omitted, but they are implemented using 

AVX2 intrinsics.

• Overflow and underflow is being handled correctly through scaling.

• Only AVX2 intrinsics have been used, no OpenMP parallelism.

Reference

J.L. Blue, "A portable Fortran program to find the Euclidean norm of a vector", in ACM Transactions on 

Mathematical Software (TOMS), 4(1), pp.15-23, 1978.
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DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information contained herein is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limi ted to product and roadmap 

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software 

changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD 

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such 

revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY 

INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL 

AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 
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