Families of Algorithms for Reducing a Matrix to Condensed Form

FIELD G. VAN ZEE
The University of Texas at Austin
and
ROBERT A. VAN DE GEIJN
The University of Texas at Austin
and
GREGORIO QUINTANA-ORTí
Universidad Jaume I
and
G. JOSEPH ELIZONDO
The University of Texas at Austin

Abstract

In a recent paper it was shown how memory traffic can be diminished by reformulating the classic algorithm for reducing a matrix to bidiagonal form, a preprocess when computing the singular values of a dense matrix. The key is a reordering of the computation so that the most memoryintensive operations can be "fused". In this paper, we show that other operations that reduce matrices to condensed form (reduction to upper Hessenberg form and reduction to tridiagonal form) can be similarly reorganized, yielding different sets of operations that can be fused. By developing the algorithms with a common framework and notation, we facilitate the comparing and contrasting of the different algorithms and opportunities for optimization. We discuss the algorithms, develop a simple model to estimate the speedup potential from fusing, and showcase performance improvements consistent with the what the model predicts.

Categories and Subject Descriptors: G. 4 [Mathematical Software]: -Efficiency General Terms: Algorithms; Performance Additional Key Words and Phrases: linear algebra, libraries, high-performance

1. INTRODUCTION

For many dense linear algebra operations, such as Cholesky, LU, and QR factorizations, there exist algorithms that cast most of the computation in terms of matrix-

[^0]matrix operations that can overcome the memory bandwidth bottleneck common to most modern processors [Dongarra et al. 1989; Dongarra et al. 1991; Dongarra et al. 1990; Anderson et al. 1999]. Reduction to condensed form operations-specifically, reduction to upper Hessenberg, tridiagonal, and bidiagonal form - are important exceptions. For these operations, reducing the number of times data must be brought in from memory is the key to optimizing performance since inherently $O\left(n^{3}\right)$ reads to and writes from memory are incurred while $O\left(n^{3}\right)$ floating-point operations are performed on an $n \times n$ matrix.

It should be noted that there are algorithms for reduction to condensed form based on successive band reduction that cast most computation in terms of cacheefficient matrix-matrix operations [Bischof et al. 1994; Lang 1999; Bischof et al. 2000; Bientinesi et al. 2011]. Such algorithms are much faster than those presented in the present paper. However, reduction to condensed form is typically not a useful operation in isolation. While successive band reduction yields a faster reduction to condensed form, it adversely affects the performance of other parts of eigensolvers and/or SVD computations. The present paper does not compare against successive band reduction precisely because the authors believe that such a comparison is only meaningful in the context of a complete eigensolver or SVD solver. Thus, we only give a comprehensive treatment of direct algorithms for reduction to condensed form.

The Basic Linear Algebra Subprograms (BLAS) [Lawson et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990] provide an interface to commonly used computational kernels in terms of which linear algebra routine can be written. The idea is that if these kernels are optimized, then implementations of algorithms for computing more complex operations benefit in a portable fashion. As we will see, the problem is that the interface itself is limiting and can stand in the way of minimizing memory traffic. In response, as part of the BLAST Forum [BLAST 2002], additional, more complex, operations were suggested for inclusion in the BLAS. Unfortunately, the extensions proposed by the BLAST forum are not as well-supported as the original BLAS. In [Howell et al. 2008], it was shown how one of the reduction to condensed form operations, reduction to bidiagonal form, benefits from this new functionality in the BLAS.

This paper presents algorithms for all three major reduction to condensed form operations (reduction to upper Hessenberg, tridiagonal, and bidiagonal form) with the FLAME notation [Gunnels et al. 2001]. This facilitates comparing and contrasting different algorithms for the same operation and similar algorithms for different operations [Quintana et al. 2001; Gunnels et al. 2001; Bientinesi et al. 2005; van de Geijn and Quintana-Ortí 2008]. The paper shows how the techniques used to reduce memory traffic in the reduction to bidiagonal form algorithm, already reported in [Howell et al. 2008], can be applied to similarly reduce such traffic when computing a reduction to upper Hessenberg or tridiagonal form (although each has different potential for improvement). It identifies sequences of operations within the algorithms for reduction to condensed form that can be "fused." (A sequence of operations is eligible for fusing when the operations share one or more operands in common, allowing the computations to be merged in an effort to reduce the cost due to memory traffic.) Such compound operations have been referred to as "Level-2.5

BLAS." It demonstrates the relative merits of different algorithms and optimizations that combine algorithms. Additionally, the paper illustrates the difference between two styles of fusing, "cache-level" fusing and "register-level" fusing, and in doing so exposes why the latter yields superior performance. All the presented algorithms are implemented as part of the libflame library [Van Zee 011a; Van Zee et al. 2009]. Thus the paper also provides documentation for that library's support of the target operations. The family of implementations and related benchmarking codes are available as part of libflame so that others can experiment with optimizations of the fused operations and the effect on performance.

2. HOUSEHOLDER TRANSFORMATIONS (REFLECTORS)

We start by reviewing a few basic properties of Householder transformations. For simplicity, we focus only on computation over real matrices. However, the the algorithms and results presented in this paper generalize to the complex domain, and a related technical report [Van Zee et al. 010b] gives examples of how to express the computation accordingly.

2.1 Computing Householder vectors and transformations

Definition 1. Let $u \in \mathbb{R}^{n}, \tau \in \mathbb{R}$. Then $H=H(u)=I-u u^{T} / \tau$, where $\tau=\frac{1}{2} u^{T} u$, is said to be a reflector or Householder transformation.

We observe:
—Let z be any vector that is perpendicular to u. Applying a Householder transform $H(u)$ to z leaves the vector unchanged: $H(u) z=z$.
-Let any vector x be written as $x=z+u^{T} x u$, where z is perpendicular to u and $u^{T} x u$ is the component of x in the direction of u. Then $H(u) x=z-u^{T} x u$.

This can be interpreted as follows: The space perpendicular to u acts as a "mirror": any vector in that space (along the mirror) is not reflected, while any other vector has the component that is orthogonal to the space (the component outside and orthogonal to the mirror) reversed in direction. Notice that a reflection preserves the length of the vector. Also, it is easy to verify that:
(1) $H H=I$ (reflecting the reflection of a vector results in the original vector);
(2) $H=H^{T}$, and so $H^{T} H=H H^{T}=I$ (a reflection is an orthogonal matrix and thus preserves the norm); and
(3) if H_{0}, \cdots, H_{k-1} are Householder transformations and $Q=H_{0} H_{1} \cdots H_{k-1}$, then $Q^{T} Q=Q Q^{T}=I$ (an accumulation of reflectors is an orthogonal matrix).

As part of the reduction to condensed form operations, given a vector x we will wish to find a Householder transformation, $H(u)$, such that $H(u) x$ equals a vector with zeroes below the first element: $H(u) x=\mp\|x\|_{2} e_{0}$ where e_{0} equals the first column of the identity matrix. It can be easily checked that choosing $u=x \pm\|x\|_{2} e_{0}$ yields the desired $H(u)$. Notice that any nonzero scaling of u has the same property, and the convention is to scale u so that the first element equals one. Let us define $[u, \tau, h]=\operatorname{Housev}(x)$ to be the function that returns u with first element equal to one, $\tau=\frac{1}{2} u^{T} u$, and $h=H(u) x$.

2.2 Computing $A u$ from $A x$

Later, we will see that given a matrix A, we will need to form $A u$ where u is computed by $\operatorname{Housev}(x)$, but we will do so by first computing $A x$. Let

$$
x \rightarrow\left(\frac{\chi_{1}}{x_{2}}\right), \quad v \rightarrow\left(\frac{\nu_{1}}{v_{2}}\right), \quad u \rightarrow\left(\frac{v_{1}}{u_{2}}\right)
$$

$v=x-\alpha e_{0}$, and $u=v / \nu_{1}$, with $\alpha=-\operatorname{sign}\left(\chi_{1}\right)\|x\|_{2}\left(\right.$ and thus $\left.v_{1}=1\right)$. Then

$$
\begin{align*}
\|x\|_{2} & =\left\|\left(\frac{\chi_{1}}{\left\|x_{2}\right\|_{2}}\right)\right\|_{2},\|v\|_{2}=\left\|\left(\frac{\chi_{1}-\alpha}{\left\|x_{2}\right\|_{2}}\right)\right\|_{2},\|u\|_{2}=\|v\|_{2} /\left(\chi_{1}-\alpha\right) \tag{1}\\
\tau & =\frac{u^{T} u}{2}=\frac{\|u\|_{2}^{2}}{2}=\frac{\|v\|_{2}^{2}}{2\left(\chi_{1}-\alpha\right)^{2}} \tag{2}\\
w & =A x \quad \text { and } \quad A u=\frac{A\left(x-\alpha e_{0}\right)}{\left(\chi_{1}-\alpha\right)}=\frac{\left(w-\alpha A e_{0}\right)}{\left(\chi_{1}-\alpha\right)} \tag{3}
\end{align*}
$$

We note that $A e_{0}$ simply equals the first column of A. We will assume that various results in Eq. (1)-(2) are computed by the function $\operatorname{Houses}(x)$ where $\left[\chi_{1}-\alpha, \tau, \alpha\right]=$ $\operatorname{Houses}(x) .{ }^{1}$ Then, the desired vector $A u$ can be computed via Eq. (3).

2.3 Accumulating transformations

Consider the transformation formed by multiplying b Householder transformations $\left(I-u_{j} u_{j}^{T} / \tau_{j}\right)$, for $0 \leq j<b-1$. If $U=\left(u_{0}\left|u_{1}\right| \cdots \mid u_{b-1}\right)$, then

$$
\left(I-u_{0} u_{0}^{T} / \tau_{0}\right)\left(I-u_{1} u_{1}^{T} / \tau_{1}\right) \cdots\left(I-u_{b-1} u_{b-1}^{T} / \tau_{b-1}\right)=\left(I-U T^{-1} U^{T}\right)
$$

Here $T=\frac{1}{2} D+S$ where D and S equal the diagonal and strictly upper triangular parts of $U^{T} U=S^{T}+D+S$. Later we will use the fact that if

$$
U=\left(U_{0} \mid u_{1}\right) \text { and } \quad T=\left(\begin{array}{c|c}
T_{00} & t_{01} \\
\hline 0 & \tau_{11}
\end{array}\right)
$$

then

$$
t_{01}=U_{0}^{T} u_{1}, \quad \tau_{11}=\frac{u_{1}^{T} u_{1}}{2}, \quad \text { and } \quad\left(\begin{array}{c|c}
T_{00} & t_{01} \\
\hline 0 & \tau_{11}
\end{array}\right)^{-1}=\left(\begin{array}{c|c}
T_{00}^{-1} & -T_{00}^{-1} t_{01} / \tau_{11} \\
\hline 0 & \tau_{11}^{-1}
\end{array}\right)
$$

For further details, see [Joffrain et al. 2006; Puglisi 1992; Sun 1996; Walker 1988]. Alternative ways for accumulating transformations are the WY-transform [Bischof and Van Loan 1987] and compact WY-transform [Schreiber and Van Loan 1989].

3. REDUCTION TO UPPER HESSENBERG FORM

In the first step towards computing the Schur decomposition of a matrix A, the matrix is reduced to upper Hessenberg form: $A \rightarrow Q B Q^{T}$ where B is an upper Hessenberg matrix (zeroes below the first subdiagonal) and Q is orthogonal.
Algorithm: $[A]:=$ HessRed_unB (b, A)
Partition $A \rightarrow\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right), u \rightarrow\left(\frac{u_{T}}{u_{B}}\right), y \rightarrow\left(\frac{y_{T}}{y_{B}}\right), z \rightarrow\left(\frac{z_{T}}{z_{B}}\right)$
where $A_{T L}$ is 0×0 and u_{T}, y_{T}, and z_{T} have 0 rows
while $m\left(A_{T L}\right)<b$ do
Repartition

$$
\begin{aligned}
& \left(\begin{array}{c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline a_{10}^{T} & \alpha_{11} & a_{12}^{T} \\
\hline A_{20} & a_{21} & A_{22}
\end{array}\right), \\
& \left(\frac{u_{T}}{u_{B}}\right) \rightarrow\left(\frac{u_{01}}{v_{11}} u_{21}\right),\left(\frac{y_{T}}{y_{B}}\right) \rightarrow\left(\frac{\frac{y_{01}}{\psi_{11}}}{y_{21}}\right),\left(\frac{z_{T}}{z_{B}}\right) \rightarrow\left(\frac{z_{01}}{\zeta_{11}} \frac{z_{21}}{}\right)
\end{aligned}
$$

where $\alpha_{11}, v_{11}, \psi_{11}, \zeta_{11}$ are scalars

Continue with

$$
\begin{aligned}
& \left(\begin{array}{c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline a_{10}^{T} & \alpha_{11} & a_{12}^{T} \\
\hline A_{20} & a_{21} & A_{22}
\end{array}\right), \\
& \left(\frac{u_{T}}{u_{B}}\right) \leftarrow\left(\frac{\frac{u_{01}}{v_{11}}}{u_{21}}\right),\left(\frac{y_{T}}{y_{B}}\right) \leftarrow\left(\frac{\frac{y_{01}}{\psi_{11}}}{y_{21}}\right),\left(\frac{z_{T}}{z_{B}}\right) \leftarrow\left(\frac{z_{01}}{\zeta_{11}}\right)
\end{aligned}
$$

endwhile

Fig. 1. Unblocked algorithms for reduction to upper Hessenberg form. The first and second fused operations in the "Basic unblocked 2" algorithm correspond to the BLAS 2.5 operations GEMVT and GER2, respectively [BLAST 2002]. Operations marked with (\star) are not executed during the first iteration.

