
“No-I-Meant-Another QR’’ (NIMA):
Two-Stage Newton–Schulz–Refined

Mixed-Precision QR
BLIS Retreat 2025

Nima Sahraneshin Samani
Supervisors: Sandra Catalan José R. Herrero José Ignacio Aliaga

September 25, 2025

Fast QR in FP16 — without losing orthogonality.

License: Creative Commons BY-NC-ND 4.0



Why is Mixed-Precision QRWorth It?

▶ GPUs deliver ∼ 10×more throughput in FP16, yet naive FP16-QR
destroys orthogonality.

▶ We want FP16 speed with near-FP64 accuracy.
▶ Key: cheap Householder in FP16, enforce orthogonality with
Newton–Schulz (NS) refinements in BLAS-3.

Can FP16 QR be “trustworthy by design”?

2 / 23



Road-map

1. Motivation and contributions
2. How GPUs reward BLAS-3, not BLAS-2
3. NIMA in a nutshell (family & algorithm)
4. Accuracy and stability results
5. Performance results
6. Take-aways & Q & A

3 / 23



Contributions

1. Two-stage NS guard: optional local (panel) + global sweeps.

2. Family of variants from “unsafe FP16” to “FP16 panels + FP64 updates”.

3. Open-source MATLAB reference implementation.

4 / 23



Classic QR vs GPUs: Why Push Work to BLAS-3?

▶ Householder panel factorisation is BLAS-2: memory-bound, poor GPU
utilisation.

▶ BLAS-3 (SYRK/GEMM) is compute-dense: exploits caches and Tensor
Cores.

▶ Strategy: 1) do the cheap part (panels) in low precision; 2) fix
orthogonality with a few BLAS-3 NS sweeps.

▶ More FLOPs, yet lower wall-time on GPUs.

5 / 23



BLAS-3 in NIMA

Local guard (panel Qp∈Rm×b)
SYRK: Gp←Q⊤

pQp, GEMM: Qp← 1
2Qp(3I−Gp)

Global guard (thin Q∈Rm×n)
SYRK: G←Q⊤Q, GEMM: Q← 1

2Q(3I−G)

Both operations map perfectly to Tensor Cores.

6 / 23



NIMA Family – At a Glance

Variant Panel Trailing Guard strategy

H-QR FP16 FP16 none (stress test)
H-QR-G FP16 FP16 global NS (g=3–4)
HF-QR-G FP16(+FP32 dots) FP16 global NS
HF-QR-LG FP16(+FP32 dots) FP16 local s=1 + global g=3
HFD-QR-LG FP16 → FP64 upd. FP64 local s=2 + global g=3
D-QR (baseline) FP64 FP64 —

7 / 23



Blocked Pipeline with Two-Stage NS

NIMA (b panel size, s local, g global NS iters)
Require: A ∈ Rm×n, m ≥ n
1: A← pow2_scale_cols(A)
2: Q← Im
3: for j = 1 : b : n do
4: factor panel in low precision
5: apply reflectors to A(:, j:n) and to Q
6: if s > 0 then ▷ local NS
7: extract new b cols of Q; run s NS steps
8: end if
9: end for
10: thin Q: keep first n columns
11: for k = 1 : g do ▷ global NS
12: Q← 1

2
Q
(
3I−Q⊤Q

)
13: end for
14: R← Q⊤Aorig ▷ FP64 product
15: enforce R triangular + diag(R) ≥ 0
16: return (Q,R)

8 / 23



Expected Accuracy After Global NS

Variant Orthogonality Residual ∥A−QR∥ Robustness

H-QR poor–fair poor–fair weakest
H-QR-G good–excellent good–excellent moderate
HF-QR-G excellent excellent high
HF-QR-LG excellent excellent high
HFD-QR-LG excellent excellent highest
D-QR FP64 baseline FP64 baseline reference

9 / 23



Stability of Newton–Schulz Orthogonalisation

▶ NS iteration: Qk+1 = 1
2Qk(3I−Q⊤

kQk) – quadratic if Q⊤
0 Q0 eigenvalues

∈ (0, 2).

▶ Local NS keeps each panel inside that basin; global sweeps drive
∥I−Q⊤Q∥2 to O(ε).

▶ Exact power-of-two column scaling prevents FP16 overflow/underflow.

10 / 23



Representation: WY vs Explicit Q

Key point
Pure WY is awkward for NS: the GEMM needs Q explicitly.

▶ Store WY in FP16 during panels (fast, compact).

▶ Form Q explicitly once a panel is done.

▶ R refinement is optional; many workflows only need high-quality Q.

