
LTLT Decomposition of
a Skew-Symmetric
Matrix - Derivation

Ishna Satyarth (isatyarth@smu.edu),

Devin A. Matthews, Robert van de Geijn, Maggie

Myers, Devangi Parikh, RuQing Xu, Tze Meng

Low, Chao Yin, and others.

Southern Methodist University

mailto:isatyarth@smu.edu

Objective

2

+ High performance

+ shared memory

+ parallel implementations of a family of algorithms

+ for the computation of the X = LTLT decomposition

+ (with and without pivoting) of a

+ skew-symmetric X matrix factorization,

+ Unit lower triangular L,

+ tridiagonal T

+ which were derived using the the FLAME methodology.

+ The approach has used a number of

+ BLAS-like primitives and BLIS framework using C++

+ Gauss transform,

+ Hence, it contributes towards computing Tridiagonal decomposition of (skew)-
symmetric matrix

+ For achieving high performance computing.

Introduction

3

Matrix Decomposition or Matrix

Factorization

+factoring any matrix as a product of two or more multiplicand

matrices. A = BC

+Cholesky, LU, QR, SVD (Singular value decomposition)

+LTLT decomposition for skew-symmetric matrix

+A is skew-symmetric if the transpose of a matrix is equal to the

negative of the matrix, ie

(AT = −A or aj, i = −ai, j)

4

Skew-symmetric non-diagonalizable matrix X

X = LTLT

where L is a unit lower-triangular matrix with first column as 0, and T is a skew-symmetric
tridiagonal matrix.

Pfaffian of a skew-symmetric tridiagonal matrix

Pf(T)2 = det(T) and det(T) = det(X)

5

Pfaffian

Pfaffian of a skew-symmetric tridiagonal matrix

Pf(T)2 = det(T) and det(T) = det(X)

+Pfaffian of matrix with even size:

+Pf(T) = τ1,0 ×τ3,2 ×· · ·×τ2n−1,2n−2

+Pfaffian of matrix with odd size is 0.

6

Application of Pfaffian

+Machine Learning (Markov random fields), 1

+Physics (partition function of Ising models), 2

+Quantum computations (electronic structure quantum Monte

Carlo) 3

7

1. Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, and Xiaoou Tang. Deep Learning Markov Random Field for Semantic Segmentation, August 2017. arXiv:1606.07230 [cs].

2. Creighton K. Thomas and A. Alan Middleton. Exact Algorithm for Sampling the 2D Ising Spin Glass. Physical Review E, 80(4):046708, October 2009. arXiv:0906.5519 [cond-mat].

3. Michal Bajdich and Lubos Mitas. Electronic structure quantum Monte Carlo, August 2010. arXiv:1008.2369 [cond-mat, physics:physics].

FLAME (Formal Linear Algebra Methods Environments)

9

Left-Looking

Right-Looking

Blocked

Unblocked

Pivoting

Pre Condition

Post Condition

To systematically derives the algorithm

Steps: order in which assertions (in the highlighted lines) and

 commands are filled.

FLAME (Formal Linear Algebra Methods Environments)

1 0

Pre-Condition

Post-Condition

Iteration

FLAME (Formal Linear Algebra Methods Environments)

1 1

Pre Condition

Post Condition

Invariant

FLAME (Formal Linear Algebra Methods Environments)

1 2

Pre Condition

Post Condition

Iteration

Initialization

FLAME (Formal Linear Algebra Methods Environments)

1 3

Pre Condition

Post Condition

Invariant: must hold

Exposes a structure for the inductive proof that guides the

derivation of the algorithm.

Highlighted Lines Transition

FLAME (Formal Linear Algebra Methods Environments)

1 4

Pre Condition

Post Condition

Initialization

loop invariant, the postcondition, and the precondition

-> Prescribes loop guard (Step 3) and Initialization (Step 4)

Loop Guard

Content of

repartitioned matrix

Content after solid line

shifting

FLAME (Formal Linear Algebra Methods Environments)

1 5

Pre Condition

Post Condition

Highlighted Lines Transition: to make

progress

Formal derivation
using data

dependency

FLAME (Formal Linear Algebra Methods Environments)

1 6

Pre Condition

Post Condition

Content of repartitioned matrix

Content after solid line shifting

Prescribes what the update to the various exposed submatrices must

be.

