
Families of Algorithms for Reducing a Matrix to
Condensed Form

FIELD G. VAN ZEE

The University of Texas at Austin

and

ROBERT A. VAN DE GEIJN

The University of Texas at Austin

and

GREGORIO QUINTANA-ORT́ı

Universidad Jaume I

and

G. JOSEPH ELIZONDO

The University of Texas at Austin

In a recent paper it was shown how memory traffic can be diminished by reformulating the classic
algorithm for reducing a matrix to bidiagonal form, a preprocess when computing the singular

values of a dense matrix. The key is a reordering of the computation so that the most memory-

intensive operations can be “fused”. In this paper, we show that other operations that reduce
matrices to condensed form (reduction to upper Hessenberg form and reduction to tridiagonal

form) can be similarly reorganized, yielding different sets of operations that can be fused. By

developing the algorithms with a common framework and notation, we facilitate the comparing
and contrasting of the different algorithms and opportunities for optimization. We discuss the

algorithms, develop a simple model to estimate the speedup potential from fusing, and showcase
performance improvements consistent with the what the model predicts.

Categories and Subject Descriptors: G.4 [Mathematical Software]: —Efficiency

General Terms: Algorithms; Performance

Additional Key Words and Phrases: linear algebra, libraries, high-performance

1. INTRODUCTION

For many dense linear algebra operations, such as Cholesky, LU, and QR factoriza-
tions, there exist algorithms that cast most of the computation in terms of matrix-

Authors’ addresses: Field G. Van Zee, Robert A. van de Geijn, G. Joseph Elizondo, De-

partment of Computer Science, The University of Texas at Austin, Austin, TX 78712,
{field,rvdg,elizondo}@cs.utexas.edu. Gregorio Quintana-Ort́ı, Departamento de Ingenieŕıa
y Ciencia de Computadores, Universidad Jaume I, Campus Riu Sec, 12.071, Castellón, Spain,

gquintan@icc.uji.es.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–34.

2 · F. G. Van Zee et al.

matrix operations that can overcome the memory bandwidth bottleneck common to
most modern processors [Dongarra et al. 1989; Dongarra et al. 1991; Dongarra et al.
1990; Anderson et al. 1999]. Reduction to condensed form operations—specifically,
reduction to upper Hessenberg, tridiagonal, and bidiagonal form—are important ex-
ceptions. For these operations, reducing the number of times data must be brought
in from memory is the key to optimizing performance since inherently O(n3) reads
to and writes from memory are incurred while O(n3) floating-point operations are
performed on an n× n matrix.

It should be noted that there are algorithms for reduction to condensed form
based on successive band reduction that cast most computation in terms of cache-
efficient matrix-matrix operations [Bischof et al. 1994; Lang 1999; Bischof et al.
2000; Bientinesi et al. 2011]. Such algorithms are much faster than those presented
in the present paper. However, reduction to condensed form is typically not a useful
operation in isolation. While successive band reduction yields a faster reduction to
condensed form, it adversely affects the performance of other parts of eigensolvers
and/or SVD computations. The present paper does not compare against successive
band reduction precisely because the authors believe that such a comparison is only
meaningful in the context of a complete eigensolver or SVD solver. Thus, we only
give a comprehensive treatment of direct algorithms for reduction to condensed
form.

The Basic Linear Algebra Subprograms (BLAS) [Lawson et al. 1979; Dongarra
et al. 1988; Dongarra et al. 1990] provide an interface to commonly used compu-
tational kernels in terms of which linear algebra routine can be written. The idea
is that if these kernels are optimized, then implementations of algorithms for com-
puting more complex operations benefit in a portable fashion. As we will see, the
problem is that the interface itself is limiting and can stand in the way of mini-
mizing memory traffic. In response, as part of the BLAST Forum [BLAST 2002],
additional, more complex, operations were suggested for inclusion in the BLAS. Un-
fortunately, the extensions proposed by the BLAST forum are not as well-supported
as the original BLAS. In [Howell et al. 2008], it was shown how one of the reduction
to condensed form operations, reduction to bidiagonal form, benefits from this new
functionality in the BLAS.

This paper presents algorithms for all three major reduction to condensed form
operations (reduction to upper Hessenberg, tridiagonal, and bidiagonal form) with
the FLAME notation [Gunnels et al. 2001]. This facilitates comparing and contrast-
ing different algorithms for the same operation and similar algorithms for different
operations [Quintana et al. 2001; Gunnels et al. 2001; Bientinesi et al. 2005; van de
Geijn and Quintana-Ort́ı 2008]. The paper shows how the techniques used to re-
duce memory traffic in the reduction to bidiagonal form algorithm, already reported
in [Howell et al. 2008], can be applied to similarly reduce such traffic when com-
puting a reduction to upper Hessenberg or tridiagonal form (although each has
different potential for improvement). It identifies sequences of operations within
the algorithms for reduction to condensed form that can be “fused.” (A sequence of
operations is eligible for fusing when the operations share one or more operands in
common, allowing the computations to be merged in an effort to reduce the cost due
to memory traffic.) Such compound operations have been referred to as “Level-2.5
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 3

BLAS.” It demonstrates the relative merits of different algorithms and optimiza-
tions that combine algorithms. Additionally, the paper illustrates the difference
between two styles of fusing, “cache-level” fusing and “register-level” fusing, and in
doing so exposes why the latter yields superior performance. All the presented al-
gorithms are implemented as part of the libflame library [Van Zee 011a; Van Zee
et al. 2009]. Thus the paper also provides documentation for that library’s support
of the target operations. The family of implementations and related benchmark-
ing codes are available as part of libflame so that others can experiment with
optimizations of the fused operations and the effect on performance.

2. HOUSEHOLDER TRANSFORMATIONS (REFLECTORS)

We start by reviewing a few basic properties of Householder transformations. For
simplicity, we focus only on computation over real matrices. However, the the
algorithms and results presented in this paper generalize to the complex domain,
and a related technical report [Van Zee et al. 010b] gives examples of how to express
the computation accordingly.

2.1 Computing Householder vectors and transformations

Definition 1. Let u ∈ Rn, τ ∈ R. Then H = H(u) = I − uuT /τ , where
τ = 1

2u
Tu, is said to be a reflector or Householder transformation.

