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Objective
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+ High performance

+ shared memory 

+ parallel implementations of a family of algorithms 

+ for the computation of the X = LTLT decomposition 

+ (with and without pivoting) of a 

+ skew-symmetric X matrix factorization,

+ Unit lower triangular L,

+ tridiagonal T

+ which were derived using the the FLAME methodology. 

+ The approach has used a number of

+ BLAS-like primitives and BLIS framework using C++ 

+ Gauss transform, 

+ Hence, it contributes towards computing Tridiagonal decomposition of (skew)-
symmetric matrix 

+ For achieving high performance computing.



Introduction
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Matrix Decomposition or Matrix 

Factorization

+factoring any matrix as a product of two or more multiplicand 

matrices.        A = BC

+Cholesky, LU, QR, SVD (Singular value decomposition)

+LTLT decomposition for skew-symmetric matrix

+A is skew-symmetric if the transpose of a matrix is equal to the 

negative of the matrix, ie

(AT = −A or aj, i = −ai, j)
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Skew-symmetric non-diagonalizable matrix X

X = LTLT

where L is a unit lower-triangular matrix with first column as 0, and T is a skew-symmetric 
tridiagonal matrix.

Pfaffian of a skew-symmetric tridiagonal matrix

Pf(T)2 = det(T )    and det(T) = det(X)
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Pfaffian

Pfaffian of a skew-symmetric tridiagonal matrix

Pf(T)2 = det(T )    and det(T) = det(X)

+Pfaffian of matrix with even size:

+Pf(T ) = τ1,0 ×τ3,2 ×· · ·×τ2n−1,2n−2

+Pfaffian of matrix with odd size is 0.
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Application of Pfaffian

+Machine Learning (Markov random fields), 1

+Physics (partition function of Ising models), 2

+Quantum computations (electronic structure quantum Monte 

Carlo) 3
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FLAME (Formal Linear Algebra Methods Environments)
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Left-Looking

Right-Looking

Blocked

Unblocked

Pivoting

Pre Condition

Post Condition

To systematically derives the algorithm

Steps: order in which assertions (in the highlighted lines) and 

          commands are filled.



FLAME (Formal Linear Algebra Methods Environments)
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Pre-Condition

Post-Condition



Iteration

FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition



Invariant

FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition

Iteration



Initialization

FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition

Invariant: must hold 

Exposes a structure for the inductive proof that guides the 

derivation of the algorithm.



Highlighted Lines Transition

FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition

Initialization

loop invariant, the postcondition, and the precondition 

-> Prescribes loop guard (Step 3) and Initialization (Step 4) 

Loop Guard



Content of 

repartitioned matrix

Content after solid line 

shifting

FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition

Highlighted Lines Transition: to make 

progress



Formal derivation 
using data 

dependency

FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition

Content of repartitioned matrix

Content after solid line shifting

Prescribes what the update to the various exposed submatrices must 

be.



FLAME (Formal Linear Algebra Methods Environments)
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Pre Condition

Post Condition

Formal derivation using data dependency

Ignoring all assertions



FLAME (Formal Linear Algebra Methods Environments)
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Left-Looking

Right-Looking

Blocked

Unblocked

Pivoting

Pre Condition

Post Condition



Background
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Parlett-Reid algorithm

• Unblocked Right-looking algorithm

• Modification of LU factorization

• Iteratively applies Gauss transforms and pivoting on both

side of equation.

• Uses skew-symmetric rank-2 updates (SKR2), 

A := A + (wyT − ywT )

• Approximate cost for LU is 2m3/3 floating point operations 

(flops) when matrix is m × m
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Beresford N. Parlett and William T. Reid. On the solution of a system of linear equations whose matrix is symmetric but not definite. BIT, 10:386–397, 1970.



Wimmer’s two-step algorithm

• Right-looking algorithm
• Unblocked algorithm for skew-LTLT

• Performs single skew-symmetric rank-2 (SKR2) update for every other iteration
• SKR2 is skew-symmetric rank 2 update:

+ (A := A + (wyT − ywT ))

+Wimmer’s algorithm for skew-LTLT can be blocked if
all rank-2 updates can be aggregated and computation
performed as skew-symmetric rank-2k updates (SKR2K):
A := A+(W YT −Y WT ), where W and Y are matrices
with k columns

+Approximate cost is m3/3 floating point operations (flops) when matrix is m × m. ie 
fewer flops than Parlett-Reid.

2 1

M. Wimmer. Efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices. ACM Transactions on Mathematical 

Software, 38(4):1–17, August 2012. arXiv:1102.3440 [cond-mat, physics:physics].



