
Notes on Cholesky Factorization

Robert A. van de Geijn

Department of Computer Science

Institute for Computational Engineering and Sciences

The University of Texas at Austin

Austin, TX 78712

rvdg@cs.utexas.edu

March 11, 2011

1 Definition and Existence

The Cholesky factorization is only defined for symmetric or Hermitian positive definite ma-
trices. In this note, we will restrict ourselves to the case where A is real and symmetric
positive definite (SPD).

Definition 1. A matrix A ∈ Rm×m is symmetric positive definite (SPD) if and only if it is
symmetric (AT = A) and for all nonzero vectors x ∈ Rm it is the case that xT Ax > 0.

First some exercises:

Exercise 2. Let B ∈ Rm×n have linearly independent columns. Prove that A = BT B is SPD.

Exercise 3. Let A ∈ Rm×m be SPD. Show that its diagonal elements are positive.

We will prove the following theorem in Section 4:

Theorem 4. Cholesky Factorization Theorem Given a SPD matrix A there exists a lower
triangular matrix L such that A = LLT .

The lower triangular matrix L is known as the Cholesky factor and LLT is known as the
Cholesky factorization of A. It is unique if the diagonal elements of L are restricted to be
positive.

The operation that overwrites the lower triangular part of matrix A with its Cholesky
factor will be denoted by A := Chol(A), which should be read as “A becomes its Cholesky
factor.” Typically, only the lower (or upper) triangular part of A is stored, and it is that

1



for j = 1 : n
αj,j := √αj,j

for i = j + 1 : n
αi,j := αi,j/αj,j

endfor

for k = j + 1 : n
for i = k : n

αi,k := αi,k − αi,jαk,j

endfor
endfor

endfor

for j = 1 : n
αj,j := √αj,j αj+1:n,j := αj+1:n,j/αj,j


αj+1:n,j+1:n :=

αj+1:n,j+1:n − tril(αj+1:n,jα
T
j+1:n,j)

endfor

Figure 1: Formulations of the Cholesky factorization that expose indices using Matlab-like
notation.

part that is then overwritten with the result. In this discussion, we will assume that the
lower triangular part of A is stored and overwritten.

2 Application

The Cholesky factorization is used to solve the linear system Ax = y when A is SPD:
Substituting the factors into the equation yields LLT x = y. Letting z = LT x,

Ax = L (LT x)︸ ︷︷ ︸
z

= Lz = y.

Thus, z can be computed by solving the triangular system of equations Lz = y and sub-
sequently the desired solution x can be computed by solving the triangular linear system
LT x = z.

3 An Algorithm (Variant 3)

The most common algorithm for computing A := Chol(A) can be derived as follows: Con-
sider A = LLT . Partition

A =

(
α11 ?

a21 A22

)
and L =

(
λ11 0

l21 L22

)
. (1)

2



Remark 5. We adopt the commonly used notation where Greek lower case letters refer to
scalars, lower case letters refer to (column) vectors, and upper case letters refer to matrices.
The ? refers to a part of A that is neither stored nor updated.

By substituting these partitioned matrices into A = LLT we find that(
α11 ?

a21 A22

)
=

(
λ11 0

l21 L22

)(
λ11 0

l21 L22

)T

=

(
λ2

11 ?

λ11l21 l21l
T
21 + L22L

T
22

)
,

so that
α11 = λ2

11 ?

a21 = λ11l21 A22 = l21l21 + L22L
T
22

and hence
λ11 =

√
α11 ?

l21 = a21/λ11 L22 = Chol(A22 − l21l
T
21)

.

These equalities motivate the algorithm

1. Partition A→

(
α11 ?

a21 A22

)
.

2. Overwrite α11 := λ11 =
√

α11. (Picking λ11 =
√

α11 makes it positive ensures unique-
ness.)

3. Overwrite a21 := l21 = a21/λ11.

4. Overwrite A22 := A22 − l21l
T
21 (updating only the lower triangular part of A22).

5. Continue with A = A22. (Back to Step 1.)

The algorithm is typically presented in a text using Matlab-like notation as illustrated in
Fig. 1.

Remark 6. Similar to the tril function in Matlab, we use tril(B) to denote the lower
triangular part of matrix B.

