
BLAS Extension APIs –

GEMM Pack and Compute

Arnav Sharma

Eashan Dash

Meghana Vankadari

2 |

[Public]

Agenda

Introduction

Problem Statement

BLAS Extension APIs – Pack and Compute

Usage

Q&A

3 |

[Public]

Figure: Row-Major packing of A matrix.

Introduction

• AOCL (AMD Optimizing CPU Libraries) is a set of numerical libraries optimized for AMD processors based

on the AMD “Zen” core architecture and generations.

• AOCL-BLAS is a fork of BLIS library optimized as part of AOCL.

• Github: https://github.com/amd/blis

• AMD Toolchain Support: toolchainsupport@amd.com

• GEMM (GEneral Matrix-Multiply)

• GEMM is a widely used linear algebra operation of the form C := beta * C + alpha * op(A) * op(B).

• The current approach to solve the GEMM operation involves a 5-loop algorithm which utilizes the concept of

“packing”.

• Packing aims to rearrange the matrices into blocks of contiguous memory aligned with the cache of the CPU

therefore minimizing TLB and cache misses.

𝑎11 ⋯ 𝑎1𝑘

⋮ ⋱ ⋮
𝑎m1 ⋯ 𝑎𝑚𝑘

𝑎1,1 ⋯ 𝑎1,𝑘

⋮ ⋱ ⋮
𝑎4,1 ⋯ 𝑎4,𝑘

⋮

𝑎(m−3),1 ⋯ 𝑎(m−3),𝑘

⋮ ⋱ ⋮
𝑎m,1 ⋯ 𝑎𝑚,𝑘

https://github.com/amd/blis
mailto:toolchainsupport@amd.com

4 |

[Public]

Problem Statement

• The GEMM operation is widely used in various workloads and there exist use-cases wherein there are

multiple GEMM invocations which have one or more common matrices.

• In such cases, with the current approach, the re-used matrix gets packed for each call thus resulting in

packing overhead costs.

𝑥00 ⋯ 𝑥0𝑛

⋮ ⋱ ⋮
𝑥𝑘0 ⋯ 𝑥𝑘𝑛

𝑤00 ⋯ 𝑤0𝑛

⋮ ⋱ ⋮
𝑤𝑘0 ⋯ 𝑤𝑘𝑛

𝑤0,0 ⋯ 𝑤0,𝑛

⋮ ⋱ ⋮
𝑤3,0 ⋯ 𝑤3,𝑛

⋮

𝑤(m−3),0 ⋯ 𝑤(m−3),𝑛

⋮ ⋱ ⋮
𝑤m,0 ⋯ 𝑤𝑚,𝑛

𝑐𝑥00
⋯ 𝑐𝑥0n

⋮ ⋱ ⋮
𝑐𝑥m0

⋯ 𝑐𝑥mn

𝑥

5 |

[Public]

Problem Statement

• The GEMM operation is widely used in various workloads and there exist use-cases wherein there are

multiple GEMM invocations which have one or more common matrices.

• In such cases, with the current approach, the re-used matrix gets packed for each call thus resulting in

packing overhead costs.

𝑦00 ⋯ 𝑦0𝑛

⋮ ⋱ ⋮
𝑦𝑘0 ⋯ 𝑦𝑘𝑛

𝑤00 ⋯ 𝑤0𝑛

⋮ ⋱ ⋮
𝑤𝑘0 ⋯ 𝑤𝑘𝑛

𝑤0,0 ⋯ 𝑤0,𝑛

⋮ ⋱ ⋮
𝑤3,0 ⋯ 𝑤3,𝑛

⋮

𝑤(m−3),0 ⋯ 𝑤(m−3),𝑛

⋮ ⋱ ⋮
𝑤m,0 ⋯ 𝑤𝑚,𝑛

𝑐𝑦00
⋯ 𝑐𝑦0n

⋮ ⋱ ⋮
𝑐𝑦m0

⋯ 𝑐𝑦mn

𝑦

𝑥00 ⋯ 𝑥0𝑛

⋮ ⋱ ⋮
𝑥𝑘0 ⋯ 𝑥𝑘𝑛

X

 ×

𝑤00 ⋯ 𝑤0𝑛

⋮ ⋱ ⋮
𝑤𝑘0 ⋯ 𝑤𝑘𝑛

W

 =

𝑐𝑥00
⋯ 𝑐𝑥0n

⋮ ⋱ ⋮
𝑐𝑥m0

⋯ 𝑐𝑥mn

C𝒙

6 |

[Public]

Problem Statement

• The GEMM operation is widely used in various workloads and there exist use-cases wherein there are

multiple GEMM invocations which have one or more common matrices.

• In such cases, with the current approach, the re-used matrix gets packed for each call thus resulting in

packing overhead costs.