3.1 Unblocked algorithm

The basic algorithm for reducing the matrix to upper Hessenberg form, overwriting the original matrix with the result, can be explained as follows.
—Partition $A \rightarrow\left(\begin{array}{l|l}\alpha_{11} & a_{12}^{T} \\ \hline a_{21} & A_{22}\end{array}\right)$.

- Let $\left[u_{21}, \tau, a_{21}\right]:=\operatorname{Housev}\left(a_{21}\right) .^{2}$
-Update

$$
\left(\begin{array}{c|c}
a_{01} & A_{02} \\
\hline \alpha_{11} & a_{12}^{T} \\
\hline a_{21} & A_{22}
\end{array}\right):=\left(\begin{array}{c|c|c}
I & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 0 & 0 & H
\end{array}\right)\left(\begin{array}{c|c}
a_{01} & A_{02} \\
\hline \alpha_{11} & a_{12}^{T} \\
\hline a_{21} & A_{22}
\end{array}\right)\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & H
\end{array}\right)=\left(\begin{array}{c|c}
a_{01} & A_{02} H \\
\hline \alpha_{11} & a_{12}^{T} H \\
\hline H a_{21} & H A_{22} H
\end{array}\right)
$$

where $H=H\left(u_{21}\right)$. Note that $a_{21}:=H a_{21}$ need not be executed since this update was performed by the instance of HOUSEV above. ${ }^{3}$
-Continue this process with the updated A_{22}.
This is captured in the algorithm in Figure 1 (top), in which it is recognized that as the algorithm proceeds beyond the first iteration, the submatrix A_{20} must also be updated. As formulated, the submatrix A_{22} has to be read and written in the first highlighted operation and submatrices A_{02}, a_{12}^{T}, and A_{22} must be read and written in the second highlighted operation in Figure 1 (top) assuming the operations in the highlighted boxed are fused. Thus, the bulk of memory operations then lie with A_{22} being read and written twice and A_{20} being read and written once.

Let us look at the update of A_{22} in Figure 1 (top) in more detail:

$$
\begin{aligned}
A_{22} & :=H A_{22} H=\left(I-u_{21} u_{21}^{T} / \tau\right) A_{22}\left(I-u_{21} u_{21}^{T} / \tau\right) \\
& =A_{22}-u_{21}(\underbrace{A_{22}^{T} u_{21}}_{v_{21}})^{T} / \tau-(\underbrace{A_{22} u_{21}}_{w_{21}}) u_{21}^{T} / \tau+(u_{21}^{T} \underbrace{A_{22} u_{21}}_{w_{21}}) u_{21} u_{21}^{T} / \tau^{2} \\
& =A_{22}-u_{21} v_{21}^{T} / \tau-w_{21} u_{21}^{T} / \tau+\underbrace{u_{21}^{T} w_{21}}_{2 \beta} u_{21} u_{21}^{T} / \tau^{2} \\
& =A_{22}-u_{21}(\underbrace{\left.\left(v_{21}-\beta u_{21} / \tau\right) / \tau\right)}_{y_{21}})^{T}-\underbrace{\left(\left(w_{21}-\beta u_{21} / \tau\right) / \tau\right)}_{z_{21}} u_{21}^{T} \\
& =A_{22}-\left(u_{21} y_{21}^{T}+z_{21} u_{21}^{T}\right) .
\end{aligned}
$$

This motivates the algorithm in Figure 1 (left). The problem with this algorithm is that, when implemented using traditional level-2 BLAS, it requires A_{22} to be read four times and written twice. If the operations in the highlighted boxes are instead fused, then A_{22} needs only be read twice and written once.

What we will show next is that by delaying the update $A_{22}:=A_{22}-\left(u_{21} y_{21}^{T}+\right.$ $z_{21} u_{21}^{T}$) until the next iteration, we can reformulate the algorithm so that A_{22}

[^1]ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
needs only be read and written once per iteration. Let us focus on the update $A_{22}:=A_{22}-\left(u_{21} y_{21}^{T}+z_{21} u_{21}^{T}\right)$. Partition

$$
A_{22} \rightarrow\left(\begin{array}{c|c}
\alpha_{11}^{+} & a_{12}^{+T} \\
\hline a_{21}^{+} & A_{22}^{+}
\end{array}\right), \quad u_{21} \rightarrow\left(\frac{v_{1}^{+}}{u_{21}^{+}}\right), \quad y_{21} \rightarrow\left(\frac{\psi_{1}^{+}}{y_{21}^{+}}\right), \quad z_{21} \rightarrow\left(\frac{\zeta_{1}^{+}}{z_{21}^{+}}\right),
$$

where + indicates the partitioning in the next iteration. Then $A_{22}:=A_{22}-$ $\left(u_{21} y_{21}^{T}+z_{21} u_{21}^{T}\right)$ translates to

$$
\left.\begin{array}{rl}
\left(\begin{array}{c|c|c}
\alpha_{11}^{+} & a_{12}^{+T} \\
\hline a_{21}^{+} & A_{22}^{+}
\end{array}\right) & :=\left(\left.\frac{\alpha_{11}^{+} \mid a_{12}^{+T}}{a_{21}^{+}} \right\rvert\, A_{22}^{+}\right.
\end{array}\right)-\left(\left(\frac{v_{1}^{+}}{u_{21}^{+}}\right)\left(\frac{\psi_{1}^{+}}{y_{21}^{+}}\right)^{T}+\left(\frac{\zeta_{1}^{+}}{z_{21}^{+}}\right)\left(\frac{v_{1}^{+}}{u_{21}^{+}}\right)^{T}\right),
$$

which shows what computation would need to be performed if the update of A_{22} is delayed until the next iteration. Now, before $v_{21}=A_{22}^{T} u_{21}$ and $z_{21}=A_{22} u_{21}$ can be computed in the next iteration, $\operatorname{Housev}\left(a_{21}\right)$ has to be computed, which requires a_{21} to be updated. But what is important is that A_{22} can be updated by the two rank-1 updates from the previous iterations just before $v_{21}=A_{22}^{T} u_{21}$ and $w_{21}=$ $A_{22} u_{21}$ are computed, which allows them to be "fused" into one operation that reads and writes A_{22} to and from memory only once. The algorithm in Figure 1 (right) takes advantage of these insights. To our knowledge it has not been previously published.

3.2 Lazy algorithm

We now show how the reduction to upper Hessenberg form can be restructured so that the update $A_{22}:=A_{22}-\left(u_{21} y_{21}^{T}+z_{21} u_{21}^{T}\right)$ during each step can be avoided. This algorithm in and by itself is not practical, since (1) it requires too much temporary space, and (2) intermediate matrix-vector multiplications, which incur additional memory reads, eventually begin to dominate the operation. But it will become an integral part of the blocked algorithm discussed in Section 3.4. This algorithm was first reported in [Dongarra et al. 1989].

The rather curious choice of subscripts for u_{21}, and y_{21}, and z_{21} now becomes apparent: By passing matrices U, Y, and Z into the algorithm in Figure 1, and partitioning them just like we do A in that algorithm, we can accumulate the subvectors u_{21}, y_{21} and z_{21} into those matrices. Now, let us assume that at the top of the loop $A_{B R}$ has not yet been updated. Then $\alpha_{11}, a_{21}, a_{12}^{T}$ and A_{22} have not yet been updated, which means we cannot perform many of the computations in the current iteration. However, if we let $\hat{\alpha}_{11}, \hat{a}_{21}, \hat{a}_{12}^{T}$, and \hat{A}_{22} denote the original values in A in those locations, then the desired α_{11}, a_{21}, and a_{12}^{T} are given by

$$
\begin{aligned}
\alpha_{11} & =\hat{\alpha}_{11}-u_{10}^{T} y_{10}-z_{10}^{T} u_{10} \\
a_{21} & =\hat{a}_{21}-U_{20}^{T} y_{10}-Z_{20}^{T} u_{10} \\
a_{12}^{T} & =\hat{a}_{12}^{T}-u_{10}^{T} Y_{20}^{T}-z_{10}^{T} U_{20}^{T} \\
A_{22} & =\hat{A}_{22}-U_{20} Y_{20}^{T}-Z_{20} U_{20}^{T} .
\end{aligned}
$$

Thus, we start the iteration by updating in this fashion these parts of A.

```
Algorithm: \([A, U, Y, Z]:=\) HessRed_LaZY_UNB \((b, A, U, Y, Z)\)
Partition \(X \rightarrow\left(\begin{array}{c|c}X_{T L} & X_{T R} \\ \hline X_{B L} & X_{B R}\end{array}\right)\)
for \(X \in\{A, U, Y, Z\}\)
    where \(X_{T L}\) is \(0 \times 0\)
while \(n\left(U_{T L}\right)<b\) do
    Repartition
        \(\left(\begin{array}{c|c}X_{T L} & X_{T R} \\ \hline X_{B L} & X_{B R}\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}X_{00} & x_{01} & X_{02} \\ \hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\ \hline X_{20} & x_{21} & X_{22}\end{array}\right)\)
        for \((X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(Y, y, \psi),(Z, z, \zeta)\}\)
            where \(\chi_{11}\) is a scalar
    \(\alpha_{11}:=\alpha_{11}-u_{10}^{T} y_{10}-z_{10}^{T} u_{10}\)
    \(a_{21}:=a_{21}-U_{20} y_{10}-Z_{20} u_{10}\)
    \(a_{12}^{T}:=a_{12}^{T}-u_{10}^{T} Y_{20}^{T}-z_{10}^{T} U_{20}^{T}\)
    \(\left[u_{21}, \tau, a_{21}\right]:=\operatorname{HOUSEv}\left(a_{21}\right)\)
    \(y_{21}:=A_{22}^{T} u_{21}\)
    \(z_{21}:=A_{22} u_{21}\)
    \(y_{21}:=y_{21}-Y_{20}\left(U_{20}^{T} u_{21}\right)-U_{20}\left(Z_{20}^{T} u_{21}\right)\)
    \(z_{21}:=z_{21}-U_{20}\left(Y_{20}^{T} u_{21}\right)-Z_{20}\left(U_{20}^{T} u_{21}\right)\)
    \(\beta:=u_{21}^{T} z_{21} / 2\)
    \(y_{21}:=\left(y_{21}-\beta u_{21} / \tau\right) / \tau\)
    \(z_{21}:=\left(z_{21}-\beta u_{21} / \tau\right) / \tau\)
    \(a_{12}^{T}:=a_{12}^{T}-a_{12}^{T} u_{21} u_{21}^{T} / \tau\)
    \(A_{02}:=A_{02}-A_{02} u_{21} u_{21}^{T} / \tau\)
```

 Continue with
 ntinue with
 $\left.\qquad \begin{array}{c|l|l|l}X_{T L} & X_{T R} \\ \hline X_{B L} & X_{B R}\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}X_{00} & x_{01} & X_{02} \\ \hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\ \hline X_{20} & x_{21} & X_{22}\end{array}\right)$
for $(X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(Y, y, \psi),(Z, z, \zeta)\}$
endwhile

Fig. 2. Lazy unblocked algorithm for reduction to upper Hessenberg form. The first fused operation corresponds to the BLAS 2.5 operation GEMVT [BLAST 2002].

Next, we observe that the updated A_{22} itself is not actually needed in updated form: We need to be able to compute $A_{22}^{T} u_{21}$ and $A_{22} u_{21}$. But this can be done via the alternative computations

$$
\begin{aligned}
& y_{21}:=A_{22}^{T} u_{21}=\hat{A}_{22}^{T} u_{21}-Y_{20}\left(U_{20}^{T} u_{21}\right)-U_{20}\left(Z_{20}^{T} u_{21}\right) \\
& z_{21}:=A_{22} u_{21}=\hat{A}_{22} u_{21}-U_{20}\left(Y_{20}^{T} u_{21}\right)-Z_{20}\left(U_{20}^{T} u_{21}\right)
\end{aligned}
$$

which requires only matrix-vector multiplications. This inspires the algorithm in Figure 2.