We observe:

—Let z be any vector that is perpendicular to u. Applying a Householder transform
H(u) to z leaves the vector unchanged: H(u)z = z.

—Let any vector x be written as x = z + uTxu, where z is perpendicular to u and
uTxu is the component of x in the direction of u. Then H(u)x = z − uTxu.

This can be interpreted as follows: The space perpendicular to u acts as a “mirror”:
any vector in that space (along the mirror) is not reflected, while any other vector
has the component that is orthogonal to the space (the component outside and
orthogonal to the mirror) reversed in direction. Notice that a reflection preserves
the length of the vector. Also, it is easy to verify that:

(1) HH = I (reflecting the reflection of a vector results in the original vector);

(2) H = HT , and so HTH = HHT = I (a reflection is an orthogonal matrix and
thus preserves the norm); and

(3) if H0, · · · , Hk−1 are Householder transformations and Q = H0H1 · · ·Hk−1, then
QTQ = QQT = I (an accumulation of reflectors is an orthogonal matrix).

As part of the reduction to condensed form operations, given a vector x we will
wish to find a Householder transformation, H(u), such that H(u)x equals a vector
with zeroes below the first element: H(u)x = ∓‖x‖2e0 where e0 equals the first
column of the identity matrix. It can be easily checked that choosing u = x±‖x‖2e0
yields the desired H(u). Notice that any nonzero scaling of u has the same property,
and the convention is to scale u so that the first element equals one. Let us define
[u, τ, h] = Housev(x) to be the function that returns u with first element equal to
one, τ = 1

2u
Tu, and h = H(u)x.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · F. G. Van Zee et al.

2.2 Computing Au from Ax

Later, we will see that given a matrix A, we will need to form Au where u is
computed by Housev(x), but we will do so by first computing Ax. Let

x→
(
χ1

x2

)
, v →

(
ν1
v2

)
, u→

(
υ1

u2

)
,

v = x− αe0, and u = v/ν1, with α = −sign(χ1)‖x‖2 (and thus υ1 = 1). Then

‖x‖2 =
∥∥∥∥(χ1

‖x2‖2

)∥∥∥∥
2

, ‖v‖2 =
∥∥∥∥(χ1 − α
‖x2‖2

)∥∥∥∥
2

, ‖u‖2 = ‖v‖2/(χ1 − α), (1)

τ =
uTu

2
=
‖u‖22

2
=

‖v‖22
2(χ1 − α)2

, (2)

w = Ax and Au =
A(x− αe0)

(χ1 − α)
=

(w − αAe0)
(χ1 − α)

. (3)

We note that Ae0 simply equals the first column of A. We will assume that various
results in Eq. (1)–(2) are computed by the function Houses(x) where [χ1−α, τ, α] =
Houses(x).1 Then, the desired vector Au can be computed via Eq. (3).

2.3 Accumulating transformations

Consider the transformation formed by multiplying b Householder transformations(
I − uju

T
j /τj

)
, for 0 ≤ j < b− 1. If U =

(
u0 u1 · · · ub−1

)
, then(

I − u0u
T
0 /τ0

) (
I − u1u

T
1 /τ1

)
· · ·
(
I − ub−1u

T
b−1/τb−1

)
= (I − UT−1UT).

Here T = 1
2D + S where D and S equal the diagonal and strictly upper triangular

parts of UTU = ST +D + S. Later we will use the fact that if

U =
(
U0 u1

)
and T =

(
T00 t01
0 τ11

)
then

t01 = UT
0 u1, τ11 =

uT
1 u1

2
, and

(
T00 t01
0 τ11

)−1

=
(
T−1

00 −T−1
00 t01/τ11

0 τ−1
11

)
.

For further details, see [Joffrain et al. 2006; Puglisi 1992; Sun 1996; Walker 1988].
Alternative ways for accumulating transformations are the WY-transform [Bischof
and Van Loan 1987] and compact WY-transform [Schreiber and Van Loan 1989].

3. REDUCTION TO UPPER HESSENBERG FORM

In the first step towards computing the Schur decomposition of a matrix A, the
matrix is reduced to upper Hessenberg form: A → QBQT where B is an upper
Hessenberg matrix (zeroes below the first subdiagonal) and Q is orthogonal.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 5

Algorithm: [A] := HessRed unb(b, A)

Partition A→

ATL ATR

ABL ABR

!
, u→

uT

uB

!
, y →

yT

yB

!
, z →

zT

zB

!
where ATL is 0× 0 and uT , yT , and zT have 0 rows

while m(ATL) < b do
Repartition

ATL ATR

ABL ABR

!
→

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

uT

uB

!
→

0@ u01

υ11

u21

1A ,

yT

yB

!
→

0@ y01
ψ11

y21

1A ,

zT

zB

!
→

0@ z01
ζ11

z21

1A
where α11, υ11, ψ11, ζ11 are scalars

Basic unblocked 1:

[u21, τ, a21] := Housev(a21)

A22 := (I − u21uT
21/τ)A22 = A22 − u21uT

21A22/τ0@ A02

aT
12

A22

1A :=

0@ A02

aT
12

A22

1A (I − u21uT
21/τ) =

0@ A02 −A02u21uT
21/τ

aT
12 − aT

12u21uT
21/τ

A22 −A22u21uT
21/τ

1A

Basic unblocked 2: Rearranged unblocked:

[u21, τ, a21] := Housev(a21)

y21 := AT
22u21

z21 := A22u21

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ

z21 := (z21 − βu21/τ)/τ
A22 := A22 − u21yT

21 − z21uT
21

aT
12 := aT

12 − aT
12u21uT

21/τ

A02 := A02 −A02u21uT
21/τ

α11 := α11 − υ1ψ1 − ζ1υ1 (?)

aT
12 := aT

12 − υ1yT
21 − ζ1uT

21 (?)
a21 := a21 − u21ψ1 − z21υ1 (?)