11 / 23



Orthogonality Tracks MATLAB QR

12 / 23



Accuracy Summary (n =1k–4k)

n κmax
2 max ∥A − QR∥2/∥A∥2 max post-∥I − Q⊤Q∥2 max pre-∥I − Q⊤Q∥2

1024 3.1×1028 1.3×10−15 4.9×10−15 2.7×10−2

2048 6.0×1028 1.3×10−15 4.8×10−15 6.0×10−2

3072 4.2×1032 1.6×10−15 5.2×10−15 8.6×10−2

4096 2.2×1032 1.7×10−15 5.3×10−15 1.2×10−1

13 / 23



Hilbert

Figure: NS refinement (local/global) for Hilbert n = 1024

Note: Updated from recorded version—new random instance and improved
visualization format.

14 / 23



Vandermonde

Figure: NS refinement (local/global) for Vandermonde n = 1024

Note: Updated from recorded version—new random instance and improved
visualization format. 15 / 23



Projected Performance Model (Guarded FP16)

Model

ρ =
FP16 peak
FP64 peak

, T(n; ρ,g, s,b) =
TQR64(n)

ρ
+ gTNS(n) + s cloc

⌈n
b

⌉
, cloc = 0.2ms

Speed−up(n; ρ,g, s) =
1

1
ρ +∆s,g(n)

, ∆s,g(n) =
gTNS(n) + s cloc⌈n/b⌉

TQR64(n)
.

▶ V100-like ratio ρ≈3: up to ∼ 3× speed-up for n ≲ 4096.

▶ Higher ratios (ρ ∈ [6, 8]): up to ∼ 5× around n ≈ 8192.

▶ For very large n, global NS sweeps dominate unless g is reduced.

16 / 23



Measured Runtime on V100 (H-QR-L)
n MAGMA QR orgqr NS D2H H2D R-hQR Speed-up

1024 461.7 18.0 1.2 0.1 0.1 175.6 2.7
2048 1448.3 43.6 5.4 0.1 0.1 542.6 2.7
3072 1873.0 12.9 17.2 0.2 0.2 689.0 2.7
4096 1128.5 24.3 35.7 0.3 0.3 508.1 2.3
5120 1648.4 45.1 67.4 0.4 0.4 797.4 2.1
6144 2007.3 64.5 112.3 0.5 0.5 1071.4 1.9
7168 2827.6 97.9 187.9 0.7 0.7 1605.6 1.8
8192 2752.3 133.9 280.9 0.9 0.9 1895.8 1.5
9216 2977.9 189.6 407.2 1.2 1.2 2406.2 1.3
10240 4544.3 264.7 558.8 1.5 1.5 3458.9 1.4
11264 5366.9 380.1 757.1 1.8 1.8 4444.0 1.3
12288 5878.6 444.1 989.2 2.2 2.2 5375.4 1.2
13312 6253.7 547.2 1267.8 2.5 2.5 6440.2 1.1
14336 7162.3 695.7 1580.2 2.8 2.8 7829.3 1.0
15360 8970.6 824.8 1971.0 3.2 3.2 9734.3 1.0
16384 10033.7 1032.0 2359.6 3.7 3.7 11462.6 1.0
17408 11206.1 1229.5 2886.4 4.4 4.4 13632.7 0.9
18432 12962.7 1396.7 3434.8 5.0 5.0 16031.9 0.9
19456 14272.5 1655.6 4059.4 5.4 5.4 18602.1 0.9
20480 19241.3 1930.0 4789.1 5.7 5.7 22722.4 0.9

▶ Peak speed-up ≈2.7× for n≤4,096matches the analytic model.
▶ As n grows beyond 12k, global NS cost dominates and speed-up falls to parity.

17 / 23



Take-aways

▶ FP16 panels can be made as trustworthy as FP64 with two-stage
NS.

▶ BLAS-3 NS sweeps convert “extra FLOPs” into GPU utilisation –
wall-time wins.

18 / 23



FP16 speed, FP64 trust
Newton–Schulz makes mixed-precision QR practical



Limitations & Future Work

▶ Extremely ill-conditioned may need extra guard.

20 / 23



Near-Memory BLAS: The Big Idea

21 / 23



Near-Memory BLAS: The Big Idea

▶ Observation. Modern HBM/3D-DRAM stacks include a logic layer that
can host a few thousand low-power MAC units.

▶ Near-Memory BLAS = run Level-3 BLAS kernels inside that logic layer, so
data stay on-stack.

▶ Why it matters
1. Frequent patterns “streammatrix, reuse it once” become
compute-bound instead of bandwidth-bound.

▶ Programming model • Same BLAS/LAPACK calls • Library decides “run
near-memory” when operands already live in HBM

(Think of it as “cuBLAS, but the SMs sit under the DRAM dies.”)

22 / 23



Questions?
snima@duck.com