3.3 GQvdG unblocked algorithm

The lazy algorithm discussed above requires at each step a matrix-vector and a transposed matrix-vector multiply which can be fused so that the matrix only needs to be brought into memory once. In this section, we show how the bulk of computation (and associated memory traffic) can be cast in terms of a single

Algorithm: $[A, U, Z, T]:=\operatorname{HessR}$
Partition $X \rightarrow\left(\begin{array}{l\|l}X_{T L} & X_{T R} \\ \hline X_{B L} & X_{B R}\end{array}\right)$

for $X \in\{A, U, Z, T\}$
where $X_{T L}$ is 0×0
while $n\left(U_{T L}\right)<b$ do
Repartition

$$
\left(\begin{array}{c|c}
X_{T L} & X_{T R} \\
\hline X_{B L} & X_{B R}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
X_{00} & x_{01} & X_{02} \\
\hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\
\hline X_{20} & x_{21} & X_{22}
\end{array}\right)
$$

for $(X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(Z, z, \zeta),(T, t, \tau)\}$
where χ_{11} is a scalar

$$
\left.\begin{array}{l}
\left(\frac{\frac{a_{01}}{\alpha_{11}}}{a_{21}}\right):=\left(\frac{a_{01}}{\frac{\alpha_{11}}{a_{21}}}\right)-\left(\frac{Z_{00}}{\frac{z_{10}^{T}}{Z_{20}}}\right) T_{00}^{-1} u_{10} \\
\left(\frac{a_{01}}{\frac{\alpha_{11}}{a_{21}}}\right):=\left(I-\left(\frac{U_{00}}{\frac{u_{10}^{T}}{U_{20}}}\right) T_{00}^{-1}\left(\frac{U_{00}}{\frac{u_{10}^{T}}{U_{20}}}\right)^{T}\right)^{T}\left(\frac{a_{01}}{\frac{\alpha_{11}}{a_{21}}}\right) \\
{\left[u_{21}, \tau_{11}, a_{21}\right]:=\operatorname{Housev}\left(a_{21}\right)} \\
\left(\frac{z_{01}}{\zeta_{11}}\right):=\left(\frac{A_{02}}{z_{21}^{T}}\right. \\
a_{22}^{T}
\end{array}\right) u_{21}, U_{20}^{T} u_{21},
$$

Continue with

$$
\begin{aligned}
& \text { ntinue with } \\
& \left.\qquad \begin{array}{c|c|c|c}
X_{T L} & X_{T R} \\
\hline X_{B L} & X_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}
X_{00} & x_{01} & X_{02} \\
\hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\
\hline X_{20} & x_{21} & X_{22}
\end{array}\right)
\end{aligned}
$$

$$
\text { for }(X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(Z, z, \zeta),(T, t, \tau)\}
$$

endwhile

Fig. 3. GQvdG unblocked algorithm for the reduction to upper Hessenberg form.
matrix multiplication per iteration with a much simpler algorithm that does not require fusing and thus no special implementation of the fused operation. This algorithm was first proposed by G. Quintana and van de Geijn in [Quintana-Ortí and van de Geijn 2006], which is why we call it the GQvdG unblocked algorithm. It is summarized in Figure 3.

The underlying idea builds upon how Householder transformations can be accumulated: The first b updates can be accumulated into a lower trapezoidal matrix U and upper triangular matrix T so that

$$
\left(I-u_{0} u_{0}^{T} / \tau_{0}\right)\left(I-u_{1} u_{1}^{T} / \tau_{1}\right) \cdots\left(I-u_{b-1} u_{b-1}^{T} / \tau_{b-1}\right)=\left(I-U T^{-1} U^{T}\right)
$$

After b iterations the basic unblocked algorithm overwrites matrix A with

$$
\begin{aligned}
A^{(b)} & =H\left(u_{b-1}\right) \cdots H\left(u_{0}\right) \hat{A} H\left(u_{0}\right) \cdots H\left(u_{b-1}\right) \\
& =\left(I-u_{b-1} u_{b-1}^{T} / \tau_{b-1}\right) \cdots\left(I-u_{0} u_{0}^{T} / \tau_{0}\right) \hat{A}\left(I-u_{0} u_{0}^{T} / \tau_{0}\right) \cdots H\left(u_{b-1}\right) \\
& =\left(I-U T^{-1} U^{T}\right)^{T} \hat{A}\left(I-U T^{-1} U^{T}\right)=\left(I-U T^{-1} U^{T}\right)^{T}(\hat{A}-\underbrace{\hat{A} U}_{Z} T^{-1} U^{T}) \\
& =\left(I-U T^{-1} U^{T}\right)^{T}\left(\hat{A}-Z T^{-1} U^{T}\right),
\end{aligned}
$$

where \hat{A} denotes the original contents of A.
Let us assume that this process has proceeded for k iterations. Partition

$$
X \rightarrow\left(\begin{array}{c|c}
X_{T L} & X_{T R} \\
\hline X_{B L} & X_{B R}
\end{array}\right) \text { for } X \in\{A, \hat{A}, U, Z, T\}
$$

where $X_{T L}$ is $k \times k$. Then

$$
\begin{aligned}
& A^{(k)}=\left(\begin{array}{c|c}
A_{T L}^{(k)} & A_{T R}^{(k)} \\
\hline A_{B L}^{(k)} & A_{B R}^{(k)}
\end{array}\right)= \\
& \left(I-\left(\frac{U_{T L}}{U_{B L}}\right) T_{T L}^{-1}\left(\frac{U_{T L}}{U_{B L}}\right)^{T}\right)^{T}\left(\left(\begin{array}{c|c}
\hat{A}_{T L} & \hat{A}_{T R} \\
\hline \hat{A}_{B L} & \hat{A}_{B R}
\end{array}\right)-\left(\frac{Z_{T L}}{Z_{B L}}\right) T_{T L}^{-1}\left(\frac{U_{T L}}{U_{B L}}\right)^{T}\right) .
\end{aligned}
$$

Now, assume that after the first k iterations our algorithm leaves our variables in the following states:
$-A=\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right)$ contains $\left(\begin{array}{c|c}A_{T L}^{(k)} & \hat{A}_{T R} \\ \hline A_{B L}^{(k)} & \hat{A}_{B R}\end{array}\right)$. In other words, the first k columns have been updated and the rest of the columns are untouched.
-Only $\left(\frac{U_{T L}}{U_{B R}}\right), T_{T L}$, and $\left(\frac{Z_{T R}}{Z_{B R}}\right)$ have been updated.
The question is how to advance the computation. Now, at the top of the loop, we expose

$$
\left(\begin{array}{c|c}
X_{T L} & X_{T R} \\
\hline X_{B L} & X_{B R}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
X_{00} & x_{01} & X_{02} \\
\hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\
\hline X_{20} & x_{21} & X_{22}
\end{array}\right)
$$

for $(X, x, \chi) \in\{(A, a, \alpha),(\hat{A}, \hat{a}, \hat{\alpha}),(U, u, v),(Z, z, \zeta),(T, t, \tau)$. In order to compute the next Householder transformation, the next column of A must be updated according to prior computation:

$$
\left(\frac{a_{01}}{\alpha_{11}} a_{21}\right)=\left(I-\left(\frac{U_{00}}{\frac{u_{10}^{T}}{U_{20}}}\right) T_{00}^{-1}\left(\frac{U_{00}}{\frac{u_{10}^{T}}{U_{20}}}\right)^{T}\right)^{T}(\left(\frac{a_{01}}{\alpha_{11}} a_{21}\right)-\underbrace{\left(\frac{Z_{00}}{\frac{z_{10}^{T}}{Z_{20}}}\right) T_{00}^{-1} u_{10}}_{\text {column } k \text { of } Z_{k} T_{k}^{-1} U_{k}^{T}}),
$$

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
which means first updating

$$
\left(\frac{a_{01}}{\alpha_{11}}\right):=\left(\frac{\frac{a_{01}-Z_{00} w_{10}}{a_{21}}}{\frac{\alpha_{11}-z_{10}^{T} w_{10}}{a_{21}-Z_{20} w_{10}}}\right)
$$

where $w_{10}=T_{00}^{-1} u_{10}$. Next, we need to perform the update

$$
\left.\begin{array}{rl}
\left(\frac{a_{01}}{\alpha_{11}}\right. \\
a_{21}
\end{array}\right):=\left(I-\left(\frac{U_{00}}{\frac{u_{10}^{T}}{U_{20}}}\right) T_{00}^{-1}\left(\frac{\frac{U_{00}}{u_{10}^{T}}}{U_{20}}\right)^{T}\right)^{T}\left(\frac{\frac{a_{01}}{\alpha_{11}}}{a_{21}}\right) .
$$

where $y_{10}=T_{00}^{-T}\left(U_{00}^{T} a_{01}+u_{10} \alpha_{11}+U_{20}^{T} a_{21}\right)$. After these computations we can compute the next Householder transform from a_{21}, updating a_{21} :
$-\left[u_{21}, \tau, a_{21}\right]:=\operatorname{Housev}\left(a_{21}\right)$.
The next column of Z is computed by

$$
\binom{\frac{z_{01}}{\zeta_{11}}}{\hline z_{21}}:=\left(\begin{array}{c|c|c}
\hat{A}_{00} & \hat{a}_{01} & \hat{A}_{02} \\
\hline \hat{a}_{10}^{T} & \hat{\alpha}_{11} & \hat{a}_{12}^{T} \\
\hline \hat{A}_{20} & \hat{a}_{21} & \hat{A}_{22}
\end{array}\right)\left(\begin{array}{c}
0 \\
\hline 0 \\
\hline u_{21}
\end{array}\right)=\left(\begin{array}{c}
\hat{A}_{02} u_{21} \\
\hline \hat{a}_{12}^{T} u_{21} \\
\hline \hat{A}_{22} u_{21}
\end{array}\right) .
$$

As in Section 2.3, we finish by computing the next column of T :

$$
\left(\begin{array}{c|c|c}
T_{00} & \hat{t}_{01} & \hat{T}_{02} \\
\hline 0 & \hat{\tau}_{11} & \hat{t}_{12}^{T} \\
\hline 0 & 0 & \hat{T}_{22}
\end{array}\right):=\left(\begin{array}{c|c|c}
T_{00} & U_{20}^{T} u_{21} & \hat{T}_{02} \\
\hline 0 & \frac{1}{2} u_{21}^{T} u_{21} & \hat{t}_{12}^{T} \\
\hline 0 & 0 & \hat{T}_{22}
\end{array}\right) .
$$

Note that $\frac{1}{2} u_{21}^{T} u_{21}$ is equal to the τ computed by $\operatorname{Housev}\left(a_{21}\right)$, and thus it need not be recomputed to update τ_{11}.

3.4 Blocked algorithms

We now discuss how much of the computation can be cast in terms of matrix-matrix multiplication. The first such blocked algorithm was reported in [Dongarra et al. 1989]. That algorithm corresponds roughly to our blocked Algorithm 1.

In Figure 4 we give four blocked algorithms which differ by how computation is accumulated in the body of the loop:

- Two correspond to using the unblocked algorithms in Figure 1.
-A third results from using the lazy algorithm in Figure 2. For this variant, we introduce matrices U, Y, and Z of width b in which vectors computed by the lazy unblocked algorithm are accumulated. We are not aware of this algorithm having been reported before.
-The fourth results from using the algorithm in Figure 3. It returns matrices U, Z, and T. It was first reported in [Quintana-Ortí and van de Geijn 2006] and we will call it the GQvdG blocked algorithm.

```
Algorithm: \([A]:=\operatorname{HessRED}\) _BLK \((A, T)\)
    Partition \(A \rightarrow\left(\begin{array}{l|l}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right), X \rightarrow\binom{X_{T}}{\)\hline\(X_{B}}\)
for \(X \in\{T, U, Y, Z\}\)
    where \(A_{T L}\) is \(0 \times 0\) and \(T_{T}, U_{T}, Y_{T}\), and \(Z_{T}\) have 0 rows
while \(m\left(A_{T L}\right)<m(A)\) do
    Determine block size \(b\)
    Repartition
        \(\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22}\end{array}\right),\binom{X_{T}}{\)\hline\(X_{B}} \rightarrow\left(\begin{array}{c}X_{0} \\ \hline X_{1} \\ \hline X_{2}\end{array}\right)\)
        for \(X \in\{T, U, Y, Z\}\)
            where \(A_{11}\) is \(b \times b\) and \(T_{1}, U_{1}, Y_{1}\), and \(Z_{1}\) have \(b\) rows
            Algorithm 1, 2: (blocked + basic unblocked, blocked + rearranged unblocked)
            \(\left[A_{B R}, U_{B}\right]:=\) HessRed_unb \(\left(b, A_{B R}\right)\)
            \(T_{1}=\frac{1}{2} D+S\) where \(U_{B}^{T} U_{B}=S^{T}+D+S\)
            \(A_{T R}:=A_{T R}\left(I-U_{B} T_{1}^{-1} U_{B}^{T}\right)\)
            Algorithm 3: (blocked + lazy unblocked)
            \(\overline{\left[A_{B R}, U_{B}, Y_{B}, Z_{B}\right]:=\text { HessRed_LAZY_UNB }}\left(b, A_{B R}, U_{B}, Y_{B}, Z_{B}\right)\)
            \(T_{1}=\frac{1}{2} D+S\) where \(U_{B}^{T} U_{B}=S^{T}+D+S\)
            \(A_{T R}:=A_{T R}\left(I-U_{B} T_{1}^{-1} U_{B}^{T}\right)\)
            \(A_{22}:=A_{22}-U_{2} Y_{2}^{T}-Z_{2} U_{2}^{T}\)
            Algorithm 4: (GQvdG blocked + GQvdG unblocked)
            \(\left[A_{B R}, U_{B}, Z_{B}, T_{1}\right]:=\operatorname{HessRed}\) _GQvDG_UnB \(\left(b, A_{B R}, U_{B}, Z_{B}, T_{1}\right)\)
                \(A_{T R}:=A_{T R}\left(I-U_{B} T_{1}^{-1} U_{B}^{T}\right)\)
            \(\left(\frac{A_{12}}{A_{22}}\right):=\left(I-\left(\frac{U_{1}}{U_{2}}\right) T_{1}^{-1}\left(\frac{U_{1}}{U_{2}}\right)^{T}\right)^{T}\left(\left(\frac{A_{12}}{A_{22}}\right)-\left(\frac{Z_{1}}{Z_{2}}\right) T_{1}^{-1} U_{2}^{T}\right)\)
```


Continue with

$\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22}\end{array}\right),\binom{X_{T}}{\hlineX_{B}} \leftarrow\left(\begin{array}{c}X_{0} \\ \hline X_{1} \\ \hline X_{2}\end{array}\right)$
for $X \in\{T, U, Y, Z\}$
endwhile

Fig. 4. Blocked reduction to Hessenberg form based on original or rearranged algorithm. The call to HessRed_unb performs the first b iterations of one of the unblocked algorithms in Figures 1 or 2. In the case of the algorithms in Figure 1, U_{B} accumulates and returns the vectors u_{21} encountered in the computation and Y_{B} and Z_{B} are not used.

