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HAL: LLNL's deep learning stack for leadership-class HPC systems
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= Open-source libraries = PyTorch interface via Torch Dynamo and

Torch Inductor
= C++ / MPIl / OpenMP
— CUDA + cuDNN + NCCL + NVSHMEM = Support for model exchange with PyTorch
— ROCm + MIOpen + RCCL
— OneDNN
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A brief history of HAL

Elemental: A New Framework for Distributed Memory

Dense Matrix Computations ACM TOMS 2013
<2013: Elemental LBANN: Livermore Big Artificial Neural Network HPC
Toolkit MLHPC 2015
2015: LBANN Alumlnum: Ap Asynchrgn(?us, GPU-Aware
Communication Library Optimized for Large-Scale
2017: Hydrogen (fork of Elemental) Training of Deep Neural Networks on HPC MSI_I}-Ilﬁggl(;)rllg
_ Improving Strong-Scaling of CNN Training by
2018: Aluminum Exploiting Finer-Grained Parallelism
IPDPS 2019
2019: Distconv Channel and Filter Parallelism for Large-Scale CNN Training
) Supercomputing 2019
. ] Looking for info on use of Elemental in LBANN #1/9
[Ma ny Other thlngs Om|tted...] rvdgopenedthisissueonMarQB"Icomment
2023: DiHydrogen (in development)
. TO d ay IK?I::“:SZgttaitg::eir;:or:;::g)v(i:t:x::::i;fucfrked Elemental for use in LBANN and/or has or had involvement in that effort.

Thanks
Robert
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Challenges of large-scale scientific machine learning

Massive data sets (humber of samples)
= Challenges: Data parallelism provides limited scaling as learning is impacted by large mini-batch sizes
= Solutions: Tournament learning methods with partitioned data sets

Large sample sizes
= Challenges: Single sample and neural network activations do not fit on single accelerator
= Solutions: Distributed convolutions with halo exchanges

Large models
= Challenges: Model weights do not fit on a single accelerator
= Solutions: Model- and sub-graph parallelism splits model compute graph over multiple accelerators

Complex models
= Challenges: Models are highly interconnected and require irregular communication (graph neural networks)
= Solutions: Communication-efficient dense-scatter algorithms

Complex algorithms
= Challenges: Second-order optimization methods are expensive to compute and have high memory requirements
= Solutions: Sub-graph parallelism splits optimizer state over multiple accelerators
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Why another DL framework?

Existing frameworks did not offer sufficient performance at scale
= Not easy to conduct surgery to improve them
= (Becoming less true for LLM workloads: Megatron, DeepSpeed, Torch Titan, etc.)

Python is a distributed denial-of-service attack on your supercomputer

Memory and communication inefficiencies

Support leadership-class systems with unusual hardware

Enable near-peak performance for critical workloads

Be a vehicle for DL systems R&D

LBANN is a training deployment framework for LLNL’s bespoke application needs
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Distributed convolutions for very large data samples

= Surrogate models for simulations require very large input {52

data volumes e
60
= CosmoFlow: 5123, 4 channels, 2 bytes/element w0
— MLPerf-HPC uses a smaller version (1283) zo_”:'
— 1 GiB per sample o

— Regression model does not fit into most accelerator’s memory
— Tensor strides need 64-bit integers
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Spatial parallelism enables new scales for CNNs

CosmoFlow network with 5123 samples

Lassen (4x V100 / node)

7

Hybrid (8-way)
Hybrid (16-way)
Hybrid (32-way)

= Network requires ~53 GiB / sample
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Standard data parallelism is not possible
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Number of GPUs

Oyama et al., “The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism.” IEEE TPDS 2020
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Tournament voting algorithms for extreme-scale training

= Many trainers with partitioned datasets
= Periodically exchange models with random peers and run local tournament
= Enables scaling to full Sierra (4160 nodes)

= 2020 Gordon Bell COVID-19 Special Prize finalist

2048
0023 @1 -8 16 450
0.023 @ 3
_ 512 400
2, 0.025 @2 0.024 @ 3
(J] =
E 0.024 @ 3 0.025@6 g 350
= 128 g
§ 0.025 @ 6 0.023 @15 2 300
S 0.024 @ 12 0.025 @26
32 0.025 @ 21 0.025 @ 48 e
0.024 @ 46
200
3 0.025 @ 99
00:33:20 01:06:40 01:40 02:13:20 02:46:40 03:20 03:53:20
64 256 1024 4096 Time (hour:min:sec)

Nodes >2.4 MW power swings for the whole system!