𝑧00 ⋯ 𝑧0𝑛

⋮ ⋱ ⋮
𝑧𝑘0 ⋯ 𝑧𝑘𝑛

𝑤00 ⋯ 𝑤0𝑛

⋮ ⋱ ⋮
𝑤𝑘0 ⋯ 𝑤𝑘𝑛

𝑤0,0 ⋯ 𝑤0,𝑛

⋮ ⋱ ⋮
𝑤3,0 ⋯ 𝑤3,𝑛

⋮

𝑤(m−3),0 ⋯ 𝑤(m−3),𝑛

⋮ ⋱ ⋮
𝑤m,0 ⋯ 𝑤𝑚,𝑛

𝑐𝑧00
⋯ 𝑐𝑧0n

⋮ ⋱ ⋮
𝑐𝑧m0

⋯ 𝑐𝑧mn

𝑧

𝑥00 ⋯ 𝑥0𝑛

⋮ ⋱ ⋮
𝑥𝑘0 ⋯ 𝑥𝑘𝑛

X

 ×

𝑤00 ⋯ 𝑤0𝑛

⋮ ⋱ ⋮
𝑤𝑘0 ⋯ 𝑤𝑘𝑛

W

 =

𝑐𝑥00
⋯ 𝑐𝑥0n

⋮ ⋱ ⋮
𝑐𝑥m0

⋯ 𝑐𝑥mn

C𝒙

𝑦00 ⋯ 𝑦0𝑛

⋮ ⋱ ⋮
𝑦𝑘0 ⋯ 𝑦𝑘𝑛

Y

 ×

𝑤00 ⋯ 𝑤0𝑛

⋮ ⋱ ⋮
𝑤𝑘0 ⋯ 𝑤𝑘𝑛

W

 =

𝑐𝑦00
⋯ 𝑐𝑦0n

⋮ ⋱ ⋮
𝑐𝑦m0

⋯ 𝑐𝑦mn

C𝒚

7 |

[Public]

Problem Statement

𝑥1,1 ⋯ 𝑥1,𝑛

⋮ ⋱ ⋮
𝑥𝑘,1 ⋯ 𝑥𝑘,𝑛

X

 ×

𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑘,1 ⋯ 𝑤𝑘,𝑛

W

 =

𝑐𝑥1,1
⋯ 𝑐𝑥1,n

⋮ ⋱ ⋮
𝑐𝑥m,1

⋯ 𝑐𝑥m,n

C𝒙

𝑦1,1 ⋯ 𝑦1,𝑛

⋮ ⋱ ⋮
𝑦𝑘,1 ⋯ 𝑦𝑘,𝑛

Y

 ×

𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑘,1 ⋯ 𝑤𝑘,𝑛

W

 =

𝑐𝑦1,1
⋯ 𝑐𝑦1,𝑛,

⋮ ⋱ ⋮
𝑐𝑦m,1

⋯ 𝑐𝑦m,n

C𝒚

𝑧1,1 ⋯ 𝑧1,𝑛

⋮ ⋱ ⋮
𝑧𝑘,1 ⋯ 𝑧𝑘,𝑛

Z

 ×

𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑘,1 ⋯ 𝑤𝑘,𝑛

W

 =

𝑐𝑧1,1
⋯ 𝑐𝑧1,n

⋮ ⋱ ⋮
𝑐𝑧m,1

⋯ 𝑐𝑧m,n

C𝒛

W is being reused in each

GEMM operation!!

8 |

[Public]

BLAS Extension APIs – Pack and Compute

• From the problem statement, we can see that the Matrix (W) is being reused and thus, will have a major

packing overhead as it is being packed for each inference.

• Thus, a set of 3 Extension APIs (each for float and double types) is implemented to handle this scenario:

• ?gemm_pack_get_size(…)

• ?gemm_pack(…)

• ?gemm_compute(…)

• This set of Pack and Compute Extension APIs are designed in such a way that they leverage the pre-

existing optimized packing and GEMM SUP kernels. Thus, any new optimization (kernel dimensions,

cache-blocking, etc.) done for these kernels will also provide performance uplift for these Extension APIs.

• Presently, this is enabled only for the AMD Zen code-paths and supports both Single-Threaded and

Multi-Threaded implementations.

9 |

[Public]

Usage

• Invoke the ?gemm_pack_get_size() routine first to query the size of storage required for the packed matrix

to be used in subsequent calls.

• Post this allocate a buffer whose size was determined using the ?gemm_pack_get_size() routine and pass

this buffer to the ?gemm_pack() routine.

• The ?gemm_pack() routine will scale by alpha and pack the specified matrix into the previously allocated

buffer.

• Finally, invoke ?gemm_compute() routine with this packed buffer to compute the GEMM operation (C :=

beta * C + alpha * op(A) * op(B)).

• Note: If the users want to use packed buffers for both matrices, A and B, it is essential to use alpha scalar only for one of the matrices and

unit-scalar for the other. Also, it is advised to use the same number of threads for both packing and compute operations.

10 |

[Public]

Usage - Snippet

// Assuming the reuse of B matrix.

// Calculate and get size of buffer for B

f77_char f77_identifierB = 'B’;

size_t b_buffer_size = sgemm_pack_get_size(&f77_identifierB, &m, &n, &k);

// Allocate memory for B buffer

float* b_buffer = (float*) bli_malloc_user(b_buffer_size, &err);

// Pack B matrix

sgemm_pack(&f77_identifierB, &f77_transB, &m, &n, &k, &alpha, &B, &ldb, b_buffer);

// Perform SGEMM operation using the above packed matrix

sgemm_compute(&f77_transA, &f77_packed, &m, &n, &k, &A1, &lda, b_buffer, &ldb1, &beta, &C1, &ldc1);

sgemm_compute(&f77_transA, &f77_packed, &m, &n, &k, &A2, &lda, b_buffer, &ldb2, &beta, &C2, &ldc2);

sgemm_compute(&f77_transA, &f77_packed, &m, &n, &k, &A3, &lda, b_buffer, &ldb3, &beta, &C3, &ldc3);

// Free the memory for packed B buffer

bli_free(b_buffer);

11 |

[Public]

Questions?

12 |

[Public]

COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are

for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: BLAS Extension APIs – GEMM Pack and Compute
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Problem Statement
	Slide 5: Problem Statement
	Slide 6: Problem Statement
	Slide 7: Problem Statement
	Slide 8: BLAS Extension APIs – Pack and Compute
	Slide 9: Usage
	Slide 10: Usage - Snippet
	Slide 11: Questions?
	Slide 12: COPYRIGHT AND DISCLAIMER
	Slide 13