4 Proof of the Cholesky Factorization Theorem

In this section, we partition A as in (4). The following lemmas, which can be found in any
standard text, are key to the proof:

Lemma 7. Let A ∈ Rn×n be SPD. Then α11 is real and positive.

Proof: This is special case of Exercise 1.

3



Lemma 8. Let A ∈ Rm×m be SPD and l21 = a21/
√

α11. Then A22 − l21l
T
21 is SPD.

Proof: Since A is symmetric so are A22 and A22 − l21l
T
21. Let x1 6= 0 be an arbitrary vector

of length n− 1. Define x =

(
χ0

x1

)
where χ0 = −aT

21x1/α11. Then, since x 6= 0,

0 < xT Ax =

(
χ0

x1

)T (
α11 aT

21

a21 A22

)(
χ0

x1

)

=

(
χ0

x1

)T (
α11χ0 + aT

21x1

a21χ0 + A22x1

)
= α11χ

2
0 + χ0a

T
21x1 + xT

1 a21χ0 + xT
1 A22x1

= α11
aT

21x1

α11

xT
1 a21

α11

− xT
1 a21

α11

aT
21x1 − xT

1 a21
aT

21x1

α11

+ xT
1 A22x1

= xT
1 (A22 −

a21a
T
21

α11

)x1

= xT
1 (A22 − l21l

T
21)x1.

We conclude that A22 − l21l
T
21 is SPD.

Proof: of Cholesky Factorization Theorem
Proof by induction.

Base case: n = 1. Clearly the result is true for a 1× 1 matrix A = α11: In this case, the
fact that A is SPD means that α11 is real and positive and a Cholesky factor is then
given by λ11 =

√
α11, with uniqueness if we insist that λ11 is positive.

Inductive step: Assume the result is true for SPD matrix A ∈ R(n−1)×(n−1). We will
show that it holds for A ∈ Rn×n. Let A ∈ Rn×n be SPD. Partition A and L as
in (4) and let λ11 =

√
α11 (which is well-defined by Lemma 4), l21 = a21/λ11, and

L22 = Chol(A22 − l21l
T
21) (which exists as a consequence of the Inductive Hypothesis

and Lemma 4). Then L is the desired Cholesky factor of A.

By the principle of mathematical induction, the theorem holds.

5 Blocked Algorithm (Variant 3)

In order to attain high performance, the computation is cast in terms of matrix-matrix
multiplication by so-called blocked algorithms. For the Cholesky factorization a blocked
version of the algorithm can be derived by partitioning

A→

(
A11 ?

A21 A22

)
and L→

(
L11 0

L21 L22

)
,

4



for j = 1 : n in steps of nb

b := min(n− j + 1, nb)
Aj:j+b−1,j:j+b−1 := Chol(Aj:j+b−1,j:j+b−1)

Aj+b:n,j:j+b−1 := Aj+b:n,j:j+b−1A
−T
j:j+b−1,j:j+b−1

Aj+b:n,j+b:n := Aj+b:n,j+b:n − tril(Aj+b:n,j:j+b−1A
T
j+b:n,j:j+b−1)

endfor

Figure 2: Blocked algorithm for computing the Cholesky factorization. Here nb is the block
size used by the algorithm.

where A11 and L11 are b × b. By substituting these partitioned matrices into A = LLT we
find that(

A11 ?

A21 A22

)
=

(
L11 0

L21 L22

)(
L11 0

L21 L22

)T

=

(
L11L

T
11 ?

L21L
T
11 L21L

T
21 + L22L

T
22

)
.

From this we conclude that

L11 = Chol(A11) ?

L21 = A21L
−T
11 L22 = Chol(A22 − L21L

T
21)

.

An algorithm is then described by the steps

1. Partition A→

(
A11 ?

A21 A22

)
, where A11 is b× b.

2. Overwrite A11 := L11 = Chol(A11).

3. Overwrite A21 := L21 = A21L
−T
11 .

4. Overwrite A22 := A22 − L21L
T
21 (updating only the lower triangular part).

5. Continue with A = A22. (Back to Step 1.)

An algorithm that explicitly indexes into the array that stores A is given in Fig. 2.