Jacobs etal., “Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative models”, IJHPCA 2021
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What does a deep learning need from a multilinear algebra library?

Not a lot
= (But if you give us more toys, we’ll find a way to (ab)use them.)
BERT arae
. . . . . 0, 0, H

= (Distributed) (Batched) Matrix-matrix multiply + BLAS1 Operator class % flop % runtime
— More generally: Einstein summation support Tensor contraction 99.8 61.0
Statistical normalization 0.17 25.5
= Convolutions Element-wise 0.03 13.5
0.2% 39%

A handful of sparse operations for GNNs

Block distributions of multi-dimensional arrays

Communication operations

Low & mixed precision computations (FP16, BF16, FPS8, int8, ...)

= Really high performance on accelerators

Ivanov et al., “Data Movement Is All You Need: A Cast Study on Optimizing Transformers”, MLSys 2021
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Limitations of Elemental/Hydrogen: We need tensors

CNNs and transformers need 3d-5d tensors
— Batch x Channels x Height x Width x Depth or Batch x Sequence x Embedding

Block distributions
— Elemental distributions are less useful

Multi-dimensional permutations are critical
— Convolution prefers channels-last
— Multi-head attention shifts sequence and embedding

Data partitioning and redistribution needs this semantic information

Matrices (order-2 tensors) are not sufficient

= More complicated partitioning schemes are needed

swate

@ Lawrence Livermore National Laboratory ': “CASC NVSE o
LLI * 0’."‘;‘ - National Nuclear Security Administration

NL-PRES-869692



Future needs for large-scale deep learning training (non-exhaustive)

Enable performance on emerging architectures:

— El Capitan supercomputer at LLNL

— MI300A APUs & Grace-Hopper superchips provide unified memory

— Multi-node NVLink (NVL72) provide large cliques of high-bandwidth connectivity

Fault tolerance and elasticity for long runs (weeks to months)

= Composition of many parallelism modes while maintaining efficiency

High performance for our workloads: Being 10% faster matters!
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FLASK: Foundation Learning Al for Synthesis Knowledge

Supply chain issues and new threats require rapid discovery and manufacture of materials

. . . Proposed Synthesis Pathway
FLASK is creating a foundation model for molecular

®) Cl Density:
design and synthesis pathway prediction: Helleone) L omele
)\/ ‘/l\/ Heat of formation:
1 Sn1 2 -380.0 kJ/mol

1. Predict novel molecules with specified properties

2. Enable lead molecule design — generate candidate

L . Generative Al
molecules with similar structure and properties enerative

Foundation Model

3. Predict synthesis pathways for known and novel

compounds HG CHs
L : H c\)(
4. Enable pathway optimization based on SME inputs ° OH
Known Molecule Tert-Amyl alcohol
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DiHydrogen is LBANN'’s distributed multilinear algebra library for DL

Supports LBANN as a high-performance training deployment framework for our apps
OH Cl

/J\/ HCI (conc. ), /J\/

1 Sy 2

ransformer

DiHydrogen
Accelerated
distributed
tensor algebra

Aluminum
Accelerator-aware communication

github.com/LLNL/LBANN
github.com/LLNL/Elemental
github.com/LLNL/DiHydrogen
github.com/LLNL/Aluminum
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https://github.com/LLNL/LBANN
https://github.com/LLNL/Elemental
https://github.com/LLNL/DiHydrogen
https://github.com/LLNL/Aluminum
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