[x21, τ, a21] := Housev(a21)
A22 := A22 − u21yT

21 − z21uT
21 (?)

v21 := AT
22x21

w21 := A22x21

u21 := x21; y21 := v21
z21 := w21

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ

z21 := (z21 − βu21/τ)/τ

aT
12 := aT

12 − aT
12u21uT

21/τ

A02 := A02 −A02u21uT
21/τ

Continue with
ATL ATR

ABL ABR

!
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

uT

uB

!
←

0@ u01

υ11

u21

1A ,

yT

yB

!
←

0@ y01
ψ11

y21

1A ,

zT

zB

!
←

0@ z01
ζ11

z21

1A
endwhile

Fig. 1. Unblocked algorithms for reduction to upper Hessenberg form. The first and second fused

operations in the “Basic unblocked 2” algorithm correspond to the BLAS 2.5 operations gemvt
and ger2, respectively [BLAST 2002]. Operations marked with (?) are not executed during the
first iteration.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · F. G. Van Zee et al.

3.1 Unblocked algorithm

The basic algorithm for reducing the matrix to upper Hessenberg form, overwriting
the original matrix with the result, can be explained as follows.

—Partition A→
(
α11 aT

12

a21 A22

)
.

—Let [u21, τ, a21] := Housev(a21).2

—Update a01 A02

α11 aT
12

a21 A22

 :=

 I 0 0
0 1 0
0 0 H

 a01 A02

α11 aT
12

a21 A22

(1 0
0 H

)
=

 a01 A02H

α11 aT
12H

Ha21 HA22H

where H = H(u21). Note that a21 := Ha21 need not be executed since this
update was performed by the instance of Housev above.3

—Continue this process with the updated A22.

This is captured in the algorithm in Figure 1 (top), in which it is recognized that as
the algorithm proceeds beyond the first iteration, the submatrix A20 must also be
updated. As formulated, the submatrix A22 has to be read and written in the first
highlighted operation and submatrices A02, aT

12, and A22 must be read and written
in the second highlighted operation in Figure 1 (top) assuming the operations in
the highlighted boxed are fused. Thus, the bulk of memory operations then lie with
A22 being read and written twice and A20 being read and written once.

Let us look at the update of A22 in Figure 1 (top) in more detail:

A22 := HA22H = (I − u21u
T
21/τ)A22(I − u21u

T
21/τ)

= A22 − u21(AT
22u21︸ ︷︷ ︸
v21

)T /τ − (A22u21︸ ︷︷ ︸
w21

)uT
21/τ + (uT

21 A22u21︸ ︷︷ ︸
w21

)u21u
T
21/τ

2

= A22 − u21v
T
21/τ − w21u

T
21/τ + uT

21w21︸ ︷︷ ︸
2β

u21u
T
21/τ

2

= A22 − u21 ((v21 − βu21/τ)/τ)︸ ︷︷ ︸)T

y21

− ((w21 − βu21/τ)/τ)︸ ︷︷ ︸
z21

uT
21

= A22 − (u21y
T
21 + z21u

T
21).

This motivates the algorithm in Figure 1 (left). The problem with this algorithm is
that, when implemented using traditional level-2 BLAS, it requires A22 to be read
four times and written twice. If the operations in the highlighted boxes are instead
fused, then A22 needs only be read twice and written once.

What we will show next is that by delaying the update A22 := A22 − (u21y
T
21 +

z21u
T
21) until the next iteration, we can reformulate the algorithm so that A22

1Here, Houses stands for “Householder scalars”, in contrast to the function Housev which pro-

vides the Householder vector u.
2Note that the semantics here indicate that a21 is overwritten by Ha21.
3In practice, the zeros below the first element of Ha21 are not actually written. Instead, the

implementation overwrites these elements with the corresponding elements of the vector u21.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 7

needs only be read and written once per iteration. Let us focus on the update
A22 := A22 − (u21y

T
21 + z21u

T
21). Partition

A22 →
(
α+

11 a+T
12

a+
21 A+

22

)
, u21 →

(
υ+

1

u+
21

)
, y21 →

(
ψ+

1

y+
21

)
, z21 →

(
ζ+
1

z+
21

)
,

where + indicates the partitioning in the next iteration. Then A22 := A22 −
(u21y

T
21 + z21u

T
21) translates to(

α+
11 a+T

12

a+
21 A+

22

)
:=
(
α+

11 a+T
12

a+
21 A+

22

)
−

((
υ+

1

u+
21

)(
ψ+

1

y+
21

)T

+
(
ζ+
1

z+
21

)(
υ+

1

u+
21

)T
)

=
(
α+

11 − (υ+
1 ψ

+
1 + ζ+

1 υ
+
1) a+T

12 − (υ+
1 y

+T
21 + ζ+

1 u
+T
21)

a+
21 − (u+

21ψ
+
1 + z+

21υ
+
1) A+

22 − (u+
21y

+T
21 + z+

21u
+T
21)

)
,

which shows what computation would need to be performed if the update of A22 is
delayed until the next iteration. Now, before v21 = AT

22u21 and z21 = A22u21 can be
computed in the next iteration, Housev(a21) has to be computed, which requires
a21 to be updated. But what is important is that A22 can be updated by the two
rank-1 updates from the previous iterations just before v21 = AT

22u21 and w21 =
A22u21 are computed, which allows them to be “fused” into one operation that reads
and writes A22 to and from memory only once. The algorithm in Figure 1 (right)
takes advantage of these insights. To our knowledge it has not been previously
published.

3.2 Lazy algorithm

We now show how the reduction to upper Hessenberg form can be restructured so
that the update A22 := A22 − (u21y

T
21 + z21u

T
21) during each step can be avoided.

This algorithm in and by itself is not practical, since (1) it requires too much
temporary space, and (2) intermediate matrix-vector multiplications, which incur
additional memory reads, eventually begin to dominate the operation. But it will
become an integral part of the blocked algorithm discussed in Section 3.4. This
algorithm was first reported in [Dongarra et al. 1989].

The rather curious choice of subscripts for u21, and y21, and z21 now becomes
apparent: By passing matrices U , Y , and Z into the algorithm in Figure 1, and
partitioning them just like we do A in that algorithm, we can accumulate the
subvectors u21, y21 and z21 into those matrices. Now, let us assume that at the top
of the loop ABR has not yet been updated. Then α11, a21, aT

12 and A22 have not
yet been updated, which means we cannot perform many of the computations in
the current iteration. However, if we let α̂11, â21, âT

12, and Â22 denote the original
values in A in those locations, then the desired α11, a21, and aT

12 are given by

α11 = α̂11 − uT
10y10 − zT

10u10

a21 = â21 − UT
20y10 − ZT

20u10

aT
12 = âT

12 − uT
10Y

T
20 − zT

10U
T
20

A22 = Â22 − U20Y
T
20 − Z20U

T
20.