Remark 9. The Cholesky factorization A11 := L11 = Chol(A11) can be computed with the
unblocked algorithm or by calling the blocked Cholesky factorization algorithm recursively.
Operations like L21 = A21L

−T
11 are computed by solving the equivalent linear system with multiple

right-hand sides L11L
T
21 = AT

21.

6 Alternative Representation

When explaining the above algorithm in a classroom setting, invariably it is accompanied
by a picture sequence like the one in Fig. 3(left) and the (verbal) explanation:

5



done

done

done

partially
updated

Beginning of iteration

ATL

ABL

?

ABR

↓ ↓

Repartition

A00 ? ?

aT
10

α11 ?

A20 a21 A22

↓ ↓

UPD.

UPD. UPD.

Update

√
α11

a21
α11

A22−
a21a

T
21

↓ ↓

@
@R

done

done

done

partially
updated

End of iteration

ATL

ABL

?

ABR

Figure 3: Left: Progression of pictures that explain Cholesky factorization algorithm. Right:
Same pictures, annotated with labels and updates.

Beginning of iteration: At some stage of the algorithm (Top of the loop), the computation
has moved through the matrix to the point indicated by the thick lines. Notice that we
have finished with the parts of the matrix that are in the top-left, top-right (which is
not to be touched), and bottom-left quadrants. The bottom-right quadrant has been
updated to the point where we only need to perform a Cholesky factorization of it.

Repartition: We now repartition the bottom-right submatrix to expose α11, a21, and A22.

6



Algorithm: A := Chol unb(A)

Partition A→

(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Repartition(
ATL ?

ABL ABR

)
→

A00 ? ?

aT
10 α11 ?

A20 a21 A22


where α11 is 1× 1

α11 :=
√

α11

a21 := a21/α11

A22 := A22 − tril(a21a
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?

aT
10 α11 ?

A20 a21 A22


endwhile

Algorithm: A := Chol blk(A)

Partition A→

(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?

A20 A21 A22


where A11 is b× b

A11 := Chol(A11)

A21 := A21 tril(A11)
−T

A22 := A22 − tril(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?

A10 A11 ?

A20 A21 A22


endwhile

Figure 4: Unblocked and blocked algorithms for computing the Cholesky factorization.

Update: α11, a21, and A22 are updated as discussed before.

End of iteration: The thick lines are moved, since we now have completed more of the
computation, and only a factorization of A22 (which becomes the new bottom-right
quadrant) remains to be performed.

Continue: The above steps are repeated until the submatrix ABR is empty.

To motivate our notation, we annotate this progression of pictures as in Fig. 3 (right). In
those pictures, “T”, “B”, “L”, and “R” stand for “Top”, “Bottom”, “Left”, and “Right”,
respectively. This then motivates the format of the algorithm in Fig. 4 (left). A similar
explanation can be given for the blocked algorithm, which is given in Fig. 4 (right). In the
algorithms, m(A) indicates the number of rows of matrix A.

Remark 10. The indices in our more stylized presentation of the algorithms are subscripts
rather than indices in the conventional sense.

7



Remark 11. Clearly Fig. 4 does not present the algorithm as concisely as the algorithms
given in Figs. 1 and 2. However, it does capture to a large degree the verbal description of
the algorithm mentioned above and therefore, in our opinion, reduces both the effort required to
interpret the algorithm and the need for additional explanations. The notation also mirrors that
used for the proof in Section 4.

Remark 12. The notation in Figs. 3 and 4 allows the contents of matrix A at the beginning
of the iteration to be formally stated:

A =

(
ATL ?

ABL ABR

)
=

(
LTL ?

LBL ÂBR − tril(LBLLT
BL)

)
,

where LTL = Chol(ÂTL), LBL = ÂBLL−T
TL , and ÂTL, ÂBL and ÂBR denote the original contents

of the quadrants ATL, ABL and ABR, respectively.

Exercise 13. Implement the Cholesky factorization with M-script.

7 Cost

The cost of the Cholesky factorization of A ∈ Rm×m can be analyzed as follows: In Fig. 4 (left)
during the kth iteration (starting k at zero) A00 is k×k. Thus, the operations in that iteration
cost

• α11 :=
√

α11: negligible when k is large.