FLAME (Formal Linear Algebra Methods Environments)

1 7

Pre Condition

Post Condition

Formal derivation using data dependency

Ignoring all assertions

FLAME (Formal Linear Algebra Methods Environments)

1 8

Left-Looking

Right-Looking

Blocked

Unblocked

Pivoting

Pre Condition

Post Condition

Background

1 9

Parlett-Reid algorithm

• Unblocked Right-looking algorithm

• Modification of LU factorization

• Iteratively applies Gauss transforms and pivoting on both

side of equation.

• Uses skew-symmetric rank-2 updates (SKR2),

A := A + (wyT − ywT)

• Approximate cost for LU is 2m3/3 floating point operations

(flops) when matrix is m × m

2 0

Beresford N. Parlett and William T. Reid. On the solution of a system of linear equations whose matrix is symmetric but not definite. BIT, 10:386–397, 1970.

Wimmer’s two-step algorithm

• Right-looking algorithm
• Unblocked algorithm for skew-LTLT

• Performs single skew-symmetric rank-2 (SKR2) update for every other iteration
• SKR2 is skew-symmetric rank 2 update:

+ (A := A + (wyT − ywT))

+Wimmer’s algorithm for skew-LTLT can be blocked if
all rank-2 updates can be aggregated and computation
performed as skew-symmetric rank-2k updates (SKR2K):
A := A+(W YT −Y WT), where W and Y are matrices
with k columns

+Approximate cost is m3/3 floating point operations (flops) when matrix is m × m. ie
fewer flops than Parlett-Reid.

2 1

M. Wimmer. Efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices. ACM Transactions on Mathematical

Software, 38(4):1–17, August 2012. arXiv:1102.3440 [cond-mat, physics:physics].

Aasen’s algorithm

• Left-looking algorithm

• Unblocked algorithm for skew-LTLT

• Performs GEMV per iteration

• GEMV is matrix vector operations

• Approximate cost is m3/3 floating point operations (flops) when

matrix is m × m.

2 2

Jan Ole Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT Numerical Mathematics, 11(3):233–242, September 1971.

Miroslav et al.

• Proposed a blocked right-looking algorithm for LTLT

• Uses BLAS-like operations- GEMMT

• GEMMT routines compute a scalar-matrix-matrix product and

add the result to the upper or lower part of a scalar-matrix

product.

• Uses Hessenberg TLT matrix

• Approximate cost is m3/3 floating point operations (flops) when

matrix is m × m.

2 3

Miroslav Rozložník, Gil Shklarski, and Sivan Toledo. Partitioned Triangular Tridiagonalization. ACM Trans. Math. Softw., 37(4):38:1–38:16, February 2011.

Comparison

2 4

SN Parlett-Reid Aasen’s Miroslav Wimmer’s two-step

Year 1970 1971 2011 2012

Blocked/

Unblocked

Unblocked Unblocked Blocked Unblocked/ Blocked

Left-Looking/

Right-Looking

Right

Looking

Left Looking Right Looking Right Looking

Factorization LU Skew-LTLT LTLT Skew-LTLT

BLAS Operation SKR2 GEMV GEMMT SKR2-UB

SKR2K-Blk

Cost (In FLOPS) 2m3/3 m3/3 m3/3 m3/3

Formal Derivation of LTLT

2 5

Introduction

+Precondition:

𝑋 = ෠𝑋 ∧ ∃𝐿, 𝑇 ෠𝑋 = 𝐿𝑇𝐿𝑇)

+Postcondition

𝑋 = 𝑇, 𝐿 ∧ ෡ 𝑋 = 𝐿𝑇𝐿𝑇

+where initially ෠𝑋 equals the original contents of 𝑋.

+X - skew-symmetric matrix

+L - unit lower triangular matrix

+T - tri-diagonal matrix

2 6

෠𝑋 − Original Matrix

𝑋 – Current matrix/ changes after

each loop.

Deriving the Partitioned Matrix Expression
+A PME is a recursive definition of the operation to be computed, by

partitioning the matrices and substituting the partitioned matrices into the

postcondition.

+Obtained from partitioning the post-condition.

+Why PME – To identify Data dependencies - Which helps us in identifying

the type of dependencies we have.

2 7

𝑋 = 𝑇, 𝐿 ∧ ෡ 𝑋 = 𝐿𝑇𝐿𝑇

Loop invariants

Loop Invariants: are certain logical conditions that remain same/ true

before and after each iterations

For each loop/iteration :

+ Iterate the process of partitioning the matrices in sub-matrices and

+Shifting the highlighted line indicating the progress of computation of matrices

+Making sure of how the pre-conditions and post-conditions are met

2 8

1. Iterate the process of partitioning the matrices in sub-matrices

2 9

2. Shifting the highlighted line indicating the progress of computation of

matrices

3 0

Left-Looking / Right-looking

On comparing the before and after matrices of each iteration, we determine

• the contents of X, T and L after the matrix is re-partitioned and

• the contents of the exposed submatrices so that the invariant holds at the

bottom of the loop.

