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Given a vector of n numbers
Xo
X1
z= X2

Xn'—l
the sum of those numbers is given by .

n—

a = Z Xi

i=0

Note 1 We use lower case letters for vectors and lower case Greek letters for scalars.
Let us define the operation to be performed by
a = Sum(z).

We will derive an algorithm for computing a by filling out the worksheet in Fig. 1.
Note 2 Read this as “a becomes the sum of the elements of vector z”.

.

Note 3 Notice that we carefully distinguish between “=” which indicates equality and “=" which indicates

asstgnment.

Note 4 Below, the step numbers refer to the numbers in the “Steps” column on the left in Fig. 2.

Step 1: Precondition and postcondition Letting & denote the original contents of «, the precondition
(state of the variables at the beginning), P, for our algorithm will be o = & while the postcondition, Pyst,
(state of the variables upon completion) is that @ = Sum(z). This is indicated in Steps 1a and 1b in Fig. 2.

Step 2: Determining loop-invariants As part of the computation of « it is logical to sweep through z
in a consistent manner, e.g. from top to bottom. Our notation captures this by partitioning z like

T
T —
B

where z1 and zp represent the top and bottom part of the vector.

Note 5 Read zr and zp as “z-Top” and “z-Bottom”, respectively.

Note 6 The idea is that each of the two parts of x at a given state of the algorithm has been updated or used
in some (typically different) fashion. For example, we will see next that elements of xr have already been
summed into o while elements of zg have not.



Step || Annotated Algorithm: [D,E,F,..]=o0p(4,B,C,D,...)

1la {Ppre}
4 Partition
where
2 {Pinv}
3 while G do
2,3 {(Piny) A (G)}
5a Repartition
where
6 {Qbu}
8 Su
7 {Qau}
5b Continue with
2 {Pinv}
enddo
2,3 { (Pinv) A (G)}
1b + Ppost}

Figure 1: Worksheet for deriving an algorithm.

Step || Annotated Algorithm: o := Sum(z)
la {a=a}

aps T
4 Partition z — <—)
zB

a=0
where z7 has 0 elements
2 {a = Sum(z7)}
3 while n(zr) #n(z) do
2,3 {(a = Sum(zr)) A (n(zr) # n(z))}
5a Repartition

€T
T 0
—
B —Xl
z2

where xi is a scalar

6 {o = Sum(zo)}
8 a:=a+x1
7 {a = Sum(zo) + x1}
5b Continue with
T o
=L )| xa
rB z2
2 {a = Sum(z7)}

enddo
2,3 || {(e =Sum(zr)) A = (n(zr) # n(z))}
1b {a = Sum(z)}

Figure 2: Worksheet for deriving an algorithm for summing the elements of a vector z (Variant 1).



Next, we take this partitioned vector z and substitute it into the postcondition to find that

oo ((22))

o = Sum(zr) + Sum(zg).

Manipulating this we notice that

Note 7 The above equality shows how o can be computed from the two separate parts of x.

Notice that the loop-invariant, P,,,, is a predicate that indicates the state of the variables (in this case

a) at the top of the while loop in Fig. 2. Notice that the loop computes « and thus at the top of the loop we

would expect to have computed only some of the final result. For example, at the top of the loop, we may
indicate the contents of « as

Pyre : @ = Sum(z7). (1)

This condition is now entered in the worksheet in Fig. 2 in four places:

1. At the top of the loop-body.

2. Before entering the loop. The idea is that the first time through the loop, a contains exactly what it
contained before entering the loop. Thus, the loop-invariant must already be true there.

3. At the bottom of the loop-body. The idea is that no computation happens between the bottom of the
loop-body and the next time the top of the loop-body is reached.

4. Upon completion of the loop.

Step 3: Loop-guard Notice that upon completion of the loop
e The loop-invariant is true.
e The loop-guard G is false.

e The condition
(a = Sum(z71)) A -G

must imply that o = Sum(z).

Notice that if z7 is all of z, then this is the case. So, if we take G : n(zr) # n(z) (read as: the length of z7
is not the same as the length of ) then -G means that n(z7) = n(z) and therefore

(( = Sum(zT)) A Q) = (o = Sum(z))

This argument determines the required loop-guard G that appears in the worksheet.

Step 4: Initialization Next, we must find an initialization, Sy, that has the following properties:
e No computation is performed.

e The initialization changes the contents of o so that the loop-invariant is satisfied.

(=)

r —

B

where 1 has no elements (and hence zp is all of z) and we set a equal to zero (a := 0), then we put the

variables 7, £p, and « in a state where the loop-invariant is satisfied. This initialization appears in Step 4
in Fig. 2.

We note that if we partition




Step 5: Progressing through the vector We now note that as part of the computation zr starts by
having no elements, but must ultimately equal all of z. Thus, as part of the loop elements must be taken
from zp and added to z7. This is denoted in Fig. 2 by the statements

Zo

T N
B X1

Z2

and
Zo

T
(T><— X1
J’IB —

T2

This notation simply implies that the top element of zp, x1, migrates from zp to zr.

Step 6: Determining the state after repartitioning The repartitioning in Step 5a does not change
the contents of a: it is really just an indexing operation. We can thus ask ourselves the question of what the
contents of « are in terms of the exposed parts of z (zg, X1, and z2). We can derive this condition, Qpefore,
via textual substitution: The repartitioning in Step 5a means that

rT = To
()
T2
If we substitute the quantities on the right of the equalities into the loop-invariant we find that
a = Sum(zT)

implies that
a = Sum(zg)

which is entered in Step 6 in Fig. 2.

Step 7: Determining the state after moving the double lines Next, we notice that the moving of
the double lines in Step 5b means that now
( “ >
rr =
X1 .

TB = T2

Since the loop-invariant must be true after this redefinition of z7 and z g, we substitute the quantities on
the right of the equalities into the loop-invariant we find that now

s ((55)

a = Sum(zp) + x1-

which implies that

This is entered for Qafter in Step 7 in Fig. 2.

Step 8 Comparing the contents in Step 6 and Step 7 now tells us that a must be changed from equalling
only Sum(zo) to equalling Sum(zg) + x1. We conclude that it must be updated by adding x1 (since it already
equals Sum(z)):
a:=a+x
which is entered for Sy in Fig. 2.
Exercise 1. Derive an algorithm for computing o := Sum(z) by picking the loop-invariant as

a = Sum(zg)