• a21 := a21/α11: approximately (m− k − 1) flops.

• A22 := A22 − tril(a21a
T
21): approximately (m− k − 1)2 flops. (A rank-1 update of all

of A22 would have cost 2(m− k − 1)2 flops. Approximately half the entries of A22 are
updated.)

Thus, the total cost in flops is given by

CChol(m) ≈
m−1∑
k=0

(m− k − 1)2

︸ ︷︷ ︸
(Due to update of A22)

+
m−1∑
k=0

(m− k − 1)︸ ︷︷ ︸
(Due to update of a21)

=
m−1∑
j=0

j2 +
m−1∑
j=0

j ≈ 1

3
m3 +

1

2
m2 ≈ 1

3
m3

which allows us to state that (obvious) most computation is in the update of A22.

8



8 Other Algorithms

The algorithms that were described in Sections 3 and 5 are sometimes called the unblocked
and blocked right-looking algorithms. The idea is that relative to the current column or
block, the bulk of data with which one computes is to the right. In some of our papers we
also call these Variant 3.

There are other algorithms for this operation, which we describe next.

8.1 Bordered algorithm (Variant 1)

Another algorithm for computing A := Chol(A) can be derived as follows: Consider again
A = LLT . Partition

A =

(
A00 ?

aT
10 α11

)
and L =

(
L00 0

lT10 λ11

)
.

By substituting these partitioned matrices into A = LLT we find that(
A00 ?

aT
10 α11

)
=

(
L00 0

lT10 λ11

)(
L00 0

lT10 λ11

)T

=

(
L00L

T
00 ?

lT10L
T
00 lT10l10 + λ2

11

)

from which we conclude that

L00 = Chol(A)00 ?

lT10 = aT
10L

−T
00 λ11 =

√
α11 − lT10l10

.

These equalities motivate the algorithm

1. Partition A→

(
A00 ?

aT
10 α11

)
.

2. Assume that A00 := L00 = Chol(A00) has been computed by previous iterations of
the loop-based algorithm.

3. Overwrite aT
10 := lT10 = aT

10L
−T
00 .

4. Overwrite α11 :=
√

α11 − lT10l10.

This justifies the unblocked Variant 1 in Figure 5.
A blocked algorithm can be similarly derived: Partition

A =

(
A00 ?

A10 A11

)
and L =

(
L00 0

L10 L11

)
(2)

9



Algorithm: A := Chol unb(A)

Partition A→

(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Repartition(
ATL ?

ABL ABR

)
→

A00 ? ?

aT
10 α11 ?

A20 a21 A22


where α11 is 1× 1

Variant 1 (Bordered Algorithm)

aT
10 := aT

10tril(A00)
−T

α11 := α11 − aT
10a10

α11 :=
√

α11

Variant 2 (Left-looking Algorithm)

α11 := α11 − aT
10a10

α11 :=
√

α11

a21 := a21 − A20a10

a21 := a21/α11

Variant 3 (Right-looking Algorithm)

α11 :=
√

α11

a21 := a21/α11

A22 := A22 − tril(a21a
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?

aT
10 α11 ?

A20 a21 A22


endwhile

Algorithm: A := Chol blk(A)

Partition A→

(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?

A20 A21 A22


where A11 is b× b

Variant 1 (Bordered Algorithm)

A10 := A10tril(A00)
−T

A11 := A11 − A10A
T
10

A11 := Chol(A11)

Variant 2 (Left-looking Algorithm)

A11 := A11 − A10A
T
10

A11 := Chol(A11)

A21 := A21 − A20A
T
10

A21 := A21tril(A11)
−T

Variant 3 (Right-looking Algorithm)

A11 := Chol(A11)

A21 := A21 tril(A11)
−T

A22 := A22 − tril(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?

A10 A11 ?

A20 A21 A22


endwhile

Figure 5: Multiple variants for computing the Cholesky factorization.

10



By substituting these partitioned matrices into A = LLT we find that(
A00 ?

A10 A11

)
=

(
L00 0

L10 L11

)(
L00 0

L10 L11

)T

=

(
L00L

T
00 ?

L10L
T
00 L10L

T
10 + L11L

T
11

)
from which we conclude that

L00 = Chol(A)00 ?