Let us consider having progressed through the matrix so that it is in the state

$$
A=\left(\begin{array}{c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right), \quad U=\left(\frac{U_{T}}{U_{B}}\right), \quad Y=\left(\frac{Y_{T}}{Y_{B}}\right), \quad Z=\left(\frac{Z_{T}}{Z_{B}}\right)
$$

where $A_{T L}$ is $b \times b$. Assume that the factorization has completed with $A_{T L}$ and $A_{B L}$ (meaning that $A_{T L}$ is upper Hessenberg and $A_{B L}$ is zero except for its topright most element), and $A_{T R}$ and $A_{B R}$ have been updated so that only an upper Hessenberg factorization of $A_{B R}$ has to be completed, updating the $A_{T R}$ submatrix correspondingly. In the next iteration of the blocked algorithm, we perform the following steps:
-Perform the first b iterations of the lazy algorithm with matrix $A_{B R}$, accumulating the appropriate vectors in U_{B}, Y_{B}, and Z_{B}.
—Apply the resulting Householder transformations from the right to $A_{T R}$. In Section 2.3 we discussed that this requires the computation of $U^{T} U=S^{T}+D+S$, where D and S equal the diagonal and strictly upper triangular part of $U^{T} U$, after which $A_{T R}:=A_{T R}\left(I-U T^{-1} U^{T}\right)=A_{T R}-A_{T R} U T^{-1} U^{T}$ with $T=\frac{1}{2} D+S$.
-Repartition

$$
\left(\begin{array}{c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}
A_{00} & A_{01} & A_{02} \\
\hline A_{10} & A_{11} & A_{12} \\
\hline A_{20} & A_{21} & A_{22}
\end{array}\right), \quad\binom{U_{T}}{\hline U_{B}} \rightarrow\left(\begin{array}{c}
\frac{U_{0}}{} \\
\hline U_{1} \\
\hline U_{2}
\end{array}\right), \ldots
$$

—Update $A_{22}:=A_{22}-U_{2} Y_{2}^{T}-Z_{2} U_{2}^{T}$.
-Move the thick line (which denotes how far the factorization has proceeded) forward by the block size:

$$
\left(\begin{array}{c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}
A_{00} & A_{01} & A_{02} \\
\hline A_{10} & A_{11} & A_{12} \\
\hline A_{20} & A_{21} & A_{22}
\end{array}\right), \quad\binom{U_{T}}{\hline U_{B}} \leftarrow\left(\begin{array}{c}
\frac{U_{0}}{} \\
\hline U_{1} \\
\hline U_{2}
\end{array}\right), \ldots
$$

Proceeding like this block-by-block computes the reduction to upper Hessenberg form while reducing the size of the matrices U, Y, and Z, casting some of the computation in terms of matrix-matrix multiplications that are known to achieve high performance.

When one of the unblocked algorithms in Figure 1 is used instead, A_{22} is already updated upon return from HessRed_unb and thus only the update of $A_{T R}$ can be accelerated by calls to level-3 BLAS operations.

The GQvdG blocked algorithm, which uses the GQvdG unblocked algorithm, was incorporated into recent releases of LAPACK, modulo a small change that accumulates T^{-1} instead of T. Prior to this, an algorithm that used the lazy unblocked algorithm but also updated $A_{T R}$ as part of that unblocked algorithm (and thus cast less computation in terms of level-3 BLAS) was part of LAPACK [Dongarra et al. 1989]. A comparison between the GQvdG blocked algorithm and this previously used algorithm can be found in [Quintana-Ortí and van de Geijn 2006].

3.5 Fusing operations

We now discuss how the eligible sets of operations encountered in the various algorithms can be fused to reduce memory traffic.

In the rearranged algorithm, delaying the update of A_{22} yields the following three operations that can be fused (here we drop the subscripts):

$$
\begin{align*}
& A:=A-\left(u y^{T}+z u^{T}\right) \\
& v:=A^{T} x \tag{4}\\
& w:=A x
\end{align*}
$$

By inspecting the three operations, we notice that only one column of A needs to
be read and updated at a time. So, let us partition

$$
A \rightarrow\left(a_{0}|\cdots| a_{n-1}\right), \quad u \rightarrow\left(\begin{array}{c}
v_{0} \\
\vdots \\
v_{n-1}
\end{array}\right), \quad v \rightarrow\left(\begin{array}{c}
\nu_{0} \\
\vdots \\
\nu_{n-1}
\end{array}\right), x \rightarrow\left(\begin{array}{c}
\chi_{0} \\
\vdots \\
\chi_{n-1}
\end{array}\right), y \rightarrow\left(\begin{array}{c}
\psi_{0} \\
\vdots \\
\psi_{n-1}
\end{array}\right) .
$$

Then the following steps, for $0 \leq j<n$, compute the desired result (provided that initially $w=0$):

$$
\begin{array}{ll}
a_{j}:=a_{j}-\psi_{j} u-v_{j} z & (2 \times \mathrm{AXPY}) \\
\nu_{j}:=a_{j}^{T} x & (\text { (DOT }) \\
w:=w+\chi_{j} a_{j} & \text { (АXPY) }
\end{array}
$$

However, if we implement this fused operation by looping over the level-1 BLAS operations (parenthesized above), each element of A is still accessed six times-no fewer than if we had simply called the level- 2 BLAS routines GER and GEMV in sequence (twice each). We would only benefit (hopefully) from the current column of A, a_{j}, residing in the cache after the first call to AXPY, thus allowing the second AXPY, the DOT, and third AXPY routine invocations to more readily access the elements of a_{j}. We refer to this as "cache-level" fusing, as it promotes increased temporal locality of subparts of matrix A within the cache hierarchy and thus allows these memory-limited operations to complete in less time. The authors of [Howell et al. 2008] demonstrate the benefits of cache-level fusing, except they express the computation as a sequence of level- 2 BLAS subproblems rather than in terms of level-1 operations. ${ }^{4}$ But the purpose and effect is similar.

Ideally, we would want to avoid these redundant memory operations altogether, even if they were accessing cached data. In order to do this, we need to further partition the level-1 subproblems to allow fusing of individual scalar arithmetic operations.

If we coded the operations at a very low level, controlling individual load and store instructions, we could implement the algorithm in Figure 5 (right). We consider this algorithm to be fused at the register-level because certain memory operations are avoided by reusing data when they are still loaded in the processor core's registers. We provide an unfused algorithm on the left-hand side of the figure and a cachelevel fusing in the middle for contrast. Note that the cache-level algorithm fuses only the outer loops (over n) while the register-level algorithm goes a step further and also fuses the inner loops (over m). It is easy to see that register-level fusing reduces the number of memory accesses to each element of matrix A to the absolute minimum: one load and one store.

The other fusable operations present in Figures 1 and 2, and throughout the remainder of this paper, can be fused in a similar manner.

4. REDUCTION TO TRIDIAGONAL FORM

The first step towards computing the eigenvalue decomposition of a symmetric matrix is to reduce the matrix to tridiagonal form.

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. If $A \rightarrow Q B Q^{T}$ where B is upper Hessenberg and
${ }^{4}$ The blocking employed by authors' cache-level technique uses the same algorithmic blocksize specified in the top-level blocked algorithm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

```
for \(j=0: n-1\)
        LOAD \(y_{j} \rightarrow \beta\)
        for \(i=0: m-1\)
            LOAD \(A_{i j} \rightarrow \alpha_{11}\)
            LOAD \(u_{i} \rightarrow v_{1}\)
            \(\alpha_{11}:=\alpha_{11}-\beta v_{1}\)
            STORE \(A_{i j} \leftarrow \alpha_{11}\)
    endfor
endfor
for \(j=0: n-1\)
    LOAD \(u_{j} \rightarrow \gamma\)
    for \(i=0: m-1\)
        \({ }^{\text {LOAD }} A_{i j} \rightarrow \alpha_{11}\)
            LOAD \(z_{i} \rightarrow \zeta_{1}\)
        \(\alpha_{11}:=\alpha_{11}-\gamma \zeta_{1}\)
        STORE \(A_{i j} \leftarrow \alpha_{11}\)
    endfor
endfor
for \(j=0: n-1\)
    \(\rho:=0\)
    for \(i=0: m-1\)
            LOAD \(A_{i j} \rightarrow \alpha_{11}\)
            LOAD \(x_{i} \rightarrow \chi_{1}\)
            \(\rho:=\rho+\alpha_{11} \chi_{1}\)
    endfor
    STORE \(\nu_{j} \leftarrow \rho\)
endfor
\(\operatorname{SEttozero}(w)\)
for \(j=0: n-1\)
    LOAD \(x_{j} \rightarrow \kappa\)
    for \(i=0: m-1\)
        LOAD \(A_{i j} \rightarrow \alpha_{11}\)
            LOAD \(w_{i} \rightarrow \omega_{1}\)
        \(\omega_{1}:=\omega_{1}+\kappa \alpha_{11}\)
        STORE \(w_{i} \leftarrow \omega_{1}\)
    endfor
endfor
```

Fig. 5. Algorithms for computing the fusable set of operations present in Eq. 4 using no fusing (left), cache-level fusing (middle), and register-level fusing (right). Whereas the unfused and cache-level fused algorithms access each element of matrix A six times, the register-level fused algorithm avoids redundant memory instructions and thus touches each element only twice.
Q is orthogonal, then B is symmetric and therefore tridiagonal. In this section we show how to take advantage of symmetry, assuming that matrix A is stored in only the lower triangular part of A and only the lower triangular part of that matrix is overwritten with B.

When matrix A is symmetric, and only the lower triangular part is stored and updated, the unblocked algorithms for reducing A to upper Hessenberg form can be changed by noting that $v_{21}=w_{21}$ and $y_{21}=z_{21}$. This motivates the algorithms in Figures 6-8, which correspond respectively to Figures 1 (left and right), 2, and 4 when taking advantage of symmetry. The blocked algorithm and associated unblocked algorithm was first reported in [Dongarra et al. 1989].

```
\begin{tabular}{l} 
Algorithm: \([A]:=\) TriRED_UNB \((A)\) \\
\hline Partition \(A \rightarrow\left(\begin{array}{l|l}A_{T L} & A_{T R} \\
A_{B L} & A_{B R}\end{array}\right), x \rightarrow\left(\frac{x_{T}}{x_{B}}\right)\)
\end{tabular}
for \(x \in\{u, y\}\)
    where \(A_{T L}\) is \(0 \times 0\) and \(u_{T}, y_{T}\) have 0 rows
while \(m\left(A_{T L}\right)<m(A)\) do
        Repartition
            \(\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}A_{00} & a_{01} & A_{02} \\ \hline a_{10}^{T} & \alpha_{11} & a_{12}^{T} \\ \hline A_{20} & a_{21} & A_{22}\end{array}\right),\binom{x_{T}}{\)\hline\(x_{B}} \rightarrow\left(\begin{array}{c}x_{01} \\ \hline \chi_{11} \\ \hline x_{21}\end{array}\right)\)
            for \((x, \chi) \in\{(u, v),(y, \psi)\}\)
            where \(\alpha_{11}, v_{11}\), and \(\psi_{11}\) are scalars
\begin{tabular}{|c|c|c|}
\hline Basic unblocked: & Rearranged unblocked: & \\
\hline \[
\begin{aligned}
& {\left[u_{21}, \tau, a_{21}\right]:=\operatorname{Housev}\left(a_{21}\right)} \\
& y_{21}:=A_{22} u_{21}
\end{aligned}
\] & \[
\begin{aligned}
& \alpha_{11}:=\alpha_{11}-2 v_{11} \psi_{11} \\
& a_{21}:=a_{21}-\left(u_{21} \psi_{11}+y_{21} v_{11}\right) \\
& {\left[x_{21}, \tau, a_{21}\right]:=\operatorname{HousEv}\left(a_{21}\right)} \\
& A_{22}:=A_{22}-u_{21} y_{21}^{T}-y_{21} u_{21}^{T} \\
& v_{21}:=A_{22} x_{21}
\end{aligned}
\] & \((\star)\)
\((\star)\)
\((\star)\) \\
\hline \[
\begin{aligned}
& \beta:=u_{21}^{T} y_{21} / 2 \\
& y_{21}:=\left(y_{21}-\beta u_{21} / \tau\right) / \tau \\
& A_{22}:=A_{22}-u_{21} y_{21}^{T}-y_{21} u_{21}^{T}
\end{aligned}
\] & \[
\begin{aligned}
& u_{21}:=x_{21} ; y_{21}:=v_{21} \\
& \beta:=u_{21}^{T} y_{21} / 2 \\
& y_{21}:=\left(y_{21}-\beta u_{21} / \tau\right) / \tau
\end{aligned}
\] & \\
\hline
\end{tabular}
Continue with
\[
\begin{aligned}
& \left(\begin{array}{c|c|c}
A_{T L} & A_{T R} \\
\hline A_{B L} & A_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline a_{10}^{T} & \alpha_{11} & a_{12}^{T} \\
\hline A_{20} & a_{21} & A_{22}
\end{array}\right),\binom{x_{T}}{\hline x_{B}} \leftarrow\left(\begin{array}{l}
x_{01} \\
\hline \chi_{11} \\
\hline x_{21}
\end{array}\right) \\
& \text { for }(x, \chi) \in\{(u, v),(y, \psi)\}
\end{aligned}
\]
endwhile
```

Fig. 6. Unblocked algorithms for reduction to tridiagonal form. Left: basic algorithm. Right: rearranged to allow fusing of operations. Operations marked with (\star) are not executed during the first iteration.