Aasen’s algorithm

• Left-looking algorithm

• Unblocked algorithm for skew-LTLT

• Performs GEMV per iteration

• GEMV is matrix vector operations

• Approximate cost is m3/3 floating point operations (flops) when 

matrix is m × m.
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Jan Ole Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT Numerical Mathematics, 11(3):233–242, September 1971.



Miroslav et al.

• Proposed a blocked right-looking algorithm for LTLT

• Uses BLAS-like operations- GEMMT

• GEMMT routines compute a scalar-matrix-matrix product and 

add the result to the upper or lower part of a scalar-matrix 

product.

• Uses Hessenberg TLT matrix

• Approximate cost is m3/3 floating point operations (flops) when 

matrix is m × m.
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Miroslav Rozložník, Gil Shklarski, and Sivan Toledo. Partitioned Triangular Tridiagonalization. ACM Trans. Math. Softw., 37(4):38:1–38:16, February 2011.



Comparison
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SN Parlett-Reid Aasen’s Miroslav Wimmer’s two-step

Year 1970 1971 2011 2012

Blocked/ 

Unblocked

Unblocked Unblocked Blocked Unblocked/ Blocked

Left-Looking/ 

Right-Looking

Right 

Looking

Left Looking Right Looking Right Looking

Factorization LU Skew-LTLT LTLT Skew-LTLT

BLAS Operation SKR2 GEMV GEMMT SKR2-UB

SKR2K-Blk

Cost (In FLOPS) 2m3/3 m3/3 m3/3 m3/3



Formal Derivation of LTLT
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Introduction

+Precondition:

𝑋 =  ෠𝑋 ∧ ∃𝐿, 𝑇 ෠𝑋 = 𝐿𝑇𝐿𝑇)   

+Postcondition 

𝑋 = 𝑇, 𝐿 ∧ ෡ 𝑋 = 𝐿𝑇𝐿𝑇

+where initially ෠𝑋 equals the original contents of 𝑋.

+X - skew-symmetric matrix

+L - unit lower triangular matrix

+T - tri-diagonal matrix

2 6

෠𝑋  − Original Matrix

𝑋 – Current matrix/ changes after 

each loop.



Deriving the Partitioned Matrix Expression
+A PME is a recursive definition of the operation to be computed, by 

partitioning the matrices and substituting the partitioned matrices into the 

postcondition. 

+Obtained from partitioning the post-condition.

+Why PME – To identify Data dependencies -  Which helps us in identifying 

the type of dependencies we have.

2 7

𝑋 = 𝑇, 𝐿 ∧ ෡ 𝑋 = 𝐿𝑇𝐿𝑇



Loop invariants

Loop Invariants:  are certain logical conditions that remain same/ true 

before and after each iterations 

For each loop/iteration :

+ Iterate the process of partitioning the matrices in sub-matrices and

+Shifting the highlighted line indicating the progress of computation of matrices

+Making sure of how the pre-conditions and post-conditions are met
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1. Iterate the process of partitioning the matrices in sub-matrices
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2. Shifting the highlighted line indicating the progress of computation of 

matrices

3 0



Left-Looking / Right-looking

On comparing the before and after matrices of each iteration, we determine

• the contents of X, T and L after the matrix is re-partitioned and

• the contents of the exposed submatrices so that the invariant holds at the 

bottom of the loop.

• the the dependency graph of known and unknown from PME and invariants 

helps to identify the sequence in which the unknowns can be solved. 

These logical conditions helps in identifying the Algorithmic Variants (Actual 

algorithms):

• Variant2 or Left-Looking

• Variant3 or Right-looking

3 1
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Right-looking 

Invariant

Left-looking Invariant



Pivoting
+As seen previously, the update of l32 by dividing the vector x with 

scalar χ, the magnitude can be either >1 or <1.

+Hence, to improve this numerical instability:

+ introduce a pivot term to makes sure: (value of chi χ or tau 𝞃) >= (vector x), 

that is, l32 is always less than 1

+Obtain IAMAX(x) as index of vector x with maximum magnitude

+Calculate the Permutation matrix P(π), by swapping the top element, χ0, 

with the element indexed by a non-negative integer π

3 3



Families of skew-symmetric LTLT 

Algorithm
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The unblocked 

algorithms
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WITHOUT PIVOTING: UNBLOCKED 

ALGORITHMS
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SKR2GEMV



WITHOUT PIVOTING: UNBLOCKED 2-STEP WIMMER’S 

RL
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SKR2



WITHOUT PIVOTING: BLOCKED ALGORITHMS
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GEMMT, SKR2 GEMM



PIVOTING: BLOCKED AND UNBLOCKED ALGORITHMS
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To Be Continued … (By Chao)

• Discuss additional functions to BLIS and BLAS.

• Brief discussion of FLOP counts of the family of algorithm.

• Results of testing and profiling over range of sizes.

• Optimization on the family of algorithm
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THANK YOU
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