L10 = A10L
−T
00 L11 = Chol(A11 − L10L10)

T
.

These equalities motivate the algorithm

1. Partition A→

(
A00 ?

A10 A11

)
.

2. Assume that A00 := L00 = Chol(A00) has been computed by previous iterations of
the loop-based algorithm.

3. Overwrite A10 := L10 = A10L
−T
00 .

4. Overwrite A11 := A11 − L10L
T
10.

5. Overwrite A11 := L11 = Chol(A11) (by calling, for example, the unblocked algorithm).

This justifies the blocked Variant 1 in Figure 5.

8.2 Left-looking algorithm (Variant 2)

Yet another algorithm for computing A := Chol(A) can be derived as follows: Consider
again A = LLT . This time partition

A =

 A00 ? ?

aT
10 α11 ?

A20 a21 A22

 and L =

 L00 0 0

lT10 λ11 0

L20 l21 L22

 (3)

By substituting these partitioned matrices into A = LLT we find that A00 ? ?

aT
10 α11 ?

A20 a21 A22

 =

 L00 0 0

lT10 λ11 0

L20 l21 L22


 L00 0 0

lT10 λ11 0

L20 l21 L22


T

=

 L00L
T
00 ? ?

lT10L
T
00 lT10l10 + λ2

11 ?

L20L
T
00 L20l10 + λ11l21 L20L

T
20 + l21l

T
21 + L22L

T
22


11



from which we conclude that

A00 = L00L
T
00 ? ?

aT
10 = lT10L

T
00 α11 = lT10l10 + λ2

11 ?

A20 = L20L
T
00 a21 = L20l10 + λ11l21 A22 = L20L

T
20 + l21l

T
21 + L22L

T
22

.

Now, let us assume that in previous iterations of the loop the computation has proceeded so
that A contains  L00 0 0

lT10 α11 0

L20 a21 A22

 .

The purpose of the current iteration is to make it so that A contains L00 0 0

lT10 λ11 0

L20 l21 A22

 .

The following algorithm accomplishes this:

1. Partition

A→

 A00 ? ?

aT
10 α11 ?

A20 a21 A22


and assume that due to computation from previous iterations it contains L00 0 0

lT10 α11 0

L20 a21 A22

 .

2. Overwrite α11 := λ11 =
√

α11 − lT10l10.

3. Overwrite a21 := a21 − L20l10.

4. Overwrite a21 := l21 = a21/λ11.

This justifies the unblocked Variant 2 in Figure 5.
A blocked algorithm can be similarly derived. Partition

A =

 A00 ? ?

A10 A11 ?

A20 A21 A22

 and L =

 L00 0 0

L10 L11 0

L20 L21 L22

 (4)

12



By substituting these partitioned matrices into A = LLT we find that A00 ? ?

A10 A11 ?

A20 A21 A22

 =

 L00 0 0

L10 L11 0

L20 L21 L22


 L00 0 0

L10 L11 0

L20 L21 L22


T

=

 L00L
T
00 ? ?

L10L
T
00 L10L

T
10 + L11L

T
11 ?

L20L
T
00 L20L

T
10 + L11L21 L20L

T
20 + L21L

T
21 + L22L

T
22


from which we conclude that

A00 = L00L
T
00 ? ?

A10 = L10L
T
00 A11 = L10L

T
10 + L2

11 ?

A20 = L20L
T
00 A21 = L20L

T
10 + L11L21 A22 = L20L

T
20 + L21L

T
21 + L22L

T
22

.

Now, let us assume that in previous iterations of the loop the computation has proceeded so
that A contains  L00 0 0

L10 A11 0

L20 A21 A22

 .

The purpose of the current iteration is to make it so that A contains L00 0 0

L10 L11 0

L20 L21 A22

 .

The following algorithm accomplishes this:

1. Partition

A→

 A00 ? ?

A10 A11 ?

A20 A21 A22


and assume that due to computation from previous iterations it contains L00 0 0

L10 A11 0

L20 A21 A22

 .

2. Overwrite A11 := L11 = Chol(A11 − L10L
T
10).

13



3. Overwrite A21 := A21 = A21 − L20L
T
10.

4. Overwrite A21 := L21 = A21L
−T
11 .

This justifies the blocked Variant 2 in Figure 5.