In the rearranged algorithm, delaying the update of A_{22} allows the highlighted operations in Figure 6 (right) to be fused. We leave it as an exercise to the reader to fuse the highlighted operations in Figure 7.

5. REDUCTION TO BIDIAGONAL FORM

The previous sections were inspired by the paper [Howell et al. 2008] that discusses how fused operations can benefit algorithms for the reduction of a matrix to bidiagonal form. The purpose of this section is to present the basic and rearranged unblocked algorithms for this operation with our notation to facilitate the comparing and contrasting of the reduction to upper Hessenberg and tridiagonal form algorithms to those for the reduction to bidiagonal form.

The first step towards computing the Singular Value Decomposition (SVD) of $A \in \mathbb{R}^{m \times n}$ is to reduce the matrix to bidiagonal form: $A \rightarrow Q_{L} B Q_{R}^{T}$ where B is a bidiagonal matrix (nonzero diagonal and superdiagonal) and Q_{L} and Q_{R} are again square and orthogonal.

For simplicity, we explain the algorithms for the case where A is square.

[^2]```
Algorithm: \([A, U, Y]:=\) TRIRED_LAZY_UNB \((b, A, U, Y)\)
Partition \(X \rightarrow\left(\begin{array}{l|l}X_{T L} & X_{T R} \\ \hline X_{B L} & X_{B R}\end{array}\right)\)
for \(X \in\{A, U, Y\}\)
 where \(X_{T L}\) is \(0 \times 0\)
while \(n\left(U_{T L}\right)<b\) do
 Repartition
 \(\left(\begin{array}{c|c}X_{T L} & X_{T R} \\ \hline X_{B L} & X_{B R}\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}X_{00} & x_{01} & X_{02} \\ \hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\ \hline X_{20} & x_{21} & X_{22}\end{array}\right)\)
 for \((X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(Y, y, \psi)\}\)
 where \(\chi_{11}\) is a scalar
 \(\alpha_{11}:=\alpha_{11}-u_{10}^{T} y_{10}-y_{10}^{T} u_{10}\)
 \(a_{21}:=a_{21}-U_{20} y_{10}-Y_{20} u_{10}\)
 \(\left[u_{21}, \tau, a_{21}\right]:=\operatorname{Housev}\left(a_{21}\right)\)
 \(y_{21}:=A_{22} u_{21}\)
 \(y_{21}:=y_{21}-Y_{20}\left(U_{20}^{T} u_{21}\right)-U_{20}\left(Y_{20}^{T} u_{21}\right)\)
 \(\beta:=u_{21}^{T} y_{21} / 2\)
 \(y_{21}:=\left(y_{21}-\beta u_{21} / \tau\right) / \tau\)
```


## Continue with

$$
\begin{aligned}
& \text { ntinue with } \\
& \left.\qquad \begin{array}{c|c|c|c}
X_{T L} & X_{T R} \\
\hline X_{B L} & X_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}
X_{00} & x_{01} & X_{02} \\
\hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\
\hline X_{20} & x_{21} & X_{22}
\end{array}\right)
\end{aligned}
$$

$$
\text { for }(X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(Y, y, \psi)\}
$$

endwhile
Fig. 7. Lazy unblocked reduction to tridiagonal form.

### 5.1 Basic algorithm

The basic algorithm for this operation, overwriting $A$ with the result $B$, can be explained as follows:
-Partition $A \rightarrow\left(\begin{array}{l|l}\alpha_{11} & a_{12}^{T} \\ \hline a_{21} & A_{22}\end{array}\right)$.
Let $\left[\left(\frac{1}{u_{21}}\right), \tau_{L},\left(\frac{\alpha_{11}}{0}\right)\right]:=\operatorname{Housev}\left(\left(\frac{\alpha_{11}}{a_{21}}\right)\right) \cdot{ }^{5}$
-Update

$$
\begin{aligned}
\left(\begin{array}{c|c}
\alpha_{11} & a_{12}^{T} \\
\hline a_{21} & A_{22}
\end{array}\right) & :=\left(I-\left(\frac{1}{u_{21}}\right)\left(\frac{1}{u_{21}}\right)^{T} / \tau_{L}\right)\left(\begin{array}{c|c}
\alpha_{11} & a_{12}^{T} \\
\hline a_{21} & A_{22}
\end{array}\right) \\
& =\left(\begin{array}{c|c}
\alpha-\psi_{11} / \tau_{L} & a_{12}^{T}-y_{21}^{T} / \tau_{L} \\
\hline 0 & A_{22}-u_{21} y_{21}^{T} / \tau_{L}
\end{array}\right)
\end{aligned}
$$

where $\psi_{11}=\alpha_{11}+u_{21}^{T} a_{21}$ and $y_{21}^{T}=a_{12}^{T}+u_{21}^{T} A_{22}$. Note that $\alpha_{11}:=\alpha-\psi_{11} / \tau_{L}$ need not be executed since this update was performed by the instance of Housev above.
${ }^{5}$ Note that the semantics here indicate that $\alpha_{11}$ is overwritten by the first element of $\left(\frac{\alpha_{11}}{0}\right)$.

```
Algorithm: \([A, U, Y]:=\) TriRed_BLK \((A, U, Y)\)
Partition \(A \rightarrow\left(\begin{array}{l|l}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right), X \rightarrow\binom{X_{T}}{\)\hline\(X_{B}}\)
for \(X \in\{U, Y\}\)
 where \(A_{T L}\) is \(0 \times 0\) and \(U_{T}, Y_{T}\) have 0 rows
while \(m\left(A_{T L}\right)<m(A)\) do
 Determine block size \(b\)
 Repartition
 \(\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \rightarrow\left(\begin{array}{c|c|c}A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22}\end{array}\right),\binom{X_{T}}{\)\hline\(X_{B}} \rightarrow\left(\begin{array}{c}X_{0} \\ \hline X_{1} \\ \hline X_{2}\end{array}\right)\)
 for \(X \in\{U, Y\}\)
 where \(A_{11}\) is \(b \times b\) and \(U_{1}\), and \(Y_{1}\) have \(b\) rows
 \(\left[A_{B R}, U_{B}, Y_{B}\right]:=\) TriRed_LAZY_UNB \(\left(b, A_{B R}, U_{B}, Y_{B}\right)\)
 \(A_{22}:=A_{22}-U_{2} Y_{2}^{T}-Y_{2} U_{2}^{T}\)
 Continue with
 \(\left.\begin{array}{|c|c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22}\end{array}\right),\binom{X_{T}}{\)\hline\(X_{B}} \leftarrow\left(\begin{array}{c}X_{0} \\ \hline X_{1} \\ \hline X_{2}\end{array}\right)\)
 for \(X \in\{U, Y\}\)
endwhile
```

Fig. 8. Blocked reduction to tridiagonal form based on original or rearranged algorithm. TriRed_unb performs the first $b$ iterations of the lazy unblocked algorithm in Figure 7.

- Let $\left[v_{21}, \tau_{R}, a_{12}\right]:=\operatorname{Housev}\left(a_{12}\right)$.
-Update $A_{22}:=A_{22}\left(I-v_{21} v_{21}^{T} / \tau_{R}\right)=A_{22}-z_{21} v_{21}^{T} / \tau_{R}$, where $z_{21}=A_{22} v_{21}$.
-Continue this process with the updated $A_{22}$.
The resulting algorithm, slightly rearranged, is given in Figure 9 (left).


### 5.2 Rearranged algorithm

We now show how, again, the loop can be restructured so that multiple updates of, and multiplications with, $A_{22}$ can be fused. Focus on the update $A_{22}:=A_{22}-$ $\left(u_{21} y_{21}^{T}+z_{21} v_{21}^{T}\right)$. Partition

$$
A_{22} \rightarrow\left(\begin{array}{c|c}
\alpha_{11}^{+} & a_{12}^{+T} \\
a_{21}^{+} & A_{22}^{+}
\end{array}\right), \quad u_{21} \rightarrow\left(\frac{v_{11}^{+}}{u_{21}^{+}}\right), \quad y_{21} \rightarrow\left(\frac{\psi_{11}^{+}}{y_{21}^{+}}\right), \quad z_{21} \rightarrow\left(\frac{\zeta_{11}^{+}}{z_{21}^{+}}\right), \quad v_{21} \rightarrow\left(\frac{\nu_{11}^{+}}{v_{21}^{+}}\right),
$$

where + indicates the partitioning in the next iteration. Then

$$
\left.\left.\begin{array}{rl}
\left(\begin{array}{c|c|c}
\alpha_{11}^{+} & a_{12}^{+T} \\
\hline a_{21}^{+} & A_{22}^{+}
\end{array}\right) & :=\left(\frac{\alpha_{11}^{+}}{a_{21}^{+}} a_{12}^{+T} A_{22}^{+}\right.
\end{array}\right)-\left(\frac{v_{11}^{+}}{u_{21}^{+}}\right)\left(\frac{\psi_{11}^{+}}{y_{21}^{+}}\right)^{T}-\left(\frac{\zeta_{11}^{+}}{z_{21}^{+}}\right)\left(\frac{\nu_{11}^{+}}{v_{21}^{+}}\right)^{T}\right)
$$

which shows how the update of $A_{22}$ can be delayed until the next iteration. If $u_{21}=y_{21}=z_{21}=v_{21}=0$ during the first iteration, the body of the loop may be


Fig. 9. Unblocked algorithms for reduction to bidiagonal form. Left: basic algorithm. Right: rearranged to allow fusing of operations (this is essentially Algorithm I from [Howell et al. 2008]). The fused operation in the "Basic unblocked" algorithm corresponds to the BLAS 2.5 operation GER2 while the fused operation in the "Rearranged unblocked" algorithm corresponds to GEMVER [BLAST 2002]. Operations marked with $(\star)$ are not executed during the first iteration.
changed to

$$
\begin{aligned}
& \alpha_{11}:=\alpha_{11}-v_{11} \psi_{11}-\zeta_{11} \nu_{11} \\
& a_{21}:=a_{21}-u_{21} \psi_{11}-z_{21} \nu_{11} \\
& a_{12}^{T}:=a_{12}^{T}-v_{11} y_{21}^{T}-\zeta_{11} v_{21}^{T} \\
& {\left[\left(\frac{1}{u_{21}^{+}}\right), \tau_{L},\left(\frac{\alpha_{11}}{0}\right)\right]:=\operatorname{HoUSEV}\left(\left(\frac{\alpha_{11}}{a_{21}}\right)\right)} \\
& A_{22}:=A_{22}-u_{21} y_{21}^{T}-z_{21} v_{21}^{T} \\
& y_{21}:=a_{12}+A_{22}^{T} u_{21}^{+} \\
& a_{12}^{T}:=a_{12}^{T}-y_{21}^{T} / \tau_{L} \\
& {\left[v_{21}, \tau_{R}, a_{12}\right]:=\operatorname{HoUSEV}\left(a_{12}\right)} \\
& \beta:=y_{21}^{T} v_{21} \\
& y_{21}:=y_{21} / \tau_{L} \\
& z_{21}:=\left(A_{22} v_{21}-\beta u_{21}^{+} / \tau_{L}\right) / \tau_{R}
\end{aligned}
$$

Now, the goal becomes to bring the three highlighted updates together. The problem is that the last update, which requires $v_{21}$, cannot commence until after the second call to Housev completes. This dependency can be circumvented by observing that one can perform a matrix-vector multiply of $A_{22}$ with the vector $a_{12}^{T}=a_{12}^{T}-y_{21}^{T} / \tau_{L}$ instead of with $v_{21}$, after which the result can be updated as if the multiplication had used the output of the Housev, as indicated by Eq. (3) in Section 2. These observations justify the rearrangement of the computations as indicated in Figure 9 (right).

### 5.3 Lazy algorithms

A lazy algorithm can be derived by not updating $A_{22}$ at all, and instead accumulating the updates in matrix $U, V, Y$, and $Z$, much like was done for the other reduction to condensed form operations.

We start with the rearranged algorithm to make sure that

$$
\begin{aligned}
& y_{21}:=A_{22}^{T} u_{21}^{+} \\
& a_{12}^{+}:=a_{12}^{+}-y_{21} / \tau_{L} \\
& w_{21}:=A_{22} a_{12}^{+}
\end{aligned}
$$

can still be fused. Next, the key is to realize that what was previously a multiplication by $A_{22}$ must now be replaced by a multiplication by $A_{22}-U_{20} Y_{20}^{T}-Z_{20} V_{20}^{T}$. This yields the algorithm in Figure 10 (right) which was first proposed by Howell et al. [Howell et al. 2008].

For completeness, we include in Figure 10 (left) a basic algorithm which does not rearrange operations for fusing, but still has the "lazy" property whereby $A_{22}$ is never updated.

### 5.4 Blocked algorithms

Finally, a blocked algorithm is given in Figure 11. The basic lazy unblocked algorithm in conjunction with the blocked algorithm was first published in [Dongarra et al. 1989] and is part of LAPACK. The rearranged lazy unblocked algorithm in conjunction with the blocked algorithm was proposed as Algorithm III in [Howell et al. 2008].