Thus, we start the iteration by updating in this fashion these parts of A.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · F. G. Van Zee et al.

Algorithm: [A,U, Y, Z] := HessRed lazy unb(b, A, U, Y, Z)

Partition X →

XTL XTR

XBL XBR

!
for X ∈ {A,U, Y, Z}

where XTL is 0× 0
while n(UTL) < b do

Repartition
XTL XTR

XBL XBR

!
→

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

where χ11 is a scalar

α11 := α11 − uT
10y10 − zT

10u10

a21 := a21 − U20y10 − Z20u10

aT
12 := aT

12 − uT
10Y

T
20 − zT

10U
T
20

[u21, τ, a21] := Housev(a21)

y21 := AT
22u21

z21 := A22u21

y21 := y21 − Y20(UT
20u21)− U20(ZT

20u21)
z21 := z21 − U20(Y T

20u21)− Z20(UT
20u21)

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ

z21 := (z21 − βu21/τ)/τ
aT
12 := aT

12 − aT
12u21uT

21/τ

A02 := A02 −A02u21uT
21/τ

Continue with
XTL XTR

XBL XBR

!
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

endwhile

Fig. 2. Lazy unblocked algorithm for reduction to upper Hessenberg form. The first fused opera-

tion corresponds to the BLAS 2.5 operation gemvt [BLAST 2002].

Next, we observe that the updated A22 itself is not actually needed in updated
form: We need to be able to compute AT

22u21 and A22u21. But this can be done
via the alternative computations

y21 := AT
22u21 = ÂT

22u21 − Y20(UT
20u21)− U20(ZT

20u21)
z21 := A22u21 = Â22u21 − U20(Y T

20u21)− Z20(UT
20u21)

which requires only matrix-vector multiplications. This inspires the algorithm in
Figure 2.

3.3 GQvdG unblocked algorithm

The lazy algorithm discussed above requires at each step a matrix-vector and a
transposed matrix-vector multiply which can be fused so that the matrix only
needs to be brought into memory once. In this section, we show how the bulk
of computation (and associated memory traffic) can be cast in terms of a single
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 9

Algorithm: [A,U,Z, T] := HessRed GQvdG unb(b, A, U, Z, T)

Partition X →

XTL XTR

XBL XBR

!
for X ∈ {A,U,Z, T}

where XTL is 0× 0
while n(UTL) < b do

Repartition
XTL XTR

XBL XBR

!
→

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Z, z, ζ), (T, t, τ)}

where χ11 is a scalar0@ a01

α11

a21

1A :=

0@ a01

α11

a21

1A−
0@ Z00

zT
10

Z20

1AT−1
00 u10

0@ a01

α11

a21

1A :=

0B@I −
0@ U00

uT
10

U20

1AT−1
00

0@ U00

uT
10

U20

1AT1CA
T 0@ a01

α11

a21

1A
[u21, τ11, a21] := Housev(a21)0@ z01

ζ11
z21

1A :=

0@ A02

aT
12

A22

1Au21

t01 := UT
20u21

Continue with
XTL XTR

XBL XBR

!
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Z, z, ζ), (T, t, τ)}

endwhile

Fig. 3. GQvdG unblocked algorithm for the reduction to upper Hessenberg form.

matrix multiplication per iteration with a much simpler algorithm that does not
require fusing and thus no special implementation of the fused operation. This
algorithm was first proposed by G. Quintana and van de Geijn in [Quintana-Ort́ı
and van de Geijn 2006], which is why we call it the GQvdG unblocked algorithm.
It is summarized in Figure 3.

The underlying idea builds upon how Householder transformations can be accu-
mulated: The first b updates can be accumulated into a lower trapezoidal matrix
U and upper triangular matrix T so that

(
I − u0u

T
0 /τ0

) (
I − u1u

T
1 /τ1

)
· · ·
(
I − ub−1u

T
b−1/τb−1

)
= (I − UT−1UT).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · F. G. Van Zee et al.

After b iterations the basic unblocked algorithm overwrites matrix A with

A(b) = H(ub−1) · · ·H(u0)ÂH(u0) · · ·H(ub−1)
=
(
I − ub−1u

T
b−1/τb−1

)
· · ·
(
I − u0u

T
0 /τ0

)
Â
(
I − u0u

T
0 /τ0

)
· · ·H(ub−1)

= (I − UT−1UT)T Â(I − UT−1UT) = (I − UT−1UT)T (Â− ÂU︸︷︷︸
Z

T−1UT)

= (I − UT−1UT)T (Â− ZT−1UT),

where Â denotes the original contents of A.
Let us assume that this process has proceeded for k iterations. Partition

X →
(
XTL XTR

XBL XBR

)
for X ∈ {A, Â, U, Z, T},

where XTL is k × k. Then

A(k) =

(
A

(k)
TL A

(k)
TR

A
(k)
BL A

(k)
BR

)
=

(
I −

(
UTL

UBL

)
T−1

TL

(
UTL

UBL

)T
)T ((

ÂTL ÂTR

ÂBL ÂBR

)
−
(
ZTL

ZBL

)
T−1

TL

(
UTL

UBL

)T
)
.

Now, assume that after the first k iterations our algorithm leaves our variables in
the following states:

—A =
(
ATL ATR

ABL ABR

)
contains

(
A

(k)
TL ÂTR

A
(k)
BL ÂBR

)
. In other words, the first k columns

have been updated and the rest of the columns are untouched.

—Only
(
UTL

UBR

)
, TTL, and

(
ZTR

ZBR

)
have been updated.