9 Coding the algorithms

As part of the FLAME project at The University of Texas at Austin, Universidad Jaume I,
Spain, and RWTH Aachen University, Germany, we have developed APIs for coding these
algorithms that make it so that the code closely resembles the algorithms.

The demonstrate how these codes are written, we created a video titled High-Performance
Implementation of Cholesky Factorization that can be found at

http://www.cs.utexas.edu/users/flame/Movies.html#Chol.

Exercise 14. Implement all the algorithms in Figure 5 in M-script (the scripting language of
Matlab and Octave).

Exercise 15. Implement all the algorithms in Figure 5 using the FLAME/C API mentioned
in the video.

10 Performance

In Figure 6 we show the performance attained on a multicore architecture.
All experiments were performed using double-precision floating-point arithmetic on a

Dell/PowerEdge-1435 powered by a Intel Xeon X5355 (2.666 GHz) processor. This particular
architecture has four cores, each of which has a clock rate of about 2.7GHz and each core
can perform four floating point operations per clock cycle. Thus, the peak of this machine is

4 cores × 4 FLOPS

cycle
× 2.7× 109 cycles

core
≈ 43× 109FLOPS = 43GFLOPS.

What the graph shows is the problem size for which performance was measured along
the x-axis and the rate at which the algorithm computed along the y-axis. The rate was
computed by, for a given time, measuring the time required to complete the computation, t(n)
(in seconds), and then dividing the number of floating point operations by this time. This
gives the rate, in floating point operations per second (FLOPS), at which the computation
executed. Since this is a number measured in billions, we then divide this number by a
billion to get the rate in GFLOPS (GigaFLOPS, or billions of floating point operations per
second):

rate in GFLOPS =
n3

t(n)× 109
.

14



0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000

G
F

L
O

P
S

/s
e
c
.

matrix dimension m=n

libflame

reference

UnbVar1

UnbVar2

UnbVar3

BlkVar1

BlkVar2

BlkVar3

Figure 6: Performance of the various algorithms on a 16 core architecture. The peak of this
architecture is around 40 GFLOPS.

Thus, our implementations reach about 2/3 of the peak of the processor, which is very good
for this operation. It would be worthwhile to play with the block size (which we chose to be
128) to see if changing it improves performance.

In the graph we do not show the performance of the LAPACK routine for Cholesky
factorization, DPOTRF. In other experiments we did compare against a version of that routine
that we changed so that we could control the block size that it uses. It then attains exactly
the same performance as our blocked Variant 2 (and hence less than our blocked Variant 3
and the libflame routine FLA Chol).

11 Additional Reading

The interested reader may be interested in the following documents:

1. A paper that illustrates how different algorithmic variants for Cholesky factorization
and related operations should be chosen for different kinds of architectures, ranging
from sequential processors to multithreaded (multicore) architectures to distributed
memory parallel computers.

Paolo Bientinesi, Brian Gunter, and Robert A. van de Geijn. Families of

15



algorithms related to the inversion of a symmetric positive definite matrix.
ACM Transactions on Mathematical Software, 35(1).

2. Two papers that show how matrix-matrix operations can achieve near-peak perfor-
mance:

Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance
matrix multiplication. ACM Trans. Math. Soft., 34(3: Article 12, 25 pages),
May 2008.

and

Kazushige Goto and Robert van de Geijn. High-performance implementa-
tion of the level-3 BLAS. ACM Trans. Math. Softw., 35(1):1–14, 2008.

3. A book that shows how to systematically derive all loop-based algorithms for a broad
range of linear algebra operations, including Cholesky factorization:

Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Pro-
gramming Matrix Computations. http://www.lulu.com/content/1911788,
2008.

4. The User’s Guide for the libflame library, a modern replacement for the LAPACK
library that is coded using the APIs mentioned in the movie:

Field G. Van Zee. libflame: The Complete Reference. www.lulu.com,
2009.

5. An overview of the FLAME project:

Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-
Ort́ı, and Gregorio Quintana-Ort́ı. Introducing: The libflame library for
dense matrix computations. IEEE Computation in Science & Engineering,
11(6):56–62, 2009.

16