```
Algorithm: [A,U,V,Y,Z]:= BIRED_LAZY_UNB (b, A,U,V,Y,Z)
Partition }X->(\begin{array}{ll:}{\mp@subsup{X}{TL}{}}&{\mp@subsup{X}{TR}{}}\\{\hline\mp@subsup{X}{BL}{}}&{\mp@subsup{X}{BR}{}}\end{array}
for }X\in{A,U,V,Y,Z
 where }\mp@subsup{X}{TL}{}\mathrm{ is 0×0
while n(UTL}\mp@subsup{|}{TL}{}<b\mathrm{ do
 Repartition
 (\begin{array}{c|c}{\mp@subsup{X}{TL}{}}&{\mp@subsup{X}{TR}{}}\\{\hline\mp@subsup{X}{BL}{}}&{\mp@subsup{X}{BR}{}}\end{array})->(\begin{array}{c:c|c|c}{\mp@subsup{X}{00}{}}&{\mp@subsup{x}{01}{}}&{\mp@subsup{X}{02}{}}\\{\hline\mp@subsup{x}{10}{T}}&{\mp@subsup{\chi}{11}{}}&{\mp@subsup{x}{12}{T}}\\{\hline\mp@subsup{X}{20}{}}&{\mp@subsup{x}{21}{}}&{\mp@subsup{X}{22}{}}\end{array})
 for (X,x,\chi)\in{(A,a,\alpha),(U,u,v),(V,v,\nu),(Y,y,\psi),(Z,z,\zeta)}
 where }\mp@subsup{\chi}{11}{}\mathrm{ is a scalar
```

| Lazy basic unblocked: |
| :--- |
| $\alpha_{11}:=\alpha_{11}-u_{10}^{T} y_{10}-z_{10}^{T} v_{10}$ |
| $a_{21}:=a_{21}-U_{20} y_{10}-Z_{20} v_{10}$ |
| $a_{12}^{T}:=a_{12}^{T}-u_{10}^{T} Y_{20}^{T}-z_{10}^{T} V_{20}^{T}$ |
| $\left[\left(\frac{1}{u_{21}}\right), \tau_{L},\left(\frac{\alpha_{11}}{0}\right)\right]:=$ |

$\operatorname{Housev}\left(\left(\frac{\alpha_{11}}{a_{21}}\right)\right)$
$y_{21}:=a_{12}+A_{22}^{T} u_{21}$
$-Y_{20} U_{20}^{T} u_{21}-V_{20} Z_{20}^{T} u_{21}$
$a_{12}^{T}:=a_{12}^{T}-y_{21}^{T} / \tau_{L}$
$\left[v_{21}, \tau_{R}, a_{12}\right]:=\operatorname{Housev}\left(a_{12}\right)$
$\beta:=y_{21}^{T} v_{21}$
$y_{21}:=y_{21} / \tau_{L}$
$z_{21}:=\left(A_{22} v_{21}\right.$
$-U_{20} Y_{20}^{T} v_{21}-Z_{20} V_{20}^{T} v_{21}$
$\left.-\beta u_{21} / \tau_{L}\right) / \tau_{R}$

Lazy rearranged unblocked:
$\alpha_{11}:=\alpha_{11}-u_{10}^{T} y_{10}-z_{10}^{T} v_{10}$
$a_{21}:=a_{21}-U_{20} y_{10}-Z_{20} v_{10}$
$a_{12}^{T}:=a_{12}^{T}-u_{10}^{T} Y_{20}^{T}-z_{10}^{T} V_{20}^{T}$

$$
\left[\left(\frac{1}{u_{21}^{+}}\right), \tau_{L},\left(\frac{\alpha_{11}}{0}\right)\right]:=
$$

$$
a_{12}^{+}:=a_{12}-a_{12} / \tau_{L}
$$

$$
\operatorname{Housev}\left(\left(\frac{\alpha_{11}}{a_{21}}\right)\right)
$$

$$
y_{21}:=-Y_{20} U_{20}^{T} u_{21}^{+}-V_{20} Z_{20}^{T} u_{21}^{+}
$$

$$
y_{21}:=y_{21}+A_{22}^{T} u_{21}^{+}
$$

$$
a_{12}^{+}:=a_{12}^{+}-y_{21} / \tau_{L}
$$

$$
w_{21}:=A_{22} a_{12}^{+}
$$

$$
w_{21}:=w_{21}-U_{20} Y_{20}^{T} a_{12}^{+}-Z_{20} V_{20}^{T} a_{12}^{+}
$$

$$
a_{22 l}:=A_{22} e_{0}-U_{20} Y_{20}^{T} e_{0}-Z_{20} V_{20}^{T} e_{0}
$$

$$
y_{21}:=a_{12}+y_{21}
$$

$$
\left[\psi_{11}-\alpha_{12}, \tau_{R}, \alpha_{12}\right]:=\operatorname{Houses}\left(a_{12}^{+}\right)
$$

$$
v_{21}:=\left(a_{12}^{+}-\alpha_{T} e_{0}\right) /\left(\psi_{11}-\alpha_{12}\right) ;
$$

$$
a_{12}^{T}:=\alpha_{12} e_{0}^{T}
$$

$$
u_{21}:=u_{21}^{+}
$$

$$
\beta:=y_{21}^{T} v_{21}
$$

$$
y_{21}:=y_{21} / \tau_{L}
$$

$$
z_{21}:=\left(w_{21}-\alpha_{12} a_{22 l}\right) /\left(\psi_{11}-\alpha_{12}\right)
$$

$$
z_{21}:=z_{21}-\beta u_{21} / \tau_{L}
$$

$$
z_{21}:=z_{21} / \tau_{R}
$$

Continue with

$$
\left(\begin{array}{c|c}
X_{T L} & X_{T R} \\
\hline X_{B L} & X_{B R}
\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}
X_{00} & x_{01} & X_{02} \\
\hline x_{10}^{T} & \chi_{11} & x_{12}^{T} \\
\hline X_{20} & x_{21} & X_{22}
\end{array}\right)
$$

for $(X, x, \chi) \in\{(A, a, \alpha),(U, u, v),(V, v, \nu),(Y, y, \psi),(Z, z, \zeta)\}$
endwhile

Fig. 10. Lazy unblocked versions of the algorithms in Figure 9. Left: lazy basic algorithm. Right: lazy rearranged algorithm (this is essentially Algorithm III from [Howell et al. 2008]). The first fused operation in the "Lazy rearranged unblocked" algorithm, modulo a slight reordering of the computation vis-à-vis $y_{21}$, corresponds to the BLAS 2.5 operation GEmVEr [BLAST 2002]. Note that upon entry to both algorithms, matrix $A$ is $n \times n$ and matrices $U, V, Y$, and $Z$ are $n \times b$. Also note that the multiplications $A_{22} e_{0}, Y_{20}^{T} e_{0}$, and $U_{20}^{T} e_{0}$ do not require computation: they simply extract the first column or row of the given matrix.