• the the dependency graph of known and unknown from PME and invariants

helps to identify the sequence in which the unknowns can be solved.

These logical conditions helps in identifying the Algorithmic Variants (Actual

algorithms):

• Variant2 or Left-Looking

• Variant3 or Right-looking

3 1

3 2

Right-looking

Invariant

Left-looking Invariant

Pivoting
+As seen previously, the update of l32 by dividing the vector x with

scalar χ, the magnitude can be either >1 or <1.

+Hence, to improve this numerical instability:

+ introduce a pivot term to makes sure: (value of chi χ or tau 𝞃) >= (vector x),

that is, l32 is always less than 1

+Obtain IAMAX(x) as index of vector x with maximum magnitude

+Calculate the Permutation matrix P(π), by swapping the top element, χ0,

with the element indexed by a non-negative integer π

3 3

Families of skew-symmetric LTLT

Algorithm

3 4

The unblocked

algorithms

3 5

WITHOUT PIVOTING: UNBLOCKED

ALGORITHMS

3 6

SKR2GEMV

WITHOUT PIVOTING: UNBLOCKED 2-STEP WIMMER’S

RL

3 7

SKR2

WITHOUT PIVOTING: BLOCKED ALGORITHMS

3 8

GEMMT, SKR2 GEMM

PIVOTING: BLOCKED AND UNBLOCKED ALGORITHMS

3 9

To Be Continued … (By Chao)

• Discuss additional functions to BLIS and BLAS.

• Brief discussion of FLOP counts of the family of algorithm.

• Results of testing and profiling over range of sizes.

• Optimization on the family of algorithm

4 0

THANK YOU

4 2

	Slide 1: LTLT Decomposition of a Skew-Symmetric Matrix - Derivation
	Slide 2: Objective
	Slide 3: Introduction
	Slide 4: Matrix Decomposition or Matrix Factorization
	Slide 5: Skew-symmetric non-diagonalizable matrix X
	Slide 6: Pfaffian
	Slide 7: Application of Pfaffian
	Slide 9: FLAME (Formal Linear Algebra Methods Environments)
	Slide 10: FLAME (Formal Linear Algebra Methods Environments)
	Slide 11: FLAME (Formal Linear Algebra Methods Environments)
	Slide 12: FLAME (Formal Linear Algebra Methods Environments)
	Slide 13: FLAME (Formal Linear Algebra Methods Environments)
	Slide 14: FLAME (Formal Linear Algebra Methods Environments)
	Slide 15: FLAME (Formal Linear Algebra Methods Environments)
	Slide 16: FLAME (Formal Linear Algebra Methods Environments)
	Slide 17: FLAME (Formal Linear Algebra Methods Environments)
	Slide 18: FLAME (Formal Linear Algebra Methods Environments)
	Slide 19: Background
	Slide 20: Parlett-Reid algorithm
	Slide 21: Wimmer’s two-step algorithm
	Slide 22: Aasen’s algorithm
	Slide 23: Miroslav et al.
	Slide 24: Comparison
	Slide 25: Formal Derivation of LTLT
	Slide 26: Introduction
	Slide 27: Deriving the Partitioned Matrix Expression
	Slide 28: Loop invariants
	Slide 29: 1. Iterate the process of partitioning the matrices in sub-matrices
	Slide 30: 2. Shifting the highlighted line indicating the progress of computation of matrices
	Slide 31: Left-Looking / Right-looking
	Slide 32
	Slide 33: Pivoting
	Slide 34: Families of skew-symmetric LTLT Algorithm
	Slide 35: The unblocked algorithms
	Slide 36: WITHOUT PIVOTING: UNBLOCKED ALGORITHMS
	Slide 37: WITHOUT PIVOTING: UNBLOCKED 2-STEP WIMMER’S RL
	Slide 38: WITHOUT PIVOTING: BLOCKED ALGORITHMS
	Slide 39: PIVOTING: BLOCKED AND UNBLOCKED ALGORITHMS
	Slide 40: To Be Continued … (By Chao)
	Slide 41
	Slide 42: THANK YOU