The question is how to advance the computation. Now, at the top of the loop, we
expose (

XTL XTR

XBL XBR

)
→

 X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

for (X,x, χ) ∈ {(A, a, α), (Â, â, α̂), (U, u, υ), (Z, z, ζ), (T, t, τ). In order to compute
the next Householder transformation, the next column of A must be updated ac-
cording to prior computation: a01

α11

a21

 =

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T

T

 a01

α11

a21

−
 Z00

zT
10

Z20

T−1
00 u10

︸ ︷︷ ︸
column k of ZkT

−1
k UT

k

 ,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 11

which means first updating a01

α11

a21

 :=

 a01 − Z00w10

α11 − zT
10w10

a21 − Z20w10

 ,

where w10 = T−1
00 u10. Next, we need to perform the update a01

α11

a21

 :=

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T

T a01

α11

a21

=

 a01

α11

a21

−
 U00

uT
10

U20

T−T
00

 U00

uT
10

U20

T a01

α11

a21

 =

 a01 − U00y10
α11 − uT

10y10
a21 − U20y10

 ,

where y10 = T−T
00 (UT

00a01 + u10α11 + UT
20a21). After these computations we can

compute the next Householder transform from a21, updating a21:

—[u21, τ, a21] := Housev(a21).

The next column of Z is computed by z01
ζ11
z21

 :=

 Â00 â01 Â02

âT
10 α̂11 âT

12

Â20 â21 Â22

 0

0
u21

 =

 Â02u21

âT
12u21

Â22u21

 .

As in Section 2.3, we finish by computing the next column of T : T00 t̂01 T̂02

0 τ̂11 t̂T12
0 0 T̂22

 :=

 T00 UT
20u21 T̂02

0 1
2u

T
21u21 t̂T12

0 0 T̂22

 .

Note that 1
2u

T
21u21 is equal to the τ computed by Housev(a21), and thus it need

not be recomputed to update τ11.

3.4 Blocked algorithms

We now discuss how much of the computation can be cast in terms of matrix-matrix
multiplication. The first such blocked algorithm was reported in [Dongarra et al.
1989]. That algorithm corresponds roughly to our blocked Algorithm 1.

In Figure 4 we give four blocked algorithms which differ by how computation is
accumulated in the body of the loop:

—Two correspond to using the unblocked algorithms in Figure 1.
—A third results from using the lazy algorithm in Figure 2. For this variant, we

introduce matrices U , Y , and Z of width b in which vectors computed by the
lazy unblocked algorithm are accumulated. We are not aware of this algorithm
having been reported before.

—The fourth results from using the algorithm in Figure 3. It returns matrices U ,
Z, and T . It was first reported in [Quintana-Ort́ı and van de Geijn 2006] and we
will call it the GQvdG blocked algorithm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · F. G. Van Zee et al.

Algorithm: [A] := HessRed blk(A, T)

Partition A→

ATL ATR

ABL ABR

!
, X →

XT

XB

!
for X ∈ {T, U, Y, Z}

where ATL is 0× 0 and TT , UT , YT , and ZT have 0 rows
while m(ATL) < m(A) do

Determine block size b

Repartition
ATL ATR

ABL ABR

!
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

XT

XB

!
→

0@ X0

X1

X2

1A
for X ∈ {T, U, Y, Z}

where A11 is b× b and T1, U1, Y1, and Z1 have b rows

Algorithm 1, 2: (blocked + basic unblocked, blocked + rearranged unblocked)

[ABR, UB] := HessRed unb(b, ABR)

T1 = 1
2
D + S where UT

BUB = ST +D + S

ATR := ATR(I − UBT
−1
1 UT

B)

Algorithm 3: (blocked + lazy unblocked)

[ABR, UB , YB , ZB] := HessRed lazy unb(b, ABR, UB , YB , ZB)

T1 = 1
2
D + S where UT

BUB = ST +D + S

ATR := ATR(I − UBT
−1
1 UT

B)

A22 := A22 − U2Y T
2 − Z2UT

2

Algorithm 4: (GQvdG blocked + GQvdG unblocked)

[ABR, UB , ZB , T1] := HessRed GQvdG unb(b, ABR, UB , ZB , T1)

ATR := ATR(I − UBT
−1
1 UT

B)„
A12

A22

«
:=

I −

„
U1

U2

«
T−1
1

„
U1

U2

«T
!T „„

A12

A22

«
−
„
Z1

Z2

«
T−1
1 UT

2

«

Continue with
ATL ATR

ABL ABR

!
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

XT

XB

!
←

0@ X0

X1

X2

1A
for X ∈ {T, U, Y, Z}

endwhile

Fig. 4. Blocked reduction to Hessenberg form based on original or rearranged algorithm. The call

to HessRed unb performs the first b iterations of one of the unblocked algorithms in Figures 1

or 2. In the case of the algorithms in Figure 1, UB accumulates and returns the vectors u21

encountered in the computation and YB and ZB are not used.

Let us consider having progressed through the matrix so that it is in the state

A =
(
ATL ATR

ABL ABR

)
, U =

(
UT

UB

)
, Y =

(
YT

YB

)
, Z =

(
ZT

ZB

)
,

where ATL is b × b. Assume that the factorization has completed with ATL and
ABL (meaning that ATL is upper Hessenberg and ABL is zero except for its top-
right most element), and ATR and ABR have been updated so that only an upper
Hessenberg factorization of ABR has to be completed, updating the ATR submatrix
correspondingly. In the next iteration of the blocked algorithm, we perform the
following steps:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 13

—Perform the first b iterations of the lazy algorithm with matrix ABR, accumulat-
ing the appropriate vectors in UB , YB , and ZB .

—Apply the resulting Householder transformations from the right to ATR. In
Section 2.3 we discussed that this requires the computation of UTU = ST +D+S,
where D and S equal the diagonal and strictly upper triangular part of UTU ,
after which ATR := ATR(I−UT−1UT) = ATR−ATRUT

−1UT with T = 1
2D+S.

—Repartition

(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

(
UT

UB

)
→

 U0

U1

U2

 , . . .

—Update A22 := A22 − U2Y
T
2 − Z2U

T
2 .

—Move the thick line (which denotes how far the factorization has proceeded)
forward by the block size:

(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

(
UT

UB

)
←

 U0

U1

U2

 , . . .

Proceeding like this block-by-block computes the reduction to upper Hessenberg
form while reducing the size of the matrices U , Y , and Z, casting some of the
computation in terms of matrix-matrix multiplications that are known to achieve
high performance.

When one of the unblocked algorithms in Figure 1 is used instead, A22 is already
updated upon return from HessRed unb and thus only the update of ATR can be
accelerated by calls to level-3 BLAS operations.