```
Algorithm: \([A]:=\) BiRed_BLK \((A, U, V, Y, Z)\)
Partition \(A \rightarrow\left(\begin{array}{l|l|l}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right), X \rightarrow\left(\frac{X_{T}}{X_{B}}\right)\)
for \(X \in\{U, V, Y, Z\}\)
where \(A_{T L}\) is \(0 \times 0\) and \(U_{T}, V_{T}, Y_{T}, Z_{T}\) have 0 rows
while \(m\left(A_{T L}\right)<m(A)\) do
Determine block size \(b\)
\(\quad\) Repartition
\[
\left(\begin{array}{l|l|l|l}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \rightarrow\left(\begin{array}{l|l|l}A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22}\end{array}\right),\binom{X_{T}}{\hline X_{B}} \rightarrow\binom{\frac{X_{0}}{X_{1}}}{\hline X_{2}}
\]
for \(X \in\{U, V, Y, Z\}\)
where \(A_{11}\) is \(b \times b\) and \(U_{1}, V_{1}, Y_{1}\), and \(Z_{1}\) have \(b\) rows
 \(\left[A_{B R}, U_{B}, V_{B}, Y_{B}, Z_{B}\right]:=\operatorname{BiREd_ LAZY_ unB}\left(b, A_{B R}, U_{B}, V_{B}, Y_{B}, Z_{B}\right)\)
 \(A_{22}:=A_{22}-U_{2} Y_{2}^{T}-Z_{2} V_{2}^{T}\)
 Continue with
 \(\left(\begin{array}{c|c}A_{T L} & A_{T R} \\ \hline A_{B L} & A_{B R}\end{array}\right) \leftarrow\left(\begin{array}{c|c|c}A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22}\end{array}\right),\binom{X_{T}}{\)\hline\(X_{B}} \leftarrow\left(\begin{array}{c}X_{0} \\ \hline X_{1} \\ \hline X_{2}\end{array}\right)\)
 for \(X \in\{U, V, Y, Z\}\)
endwhile
```

Fig. 11. Blocked algorithm for reduction to bidiagonal form. For simplicity, it is assumed that $A$ is $n \times n$ where $n$ is an integer multiple of $b$. Matrices $U, V, Y$, and $Z$ are all $n \times b$.

### 5.5 Fusing operations

Once again, we leave it as an exercise to the reader to construct loop-based fusings of the operations highlighted in Figures 9 and 10.

## 6. ACCUMULATING HOUSEHOLDER TRANSFORMATIONS

In Section 2.3, we briefly discussed how to accumulate the triangular factors $T$ of the block Householder transformations. The need for computing and storing $T$ is clear in the unblocked and blocked GQvdG algorithms for reducing a matrix to upper Hessenberg form, shown in Figures 3 and 4. However, none of the other algorithms (blocked or unblocked) for reduction to condensed form use the triangular factors, because none of the other algorithms apply block Householder transforms. So at first glance, computing and storing $T$ within these algorithms may seem unnecessary.

But typically reduction to condensed form is not a terminal operation. The triangular factors will be needed when forming (or applying) the orthogonal matrix $Q$ after a reduction to upper Hessenberg or tridiagonal form, or the matrices $Q_{L}$ and $Q_{R}$ subsequent to a reduction to bidiagonal form. So for most applications, it is not a matter of if these factors will be computed, but when.

Note that we would normally compute $T$ by columns, via $t_{01}:=U_{20}^{T} u_{21}$, as shown in the GQvdG algorithm in Figure 3, and the scalar $\tau_{11}$ is computed as part of the Housev function. Upon careful inspection, we find that each lazy unblocked algorithm (shown in Figures 2, 7, and 10) computes $U_{20}^{T} u_{21}$ as an intermediate product in the course of its normal computation. Indeed, for reduction to upper

| Fused operation | BLAST <br> name | dependent <br> algorithms | flops | memory operations |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $v:=A^{T} x$ <br> $w:=A x$ | GEMVT | Hessenberg | $4 n^{2}$ | $2 n^{2}$ | $n^{2}$ |
| $A:=A-a^{T} b-c^{T} d$ | GER2 | Hessenberg, <br> bidiagonal | $4 n^{2}$, <br> $4 m n$ | $4 n^{2}$, <br> $4 m n$ | $2 n^{2}$, <br> $2 m n$ |
| $A:=A-a^{T} b-c^{T} d$ <br> $v:=A^{T} x$ <br> $w:=A x$ | N/A | Hessenberg | $8 n^{2}$ | $6 n^{2}$ | $2 n^{2}$ |
| $y:=y-Y U^{T} u-U Z^{T} u$ <br> $z:=z-U Y^{T} u-Z U^{T} u$ | N/A | Hessenberg | $14 m n$ | $7 m n$ | $5 m n$ |
| $A:=A-u^{T} y-y^{T} u$ <br> $v:=A x$ | N/A | tridiagonal | $4 n^{2}$ | $5 n^{2}$ | $2 n^{2}$ |
| $y:=y-Y U^{T} u-U Y^{T} u$ | N/A | tridiagonal | $8 m n$ | $4 m n$ | $3 m n$ |
| $A:=A-a^{T} b-c^{T} d$ <br> $b:=A^{T} u$ <br> $a:=a+\beta b$ <br> $w:=A a$ | GEMVER | bidiagonal | $8 m n$ | $6 m n$ | $2 m n$ |
| $b:=b+\alpha A^{T} u$ <br> $a:=a+\beta b$ <br> $w:=A a$ | GEMVT | bidiagonal | $4 m n$ | $2 m n$ | $m n$ |
| $w:=w-U Y^{T} a-Z V^{T} a$ <br> $t:=A e_{0}-U Y^{T} e_{0}-Z V^{T} e_{0}$ | N/A | bidiagonal | $6 m n$ | $6 m n$ | $4 m n$ |

Fig. 12. A summary of the fused operations one could potentially use within various reduction to condensed form algorithms and their floating-point and memory operation costs. The highlighted sets of fused operations are those present in the algorithms which exhibited the highest performance.

Hessenberg and tridiagonal forms, this intermediate product is computed within fusable sets of operations. And for reduction to bidiagonal form, if the intermediate product $V_{20}^{T} a_{12}^{+}$is saved from the second set of fusable operations (see Figure 10), then the $t_{01}$ vectors associated with the right-hand orthogonal matrix $Q_{R}$ may easily be computed in a manner similar to that used to compute $v_{21}$. This technique saves $\frac{1}{3} b^{2} n$ floating-point operations every time $Q$ (or $Q_{L}$ and/or $Q_{R}$ ) is formed or applied. Thus, given that the triangular factors can fit within a relatively small $b \times n$ matrix (or two such matrices for bidiagonal reduction), it is easy to make the case that these values should be stored for later use.

Notwithstanding the obvious advantage to storing $T$ within the lazy unblocked algorithms, we have chosen to omit these statements from the algorithms in this paper (except in the case of the GQvdG algorithm) since they relate more to subsequent computations that are outside the scope of this paper rather than the reduction to condensed form operations themselves.

## 7. ESTIMATING THE IMPACT OF FUSING

Before presenting performance results of actual implementations, we will first estimate the impact of fusing on performance.

The table in Figure 12 summarizes all of the fused operations used by all algo-
rithms presented in this paper and lists the corresponding routine names given by the BLAST Forum [BLAST 2002]. The table also includes the approximations for the floating-point and memory operation counts, which may be used to derive the total number of memory and floating-point operations incurred within a given unfused or fused unblocked algorithm implementation. These totals are summarized in Figure 13. Similarly, the table in Figure 14 shows the number of floating-point operations (flops) required by unblocked and blocked components of various algorithms. The table also quantifies the number of flops executed by fusable sets of operations within a given unblocked algorithm.

Combining the analyses summarized in Figure 13 and Figure 14 allows us to estimate an upper bound for the asymptotic speedup one would observe from fusing operations within a given algorithm. We need only make a few mild assumptions concerning the computation to construct a model to predict actual performance improvement:
-The level-3 computation in a blocked algorithm executes $s$ times faster than the level-1 and level-2 computation in the corresponding unblocked algorithm. ${ }^{6}$
-An unblocked algorithm's execution is limited by memory accesses rather than its floating-point operations. This allows us to assume that reducing a fraction $n$ of memory operations within an unblocked algorithm will result in the a corresponding speedup of $\frac{1}{1-n}$, or a $\frac{1}{1-n}$ speedup contribution to the overall algorithm if it is part of a blocked algorithm.

Thus, the expected asymptotic speedup $\alpha$ due to fusing is given by

$$
\alpha=\frac{\text { Execution time without fusing }}{\text { Execution time with fusing }}=\frac{t_{\text {unblocked }}^{\text {unfused }}+t_{\text {blocked }}}{t_{\text {unblocked }}^{\text {fusb }}+t_{\text {blocked }}}=\frac{s u+(1-u)}{s u(1-r f)+(1-u)}
$$

where $r$ is the fraction of unblocked memory operations that are avoided via fusing, $f$ is the fraction of unblocked floating-point computation that is associated with fusable operations, and $u$ is the fraction of total floating-point operations performed within the unblocked algorithm. Note that approximations for $r$ are given in the right-hand column of Figure 13 while $f$ and $u$ are estimated in the two right-most columns of Figure 14.

Figure 15 summarizes the expected asymptotic speedups due to fusing for all condensed form algorithms that contain fusable sets of operations.

The most obvious takeaway from Figures 13-15 is that while reduction to upper Hessenberg form and reduction to bidiagonal form appear well-suited for speedup, reduction to tridiagonal form presents fewer opportunities for fusing. In fact, the blocked lazy algorithm is only benefited through a lower-order term. Thus, we would not expect to see much improvement, if any, for this particular algorithm.

[^3]ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

| Algorithm <br> (unblocked only) | memory operations |  |  |
| :---: | :---: | :---: | :---: |
|  | unfused | fused | $r=\frac{\text { unfused }- \text { fused }}{\text { unfused }}$ |
| Reduction to upper Hessenberg form |  |  |  |
| Basic 2 | $2 n^{3}+\frac{1}{2} b n^{2}$ | $n^{3}+\frac{1}{2} b n^{2}$ | $\approx 50 \%$ |
| Rearranged | $2 n^{3}+\frac{1}{2} b n^{2}$ | $\frac{2}{3} n^{3}+\frac{1}{2} b n^{2}$ | $\approx 66 \%$ |
| Lazy | $\frac{2}{3} n^{3}+\frac{15}{4} b n^{2}$ | $\frac{1}{3} n^{3}+\frac{13}{4} b n^{2}$ | $\approx 50 \%$ |
| Reduction to tridiagonal form |  |  |  |
| Rearranged | $\frac{1}{2} n^{3}$ | $\frac{1}{3} n^{3}$ | $\approx 33 \%$ |
| Lazy | $\frac{1}{6} n^{3}+\frac{3}{2} b n^{2}$ | $\frac{1}{6} n^{3}+\frac{5}{4} b n^{2}$ | $\approx 1 \%$ |
| Reduction to bidiagonal form |  |  |  |
| Basic | $3\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $2\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $\approx 33 \%$ |
| Rearranged | $3\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $\approx 66 \%$ |
| Lazy rearranged | $\begin{aligned} & \left(m n^{2}-\frac{1}{3} n^{3}\right)+ \\ & 4 b\left(m n-\frac{1}{2} n^{2}\right) \end{aligned}$ | $\begin{gathered} \frac{1}{2}\left(m n^{2}-\frac{1}{3} n^{3}\right)+ \\ 3 b m n \end{gathered}$ | $\approx 50 \%$ |
| Howell's Algorithm III | $\begin{aligned} & \left(m n^{2}-\frac{1}{3} n^{3}\right)+ \\ & 4 b\left(m n-\frac{1}{2} n^{2}\right) \end{aligned}$ | $\begin{gathered} \left(m n^{2}-\frac{1}{3} n^{3}\right)+ \\ 4 b\left(m n-\frac{1}{2} n^{2}\right) \end{gathered}$ | $0 \%{ }^{7}$ |

Fig. 13. A summary of the number of memory operations required by unfused and fused implementations of various unblocked algorithms for reducing a matrix to condensed form.

| Algorithm | floating-point operations |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | unblocked | fusable | blocked | $f=\frac{\text { fusable }}{\text { unblocked }}$ | $u=\frac{\text { unblocked }}{\text { total }}$ |
| Reduction to upper Hessenberg form |  |  |  |  |  |
| Basic 2 | $\frac{8}{3} n^{3}+b n^{2}$ | $\frac{8}{3} n^{3}$ | $\frac{2}{3} n^{3}$ | $\approx 99 \%$ | $\approx 80 \%$ |
| Rearranged | $\frac{4}{3} n^{3}+\frac{15}{2} b n^{2}$ | $\frac{4}{3} n^{3}+\frac{7}{2} b n^{2}$ | $2 n^{3}$ | $\approx 99 \%$ | $\approx 80 \%$ |
| Lazy | $\frac{4}{3} n^{3}+\frac{15}{2} b n^{2}$ | $\frac{4}{3} n^{3}+\frac{7}{2} b n^{2}$ | $2 n^{3}$ | $\approx 99 \%$ | $\approx 40 \%$ |
| Reduction to tridiagonal form |  |  |  |  |  |
| Rearranged | $\frac{4}{3} n^{3}$ | $\frac{4}{3} n^{3}$ | $\mathrm{~N} / \mathrm{A}$ | $\approx 100 \%$ | $\approx 100 \%$ |
| Lazy | $\frac{2}{3} n^{3}+3 b n^{2}$ | $2 b n^{2}$ | $\frac{2}{3} n^{3}$ | $\approx 1 \%$ | $\approx 51 \%$ |
| Reduction to bidiagonal form |  |  |  |  |  |
| Basic | $4\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $4\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ | $\approx 100 \%$ | $\approx 100 \%$ |
| Rearranged | $4\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $4\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $\mathrm{N} / \mathrm{A}$ | $\approx 100 \%$ | $\approx 100 \%$ |
| Lazy <br> rearranged | $2\left(m n^{2}-\frac{1}{3} n^{3}\right)$ <br> $+8 b\left(m n-n^{2}\right)$ | $2\left(m n^{2}-\frac{1}{3} n^{3}\right)$ <br> $+4 b\left(m n^{2}-n^{2}\right)$ | $2\left(m n^{2}-\frac{1}{3} n^{3}\right)$ | $\approx 99 \%$ | $\approx 51 \%$ |

Fig. 14. A summary of the number of floating-point operations required by various algorithms for reducing a matrix to condensed form. The two right-most columns, combined with the right-hand column in Figure 13, may be used to estimate upper bounds for the speedup one would observe from fusing eligible subproblems within an operation's unblocked algorithm. These upper bounds are estimated in Figure 15.

## 8. PERFORMANCE RESULTS

We now report performance for implementations of various algorithms that is attained in practice.

| Algorithm | memory operations | floating-point operations |  | speedup $\alpha$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r=\frac{\text { unfused-fused }}{\text { unfused }}$ | $f=\frac{\text { fusable }}{\text { unblocked }}$ | $u=\frac{\text { unblocked }}{\text { total }}$ | $s=4$ | $s=5$ |
| Reduction to upper Hessenberg form |  |  |  |  |  |
| Basic 2 | $\approx 50 \%$ | $\approx 99 \%$ | $\approx 80 \%$ | 1.87 | 1.89 |
| Rearranged | $\approx 66 \%$ | $\approx 99 \%$ | $\approx 80 \%$ | 2.60 | 2.65 |
| Lazy | $\approx 50 \%$ | $\approx 99 \%$ | $\approx 40 \%$ | 1.56 | 1.61 |
| Reduction to tridiagonal form |  |  |  |  |  |
| Rearranged | $\approx 33 \%$ | $\approx 100 \%$ | $\approx 100 \%$ | 1.49 | 1.49 |
| Lazy | $\approx 1 \%$ | $\approx 1 \%$ | $\approx 51 \%$ | 1.00 | 1.00 |
| Reduction to bidiagonal form |  |  |  |  |  |
| Basic | $\approx 33 \%$ | $\approx 100 \%$ | $\approx 100 \%$ | 1.49 | 1.49 |
| Rearranged | $\approx 66 \%$ | $\approx 100 \%$ | $\approx 100 \%$ | 2.94 | 2.94 |
| Lazy rearranged | $\approx 50 \%$ | $\approx 99 \%$ | $\approx 51 \%$ | 1.66 | 1.71 |

Fig. 15. Estimated asymptotic speedup from fusing using a simple model that assumes: (1) that the level-3 computation in the blocked algorithm executes $s$ times as fast as the level-1 and level-2 computation found in the corresponding unblocked algorithm; and (2) that memory operations (rather than floating-point operations) are the limiting factor to performance in the unblocked algorithm. We estimate speedup for $s=4$ and $s=5$.

### 8.1 Platform details

All experiments reported in this paper were performed on a single core of a Dell PowerEdge R900 server consisting of four Intel "Dunnington" six-core processors. Each core provides a peak performance of 10.64 GFLOPS. Performance experiments were gathered under the GNU/Linux 2.6 .18 operating system. Source code was compiled by the GNU C compiler, version 4.1.2. All experiments were performed in double-precision real floating-point arithmetic.

All reduction to condensed form implementations were linked to the BLAS provided by GotoBLAS2 1.10. All LAPACK implementations were obtained via the netlib distribution of LAPACK version 3.3.1. For the reduction to bidiagonal form we also compare against an implementation by Howell et al. (Algorithm III), reported on in [Howell et al. 2008] and available from [Howell 2005]. (This code was compiled by the GNU Fortran compiler, version 4.1.2.)

### 8.2 Fused operation implementations

Experiments were performed with both cache-level and register-level fused implementations. All implementations were coded in C. Operations fused at the cachelevel were expressed in terms of level-1 BLAS. By contrast, operations fused at the register-level were coded using SSE2 and SSE3 vector intrinsics. The corresponding assembly code of each register-level fused kernel was carefully inspected to ensure that (1) the correct vector arithmetic instructions were emitted by the compiler and (2) the number of load/store instructions were kept to a minimum. We believe that the resulting fused implementations are, for the most part, comparable to what one would arrive at if the operation were assembly-coded by hand.

