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Introduction

Consider, C+ = AB, where C, A and B are m X n, m X k and
k x n matrices respectively and m,n, k are even.
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Direct Computation
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Fast Matrix Multiplication



Strassen’s Algorithm!

M():(A() + Ag)(Bo + Bg); Co+= My; C3+= My;

My =(Az + As3)Bo; Cot= My; C3—= My;
May=Ao(By — Bs); Ci1+= Ma; C3+= Mp;
M3=A3(B2 — By); Co+= Ms; Cat+= Ms;
My=(Ao + A1)Bs; Cr4= My; Co—= May;

M5:(A2 — Ao)(B() —|— Bl); C3+: M5;
Me=(A1 — A3)(B2 + B3z); Co+= Ms;

V. Strassen, “Gaussian elimination is not optimal,” in Numerische
Mathematik, 1969
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Fast Matrix Multiplication (FMM)

A <TAij</:, n) FMM algorithm? by partitioning

G || G do A
C= A= . } ’
By |-|Bs,
and B= :
Byl P

where A;, Bj, and C), are the submatrices of A, B and C, with

a single index in the row major order.

2A. R. Benson and G. Ballard, “A framework for practical parallel fast

matrix multiplication,” PPoPP 2015.



Fast Matrix Multiplication (FMM) (contd.)

Then, C' := C' + AB is computed by, for »r=0,...., R — 1,

k—1 kn—1
M, = > upAi| x| > vipBj|;
i=0 Jj=0

Cpt= wp M, (p=0,...,mn — 1)

where (x) is a matrix multiplication that can be done
recursively, wi,, vj, and wp, are entries of a (mk) x R matrix U,
a (kn) x R matrix V', and a (mn) x R matrix W, respectively.



One-level Strassen (2,2,2)

The set of coefficients that determine the (2,2,2) algorithm is

denoted as T = [U, V, W], where
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Finding other FMM

> For <ﬁ1,%, n) partitioning of the matrices, the associated 7
has dimension (mk, kn, mn) represents the underlying
matrix multiplication.

» Seek a rank-R decomposition of tensor 7, where R < mkn
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Reinforcement Learning + FMM?3

> Agent “AlphaTensor” is trained to play a single-player game
where the objective is finding tensor decompositions within
a finite factor space.
» For matrices in R reduces number of multiples:
1. (3,4,5) from 48 to 47.

2. (4,4,5) from 64 to 63.
3. (4,5,5) from 80 to 76.

3A. Fawzi et. al, “Discovering faster matrix multiplication algorithms

with reinforcement learning,” Nature 2023.
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Practical FMM
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Practical Strassen’s Algorithm

Conventional
Implementations
Matrix Size must be large
Matrix Shapes must be square
No Additional y
Workspace
sually task
Parallelism usuat.y tas

parallelism

4J. Huang et. al, “Strassen’s algorithm reloaded,” in SC 16. IEEE, 2016.
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Practical Strassen’s Algorithm

Conventional Strassen Reloaded
Implementations Impl4
speed up at smaller
Matrix Size must be large Spece Hb At SHater
sizes
Matrix Shapes must be square speed up for rank-k
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X v
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Parallelism ustatly was data parallelism

parallelism

4J. Huang et. al, “Strassen’s algorithm reloaded,” in SC 16. IEEE, 2016.
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Strassen Reloaded?
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Generating High-Performance Implementations of FMM?

» Generates code that takes as input (771,75, ny and [U,V, W]
and as output generates implementations that build upon
the primitives that combine taking linear combinations of
matrices with the packing routines and/or micro-kernels
that underlie BLIS.

» Provides a model of cost for each implementation that can
then be used to choose the best FMM algorithm for a
matrix of given size and shape.

5J. Huang et. al, “Generating Families of Practical Fast Matrix
Multiplication Algorithms,” in IPDPS 2017.
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Performance Results
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Setup

> Updated the code generator to support Intel’s Haswell
Architecture

> Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80/4.20GHz

processor
» Three-level cache: L1 128 KB, L2 1 MB, L3 8 MB
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Results - Single-Threaded Naive (m=k=n)

Square Naive ST Performance
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Results - Single-Threaded AB (m=k=n)

Square AB ST Performance
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Results - Single-Threaded Naive (m=n=14400)

Rank K (m=n=14400) Naive ST Performance
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Results - Single-Threaded AB (m=n=14400)

Rank K (m=n=14400) AB ST Performance
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Conclusions
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Conclusions

» For a single thread, Naive and AB Strassen continues to
perform generally better than the other FMM algorithms.
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Future Work

» Create a BLIS plugin that implements Strassen and other
FMM using the BLIS framework.

» Perform experiments with multi-threading as well as on
other architectures.

» Investigate the necessary conditions for an FMM algorithm
to outperform Strassen.
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Thank you!
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