The GQvdG blocked algorithm, which uses the GQvdG unblocked algorithm, was
incorporated into recent releases of LAPACK, modulo a small change that accu-
mulates T−1 instead of T . Prior to this, an algorithm that used the lazy unblocked
algorithm but also updated ATR as part of that unblocked algorithm (and thus cast
less computation in terms of level-3 BLAS) was part of LAPACK [Dongarra et al.
1989]. A comparison between the GQvdG blocked algorithm and this previously
used algorithm can be found in [Quintana-Ort́ı and van de Geijn 2006].

3.5 Fusing operations

We now discuss how the eligible sets of operations encountered in the various algo-
rithms can be fused to reduce memory traffic.

In the rearranged algorithm, delaying the update of A22 yields the following three
operations that can be fused (here we drop the subscripts):

A := A− (uyT + zuT)
v := ATx
w := Ax

(4)

By inspecting the three operations, we notice that only one column of A needs to
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · F. G. Van Zee et al.

be read and updated at a time. So, let us partition

A→
`
a0 · · · an−1

´
, u→

0BB@
υ0

...
υn−1

1CCA , v →

0BB@
ν0
...

νn−1

1CCA , x→

0BB@
χ0

...
χn−1

1CCA , y →

0BB@
ψ0

...
ψn−1

1CCA .

Then the following steps, for 0 ≤ j < n, compute the desired result (provided that
initially w = 0):

aj := aj − ψju− υjz (2×axpy)
νj := aT

j x (dot)
w := w + χjaj (axpy)

However, if we implement this fused operation by looping over the level-1 BLAS
operations (parenthesized above), each element of A is still accessed six times—no
fewer than if we had simply called the level-2 BLAS routines ger and gemv in
sequence (twice each). We would only benefit (hopefully) from the current column
of A, aj , residing in the cache after the first call to axpy, thus allowing the second
axpy, the dot, and third axpy routine invocations to more readily access the
elements of aj . We refer to this as “cache-level” fusing, as it promotes increased
temporal locality of subparts of matrix A within the cache hierarchy and thus allows
these memory-limited operations to complete in less time. The authors of [Howell
et al. 2008] demonstrate the benefits of cache-level fusing, except they express the
computation as a sequence of level-2 BLAS subproblems rather than in terms of
level-1 operations.4 But the purpose and effect is similar.

Ideally, we would want to avoid these redundant memory operations altogether,
even if they were accessing cached data. In order to do this, we need to further
partition the level-1 subproblems to allow fusing of individual scalar arithmetic
operations.

If we coded the operations at a very low level, controlling individual load and store
instructions, we could implement the algorithm in Figure 5 (right). We consider this
algorithm to be fused at the register-level because certain memory operations are
avoided by reusing data when they are still loaded in the processor core’s registers.
We provide an unfused algorithm on the left-hand side of the figure and a cache-
level fusing in the middle for contrast. Note that the cache-level algorithm fuses
only the outer loops (over n) while the register-level algorithm goes a step further
and also fuses the inner loops (over m). It is easy to see that register-level fusing
reduces the number of memory accesses to each element of matrix A to the absolute
minimum: one load and one store.

The other fusable operations present in Figures 1 and 2, and throughout the
remainder of this paper, can be fused in a similar manner.

4. REDUCTION TO TRIDIAGONAL FORM

The first step towards computing the eigenvalue decomposition of a symmetric
matrix is to reduce the matrix to tridiagonal form.

Let A ∈ Rn×n be symmetric. If A → QBQT where B is upper Hessenberg and

4The blocking employed by authors’ cache-level technique uses the same algorithmic blocksize

specified in the top-level blocked algorithm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 15

for j = 0 : n− 1

load yj → β
for i = 0 : m− 1

load Aij → α11

load ui → υ1

α11 := α11 − βυ1

store Aij ← α11

endfor
endfor

for j = 0 : n− 1

load uj → γ
for i = 0 : m− 1

load Aij → α11

load zi → ζ1
α11 := α11 − γζ1
store Aij ← α11

endfor

endfor

for j = 0 : n− 1
ρ := 0

for i = 0 : m− 1
load Aij → α11

load xi → χ1

ρ := ρ+ α11χ1

endfor
store νj ← ρ

endfor

settozero(w)
for j = 0 : n− 1

load xj → κ
for i = 0 : m− 1

load Aij → α11

load wi → ω1

ω1 := ω1 + κα11

store wi ← ω1

endfor
endfor

settozero(w)

for j = 0 : n− 1
load yj → β

for i = 0 : m− 1

load Aij → α11

load ui → υ1

α11 := α11 − βυ1

store Aij ← α11

endfor

load uj → γ

for i = 0 : m− 1
load Aij → α11

load zi → ζ1
α11 := α11 − γζ1
store Aij ← α11

endfor
ρ := 0

for i = 0 : m− 1
load Aij → α11

load xi → χ1

ρ := ρ+ α11χ1

endfor
store νj ← ρ

load xj → κ

for i = 0 : m− 1
load Aij → α11

load wi → ω1

ω1 := ω1 + κα11

store wi ← ω1

endfor
endfor

settozero(w)

for j = 0 : n− 1

load yj → β
load uj → γ

load xj → κ

ρ := 0
for i = 0 : m− 1

load Aij → α11

load ui → υ1

load zi → ζ1
load xi → χ1

load wi → ω1

α11 := α11 − βυ1

α11 := α11 − γζ1
ρ := ρ+ α11χ1

ω1 := ω1 + κα11

store Aij ← α11

store wi ← ω1

endfor
store νj ← ρ

endfor

Fig. 5. Algorithms for computing the fusable set of operations present in Eq. 4 using no fusing

(left), cache-level fusing (middle), and register-level fusing (right). Whereas the unfused and

cache-level fused algorithms access each element of matrix A six times, the register-level fused
algorithm avoids redundant memory instructions and thus touches each element only twice.

Q is orthogonal, then B is symmetric and therefore tridiagonal. In this section we
show how to take advantage of symmetry, assuming that matrix A is stored in only
the lower triangular part of A and only the lower triangular part of that matrix is
overwritten with B.