### 8.3 Implementations of the reduction algorithms

The blocked algorithms were implemented using the FLAME/C API [Van Zee 011a; Bientinesi et al. 2005] which allows the implementations to closely mirror the algorithms presented in this paper. Since this API carries considerable overhead that affects performance, the unblocked algorithms were translated into lower-level implementations that use the BLAS-like Interface Subprograms (BLIS) interface [Veras et al. ]. This is a C interface that resembles the BLAS interface but is more natural for C and fixes certain problems for the routines that compute with (singleand double-precision) complex datatypes. All these implementations are part of the standard libflame distribution so that others can experiment with further optimizations.

### 8.4 Tuning of block size

We performed experiments to determine the optimal block size for the blocked algorithms. A block size of 32 , the default block size for the LAPACK implementation, appeared to be near-optimal and was used for all experiments.

### 8.5 Reduction to upper Hessenberg form

The table in Figure 15 indicates that there is considerable potential for speedup from fusing for all three fusable algorithms, particularly an algorithm based on the rearranged unblocked algorithm. Performance of the various implementations of reduction to upper Hessenberg form are given in Figure 16, with raw performance results in the top graph and speedup of fusable algorithms, using both cache-level and register-level fusing, shown in the bottom graph.

Not surprisingly, register-level fusing provides a significant improvement in performance over cache-level fusing. Remarkably, the speedups predicted by the model, as summarized in Figure 15, provide good estimates of the performance of algorithm implementations that use register-level fusing.

For larger matrices ( $n \geq 300$ ), the blocked implementation that uses a lazy unblocked algorithm with register-level fusing (labeled "blocked with lazy unblocked with register-level fusing") outperforms all other implementations, even the netlib dgehrd and "GQvdG blocked with GQvdG unblocked" implementations. Note that netlib dgehrd uses the "GQvdG blocked with GQvdG unblocked" algorithm, with the minor modification that the algorithm switches to what is essentially our pure basic unblocked algorithm for the final $128 \times 128$ subproblem (when $A_{B R}$ is $128 \times 128$ ).

### 8.6 Reduction to tridiagonal form

In contrast to reduction to upper Hessenberg form, Figure 15 suggests that there is much less room for improvement via fusing in the reduction to tridiagonal form algorithms, particularly for the lazy algorithm.

The reason for the negligible potential for speedup in the lazy algorithm can be traced back to the memory and flop count analysis in Figures 13 and 14. The reduction in memory operations that may be achieved via fusing within the unblocked lazy algorithm constitutes a lower-order term. Likewise, the floating-point operations in the fusable portions of this algorithm amount to a similar lower-order term.

[^4]

Fig. 16. Performance of various implementations of reduction to upper Hessenberg form for problem sizes up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to their unfused counterparts using cache-level and register-level fusing (bottom). Implementations of blocked algorithms use a block size of 32 . Note that in the top graph, the performance curve for "netlib dgehrd" coincides mostly with the curve for "GQvdG blocked with GQvdG unblocked."

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.


Fig. 17. Performance of various implementations of reduction to tridiagonal form for problem sizes up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to their unfused counterparts using cache-level and register-level fusing (bottom). Implementations of blocked algorithms use a block size of 32 . Note that in the top graph, the performance curve for "netlib dsytrd" coincides mostly with the curve for "blocked with lazy unblocked with register-level fusing."

Thus, we would expect very little performance benefit from fusing for this algorithmic variant. By contrast, a simple rearranged unblocked algorithm should stand to benefit noticeably from fusing. However, with none of its computation expressible in terms of level-3 operations, such an algorithm is bound to asymptotically underperform its lazy counterpart.

Figure 17 (top) reports performance for various implementations of reduction to tridiagonal form, with corresponding speedups for the two fusable algorithms displayed in Figure 17 (bottom). The fused implementations perform mostly as expected.

### 8.7 Reduction to bidiagonal form

According to Figure 15, reduction to bidiagonal form should receive significant benefit from fusing.
Figure 18 (top) reports performance for various implementations of reduction to bidiagonal form while Figure 18 (bottom) shows speedups for fusable algorithms. For this operation there is a clear advantage gained from rearranging the computations and fusing operations, particularly when register-level fusing is employed. With the exception of small problem sizes, the "blocked with lazy rearranged with register-level fusing" outperforms all others, including the implementation of Algorithm III reported on in [Howell et al. 2008]. Once again, our simple model provides good estimates of the asymptotic speedup for each fusable algorithm.

The performance results for "blocked with lazy rearranged unblocked with cachelevel fusing", along with Howell's Algorithm III, clearly show that considerable improvement can be gained from cache-level fusing. However, as one might expect, accessing an element of data from cache is still more costly than avoiding the memory operation altogether, as the "blocked with lazy rearranged unblocked with register-level fusing" exhibits the highest performance, except for the smallest problem sizes.

Note that in Figure 18 (bottom) Howell's Algorithm III outperforms the "blocked with lazy rearranged unblocked with cache-level fusing" algorithm by a small margin. The two algorithm implementations are similar except that the former (1) fuses in terms of level-2 BLAS instead of level-1 BLAS, and (2) is coded entirely in Fortran-77 rather than C with higher-level FLAME abstractions. Given that both styles of cache-level fusing incur the same number of memory operations, we suspect the outperformance can be explained almost entirely by the latter point, as modern compilers tend to be able to more highly optimize pure Fortran-77 over C that contains some calls to the FLAME/C APIs. Thus, it may be possible to achieve marginal improvements in performance of all register-level fused implementations by removing all programming abstractions and coding entirely at low levels.

### 8.8 Hybrid algorithms

In Figure 18 (top) it can be observed that, for smaller problem sizes $(n \leq 500)$, the "rearranged unblocked with register-level fusing" algorithm yields the best performance. This suggests that a library routine should switch algorithms as a function of problem size. Note that the netlib LAPACK implementations of all three condensed form operations tested in this paper employ hybrid approaches, albeit with different crossovers point. The netlib routines for reduction to upper Hessenberg
form (dgehrd) and reduction to bidiagonal form (dgebrd) switch to basic unblocked algorithms for the final $128 \times 128$ submatrix, while the routine for reduction to tridiagonal form (dsytrd) switches for the final $32 \times 32$ submatrix.

Hybrid algorithms for all three reduction to condensed form operations can be constructed in a straightforward manner, and thus we omit results for such implementations from this paper.

### 8.9 Experiments with multiple cores

A logical criticism of the experimental results given in the paper is that they only involve a single core. However, the limiting factor for performance is the bandwidth to memory which is clearly demonstrated by the experiments. Also, parallelizing the fused operations goes beyond the scope of this paper. The work presented here exposes how algorithms can be rearranged to create fusable operations so that others can focus on the optimization of those operations.

## 9. CONCLUSION

This paper presents what we believe to be the most complete analysis to date of algorithms for reducing matrices to condensed form. Numerous algorithms are summarized and opportunities for rearranging and fusing of operations are exposed. The benefit of cache-level fusing is confirmed, while more highly-optimized register-level fusing is shown, in theory and practice, to offer superior gain. These performance improvements based on register-level fused kernels conform reasonably well to the speedups predicted by a simple model.

Acknowledgments. This research was partially sponsored by NSF grants OCI0850750 and NSF CCF-0917167, and a grant from Microsoft.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

## REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J. J., Croz, J. D., Hammarling, S., Greenbaum, A., McKenney, A., and Sorensen, D. 1999. LAPACK Users' guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ortí, E. S., and van de Geijn, R. A. 2005. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31, 1 (March), 1-26.
Bientinesi, P., Iqual, F. D., Kressner, D., Petschow, M., and Quintana-Ortí, E. S. 2011. Condensed forms for the symmetric eigenvalue problem on multi-threaded architectures. Concurrency and Computation: Practice and Experience 23, 694-707.
Bientinesi, P., Quintana-Ortí, E. S., and van de Geijn, R. A. 2005. Representing linear algebra algorithms in code: The FLAME application programming interfaces. ACM Trans. Math. Soft. 31, 1 (March), 27-59.
Bischof, C., Lang, B., and Sun, X. 1994. Parallel tridiagonalization through two-step band reduction. In In Proceedings of the Scalable High-Performance Computing Conference. IEEE Computer Society Press, 23-27.
Bischof, C. and Van Loan, C. 1987. The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput. 8, 1 (Jan.), s2-s13.


Fig. 18. Performance of various implementations of reduction to bidiagonal form for problem sizes up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to their unfused counterparts using cache-level and register-level fusing (bottom). Implementations of blocked algorithms use a block size of 32 .

Bischof, C. H., Lang, B., and Sun, X. 2000. Algorithm 807: The sbr toolbox-software for successive band reduction. ACM Trans. Math. Soft. 26, 602-616.
BLAST 2002. Basic linear algebra subprograms technical forum standard. International Journal of High Performance Applications and Supercomputing 16, 1 (Spring).
Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. 1990. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1-17.
Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An extended set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1 (March), 1-17.
Dongarra, J. J., Duff, I. S., Sorensen, D. C., And van der Vorst, H. A. 1991. Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA.
Dongarra, J. J., Hammarling, S. J., and Sorensen, D. C. 1989. Block reduction of matrices to condensed forms for eigenvalue computations. Journal of Computational and Applied Mathematics 27.
Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. 2001. FLAME: Formal linear algebra methods environment. ACM Trans. Math. Soft. 27, 4 (December), 422455.

Howell, G. 2005. Fortran 77 codes for Householder bidiagonalization. http://www.ncsu.edu/ itd/hpc/Documents/Publications/gary_howell/030905.t\%ar.
Howell, G. W., Demmel, J. W., Fulton, C. T., Hammarling, S., and Marmol, K. 2008. Cache efficient bidiagonalization using BLAS 2.5 operators. ACM Transactions on Mathematical Software 34, 3 (May), 14:1-14:33.
Joffrain, T., Low, T. M., Quintana-Ortí, E. S., van de Geijn, R., and Van Zee, F. 2006. Accumulating Householder transformations, revisited. ACM Transactions on Mathematical Software 32, 2 (June), 169-179.
LANG, B. 1999. Efficient eigenvalue and singular value computations on shared memory machines. Parallel Comput. 25, 845-860.
Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. 1979. Basic linear algebra subprograms for Fortran usage. ACM Trans. Math. Soft. 5, 3 (Sept.), 308-323.
Puglisi, C. 1992. Modification of the Householder method based on the compact wy representation. SIAM J. Sci. Stat. Comput. 13, 723-726.
Quintana, E. S., Quintana, G., Sun, X., and van de Geijn, R. 2001. A note on parallel matrix inversion. SIAM J. Sci. Comput. 22, 5, 1762-1771.
Quintana-Ortí, G. and van de Geijn, R. 2006. Improving the performance of reduction to Hessenberg form. ACM Transactions on Mathematical Software 32, 2 (June), 180-194.
Schreiber, R. and Van Loan, C. 1989. A storage-efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput. 10, 1 (Jan.), 53-57.
Sun, X. 1996. Aggregations of elementary transformations. Tech. Rep. Technical report DUKE-TR-1996-03, Duke University.
van de Geijn, R. A. and Quintana-Ortí, E. S. 2008. The Science of Programming Matrix Computations. www.lulu.com.
Van Zee, F. G. 2011a. libflame: The Complete Reference. www.lulu.com.
Van Zee, F. G., Chan, E., van de Geijn, R. A., Quintana-Ortí, E. S., and Quintana-Ortí, G. 2009. The libflame library for dense matrix computations. Computing in Science and Engineering 11, 56-63.
Van Zee, F. G., Quintana-Ortí, G., van de Geijn, R., and Elizondo, G. J. 2010b. Algorithms for reducing a matrix to condensed form. FLAME Working Note \#53 TR-10-37, The University of Texas at Austin, Department of Computer Science. October. Submitted to ACM TOMS.
Veras, R. M., Monette, J. S., Van Zee, F. G., van de Geijn, R. A., and Quintana-Ortí, E. S. FLAMES2S: From abstraction to high performance. ACM Trans. Math. Soft.. submitted. Available from http://z.cs.utexas.edu/wiki/flame.wiki/Publications/.
Walker, H. F. 1988. Implementation of the GMRES method using Householder transformations. SIAM J. Sci. Stat. Comput. 9, 1, 152-163.

Received Month Year; revised Month Year; accepted Month Year


[^0]:    Authors' addresses: Field G. Van Zee, Robert A. van de Geijn, G. Joseph Elizondo, Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, $\{f i e l d, r v d g$, elizondo\}@cs.utexas.edu. Gregorio Quintana-Ortí, Departamento de Ingeniería y Ciencia de Computadores, Universidad Jaume I, Campus Riu Sec, 12.071, Castellón, Spain, gquintan@icc.uji.es.
    Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
    (c) 20 YY ACM 0098-3500/20YY/1200-0001 $\$ 5.00$

[^1]:    ${ }^{1}$ Here, Houses stands for "Householder scalars", in contrast to the function Housev which provides the Householder vector $u$.
    ${ }^{2}$ Note that the semantics here indicate that $a_{21}$ is overwritten by $H a_{21}$.
    ${ }^{3}$ In practice, the zeros below the first element of $H a_{21}$ are not actually written. Instead, the implementation overwrites these elements with the corresponding elements of the vector $u_{21}$.

[^2]:    ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

[^3]:    ${ }^{6}$ Note that this assumption typically does not hold for small problem sizes due to data caching, which is why we only attempt to estimate performance improvement for relatively large problem sizes.
    ${ }^{7}$ Howell et al. implement fused operations as a sequence of level-2 BLAS operations. Rather than achieving speedup by reducing memory operations, this type of fusing uses blocking to interleave smaller fusable subproblems in an effort to promote increased data cache reuse.

[^4]:    ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

