
Performance Improvements of ?nrm2

Eleni Vlachopoulou

AMD

2 |

[Public]

Agenda

Introduction to Euclidean Norm

Initial Implementation and Limitations

New Implementation using Old Algorithms

Q&A

3 |

[Public]

Introduction

• The Euclidean norm (or vector-2 norm) of a vector , is the function defined as

• For complex numbers, the absolute value of is defined as , so computing the

norm of is equivalent of the norm of computing a real vector with twice the size, as shown below

• Used in error analysis, Singular Value Decomposition (SVD) and eigenvalue solvers.

4 |

[Public]

Overflow and Underflow in Norm Computation

• Let be the largest positive floating-point number. Then, for any positive number , such that ,

will overflow.

For example, for x = 1e+200, x*x = inf on double precision.

• Let be the smallest positive floating-point number. Then, for any positive number , such that ,

will underflow.

 For example, for x = 1e-200, x*x = 0 on double precision.

• A simple fix to avoid overflow is scaling all elements using the maximum vector element. That is, if

, then the norm of x can be computed as

• Similarly, there is a fix to avoid underflow and the two fixes can be combined to compute the norm

accurately.

5 |

[Public]

Initial Implementation and Limitations

• Initial implementation of Euclidean norm is based on ?lassq() and uses the sum of squares in a scaled form.

• Norm is computed as , where and are set, before iterating through the

elements of .

• For each , we compare to , and update scale to have the maximum value of .

• Since we compare and update at each iteration, there is a dependency between the -th element and the

(-1)-th element, through .

• This algorithm uses many divisions, which are relatively expensive.

Parallelizing this algorithm is not trivial.

6 |

[Public]

Blue’s Algorithm

• Iterate through the elements of and compute the sums as follows

: accumulator for large values, using scaling to avoid overflow

: accumulator for small values, using scaling to avoid underflow

: accumulator for medium values

• If there are only medium values, then .

• If there are large values, scale medium value accumulator and compute the norm.

• Similarly, for small values when large values are not present.

• The scalars and are computed using machine constants.

Since the thresholds and the scaling factors are independent of the elements of x, the

iterations are independent, and parallelizing this algorithm is easier.

7 |

[Public]

AVX2 Implementation of Blue’s Algorithm

• Since the operations for each element of the vector are independent, we can use vectorization.

• Use partial sums for each of the to optimize further.

• Use masks and blend operations to compute the partial sums correctly.

8 |

[Public]

Benchmark Results

0

2

4

6

8

10

12

2 4 8 42 64 87 100 128 189 208 256 313 512 718 932 1024 1895 2048

G
F

L
O

P
S

VECTOR SIZE

Performance of dnrm2

AVX2 Scalar

9 |

[Public]

Final Notes

• For complex numbers, we use the same algorithm on a vector y with double the size of x.

• For simplification, the details of NaN and Inf checks have been omitted, but they are implemented using

AVX2 intrinsics.

• Overflow and underflow is being handled correctly through scaling.

• Only AVX2 intrinsics have been used, no OpenMP parallelism.

Reference

J.L. Blue, "A portable Fortran program to find the Euclidean norm of a vector", in ACM Transactions on

Mathematical Software (TOMS), 4(1), pp.15-23, 1978.

10 |

[Public]

11 |

[Public]

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information contained herein is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limi ted to product and roadmap

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY

INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL

AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, [EPYCTM] and combinations thereof are trademarks of Advanced Micro

Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

	Slide 1: Performance Improvements of ?nrm2
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Overflow and Underflow in Norm Computation
	Slide 5: Initial Implementation and Limitations
	Slide 6: Blue’s Algorithm
	Slide 7: AVX2 Implementation of Blue’s Algorithm
	Slide 8: Benchmark Results
	Slide 9: Final Notes
	Slide 10
	Slide 11: DISCLAIMER AND ATTRIBUTIONS
	Slide 12