When matrix A is symmetric, and only the lower triangular part is stored and
updated, the unblocked algorithms for reducing A to upper Hessenberg form can
be changed by noting that v21 = w21 and y21 = z21. This motivates the algorithms
in Figures 6–8, which correspond respectively to Figures 1 (left and right), 2, and
4 when taking advantage of symmetry. The blocked algorithm and associated un-
blocked algorithm was first reported in [Dongarra et al. 1989].

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · F. G. Van Zee et al.

Algorithm: [A] := TriRed unb(A)

Partition A→

ATL ATR

ABL ABR

!
, x→

xT

xB

!
for x ∈ {u, y}

where ATL is 0× 0 and uT , yT have 0 rows
while m(ATL) < m(A) do

Repartition
ATL ATR

ABL ABR

!
→

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

xT

xB

!
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

where α11, υ11, and ψ11 are scalars

Basic unblocked: Rearranged unblocked:

[u21, τ, a21] := Housev(a21)

y21 := A22u21

β := uT
21y21/2

y21 := (y21 − βu21/τ)/τ

A22 := A22 − u21yT
21 − y21uT

21

α11 := α11 − 2υ11ψ11 (?)
a21 := a21 − (u21ψ11 + y21υ11) (?)

[x21, τ, a21] := Housev(a21)
A22 := A22 − u21yT

21 − y21uT
21 (?)

v21 := A22x21

u21 := x21; y21 := v21
β := uT

21y21/2

y21 := (y21 − βu21/τ)/τ

Continue with
ATL ATR

ABL ABR

!
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

xT

xB

!
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

endwhile

Fig. 6. Unblocked algorithms for reduction to tridiagonal form. Left: basic algorithm. Right:
rearranged to allow fusing of operations. Operations marked with (?) are not executed during the

first iteration.

In the rearranged algorithm, delaying the update of A22 allows the highlighted
operations in Figure 6 (right) to be fused. We leave it as an exercise to the reader
to fuse the highlighted operations in Figure 7.

5. REDUCTION TO BIDIAGONAL FORM

The previous sections were inspired by the paper [Howell et al. 2008] that discusses
how fused operations can benefit algorithms for the reduction of a matrix to bidi-
agonal form. The purpose of this section is to present the basic and rearranged
unblocked algorithms for this operation with our notation to facilitate the com-
paring and contrasting of the reduction to upper Hessenberg and tridiagonal form
algorithms to those for the reduction to bidiagonal form.

The first step towards computing the Singular Value Decomposition (SVD) of
A ∈ Rm×n is to reduce the matrix to bidiagonal form: A→ QLBQ

T
R where B is a

bidiagonal matrix (nonzero diagonal and superdiagonal) and QL and QR are again
square and orthogonal.

For simplicity, we explain the algorithms for the case where A is square.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 17

Algorithm: [A,U, Y] := TriRed lazy unb(b, A, U, Y)

Partition X →

XTL XTR

XBL XBR

!
for X ∈ {A,U, Y }

where XTL is 0× 0
while n(UTL) < b do

Repartition
XTL XTR

XBL XBR

!
→

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ)}

where χ11 is a scalar

α11 := α11 − uT
10y10 − yT

10u10

a21 := a21 − U20y10 − Y20u10

[u21, τ, a21] := Housev(a21)

y21 := A22u21

y21 := y21 − Y20(UT
20u21)− U20(Y T

20u21)

β := uT
21y21/2

y21 := (y21 − βu21/τ)/τ

Continue with
XTL XTR

XBL XBR

!
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ)}

endwhile

Fig. 7. Lazy unblocked reduction to tridiagonal form.

5.1 Basic algorithm

The basic algorithm for this operation, overwriting A with the result B, can be
explained as follows:

—Partition A→
(
α11 aT

12

a21 A22

)
.

—Let
[(

1
u21

)
, τL,

(
α11

0

)]
:= Housev

((
α11

a21

))
.5

—Update (
α11 aT

12

a21 A22

)
:=

(
I −

(
1
u21

)(
1
u21

)T

/τL

)(
α11 aT

12

a21 A22

)
=
(
α− ψ11/τL aT

12 − yT
21/τL

0 A22 − u21y
T
21/τL

)
,

where ψ11 = α11 + uT
21a21 and yT

21 = aT
12 + uT

21A22. Note that α11 := α− ψ11/τL
need not be executed since this update was performed by the instance of Housev
above.

5Note that the semantics here indicate that α11 is overwritten by the first element of

„
α11

0

«
.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · F. G. Van Zee et al.

Algorithm: [A,U, Y] := TriRed blk(A,U, Y)

Partition A→

ATL ATR

ABL ABR

!
, X →

XT

XB

!
for X ∈ {U, Y }

where ATL is 0× 0 and UT , YT have 0 rows
while m(ATL) < m(A) do

Determine block size b

Repartition
ATL ATR

ABL ABR

!
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

XT

XB

!
→

0@ X0

X1

X2

1A
for X ∈ {U, Y }

where A11 is b× b and U1, and Y1 have b rows

[ABR, UB , YB] := TriRed lazy unb(b, ABR, UB , YB)

A22 := A22 − U2Y T
2 − Y2UT

2

Continue with
ATL ATR

ABL ABR

!
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

XT

XB

!
←

0@ X0

X1

X2

1A
for X ∈ {U, Y }

endwhile

Fig. 8. Blocked reduction to tridiagonal form based on original or rearranged algorithm.

TriRed unb performs the first b iterations of the lazy unblocked algorithm in Figure 7.

—Let [v21, τR, a12] := Housev (a12).

—Update A22 := A22(I − v21vT
21/τR) = A22 − z21vT

21/τR, where z21 = A22v21.

—Continue this process with the updated A22.

The resulting algorithm, slightly rearranged, is given in Figure 9 (left).

5.2 Rearranged algorithm

We now show how, again, the loop can be restructured so that multiple updates
of, and multiplications with, A22 can be fused. Focus on the update A22 := A22 −
(u21y

T
21 + z21v

T
21). Partition

A22 →

α+

11 a+T
12

a+
21 A+

22

!
, u21 →

„
υ+
11

u+
21

«
, y21 →

„
ψ+

11

y+21

«
, z21 →

„
ζ+11
z+21

«
, v21 →

„
ν+
11

v+21

«
,

where + indicates the partitioning in the next iteration. Then(
α+

11 a+T
12

a+
21 A+

22

)
:=
(
α+

11 a+T
12

a+
21 A+

22

)
−
(
υ+

11

u+
21

)(
ψ+

11

y+
21

)T

−
(
ζ+
11

z+
21

)(
ν+
11

v+
21

)T

=
(
α+

11 − υ
+
11ψ

+
11 − ζ

+
11ν

+
11 a+T

12 − υ
+
11y

+T
21 − ζ

+
11v

+T
21

a+
21 − u

+
21ψ

+
11 − z

+
21ν

+
11 A+

22 − u
+
21y

+T
21 − z

+
21v

+T
21

)
,

which shows how the update of A22 can be delayed until the next iteration. If
u21 = y21 = z21 = v21 = 0 during the first iteration, the body of the loop may be
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 19

Algorithm: [A] := BiRed unb(A)

Partition A→

ATL ATR

ABL ABR

!
, x→

xT

xB

!
for x ∈ {u, v, y, z}

where ATL is 0× 0, uT , vT , yT , zT have 0 elements
while m(ATL) < m(A) do

Repartition
ATL ATR

ABL ABR

!
→

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

xT

xB

!
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

where α11, υ11, ν11, ψ11, and ζ11 are scalars

Basic unblocked: Rearranged unblocked:

»„
1

u21

«
, τL,

„
α11

0

«–
:=

Housev

„„
α11

a21

««

y21 := a12 +AT
22u21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)

β := yT
21v21

y21 := y21/τL
z21 := (A22v21 − βu21/τL)/τR

A22 := A22 − u21yT
21 − z21vT

21

α11 := α11 − υ11ψ11 − ζ11ν11 (?)

a21 := a21 − u21ψ11 − z21ν11 (?)
aT
12 := aT

12 − υ11yT
21 − ζ11vT

21 (?)»„
1

u+
21

«
, τL,

„
α11

0

«–
:=

Housev

„„
α11

a21

««
a+
12 := a12 − a12/τL
A22 := A22 − u21yT

21 − z21vT
21 (?)

y21 := AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

y21 := y21 + a12

[ψ11 − α12, τR, α12] := Houses(a+
12)

v21 := (a+
12 − α12e0)/(ψ11 − α12)

aT
12 := α12eT

0

u21 := u+
21

β := yT
21v21

y21 := y21/τL
z21 := (w21 − α12A22e0)/(ψ11 − α12)

z21 := z21 − βu21/τL
z21 := z21/τR

Continue with
ATL ATR

ABL ABR

!
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

xT

xB

!
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

endwhile

Fig. 9. Unblocked algorithms for reduction to bidiagonal form. Left: basic algorithm. Right:

rearranged to allow fusing of operations (this is essentially Algorithm I from [Howell et al. 2008]).
The fused operation in the “Basic unblocked” algorithm corresponds to the BLAS 2.5 opera-
tion ger2 while the fused operation in the “Rearranged unblocked” algorithm corresponds to
gemver [BLAST 2002]. Operations marked with (?) are not executed during the first iteration.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · F. G. Van Zee et al.

changed to

α11 := α11 − υ11ψ11 − ζ11ν11
a21 := a21 − u21ψ11 − z21ν11
aT
12 := aT

12 − υ11y
T
21 − ζ11vT

21[(
1
u+

21

)
, τL,

(
α11

0

)]
:= Housev

((
α11

a21

))
A22 := A22 − u21y

T
21 − z21vT

21

y21 := a12 +AT
22u

+
21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)
β := yT

21v21
y21 := y21/τL
z21 := (A22v21 − βu+

21/τL)/τR

Now, the goal becomes to bring the three highlighted updates together. The prob-
lem is that the last update, which requires v21, cannot commence until after the
second call to Housev completes. This dependency can be circumvented by ob-
serving that one can perform a matrix-vector multiply of A22 with the vector
aT
12 = aT

12 − yT
21/τL instead of with v21, after which the result can be updated

as if the multiplication had used the output of the Housev, as indicated by Eq. (3)
in Section 2. These observations justify the rearrangement of the computations as
indicated in Figure 9 (right).

5.3 Lazy algorithms

A lazy algorithm can be derived by not updating A22 at all, and instead accumu-
lating the updates in matrix U , V , Y , and Z, much like was done for the other
reduction to condensed form operations.

We start with the rearranged algorithm to make sure that

y21 := AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

can still be fused. Next, the key is to realize that what was previously a multipli-
cation by A22 must now be replaced by a multiplication by A22−U20Y

T
20−Z20V

T
20.

This yields the algorithm in Figure 10 (right) which was first proposed by Howell
et al. [Howell et al. 2008].

For completeness, we include in Figure 10 (left) a basic algorithm which does not
rearrange operations for fusing, but still has the “lazy” property whereby A22 is
never updated.

5.4 Blocked algorithms

Finally, a blocked algorithm is given in Figure 11. The basic lazy unblocked algo-
rithm in conjunction with the blocked algorithm was first published in [Dongarra
et al. 1989] and is part of LAPACK. The rearranged lazy unblocked algorithm in
conjunction with the blocked algorithm was proposed as Algorithm III in [Howell
et al. 2008].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 21

Algorithm: [A,U, V, Y, Z] := BiRed lazy unb(b, A, U, V, Y, Z)

Partition X →

XTL XTR

XBL XBR

!
for X ∈ {A,U, V, Y, Z}

where XTL is 0× 0

while n(UTL) < b do
Repartition

XTL XTR

XBL XBR

!
→

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (V, v, ν), (Y, y, ψ), (Z, z, ζ)}

where χ11 is a scalar

Lazy basic unblocked: Lazy rearranged unblocked:

α11 := α11 − uT
10y10 − zT

10v10
a21 := a21 − U20y10 − Z20v10
aT
12 := aT

12 − uT
10Y

T
20 − zT

10V
T
20»„

1

u21

«
, τL,

„
α11

0

«–
:=

Housev

„„
α11

a21

««
y21 := a12 +AT

22u21

−Y20UT
20u21 − V20ZT

20u21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := Housev (a12)

β := yT
21v21

y21 := y21/τL
z21 := (A22v21
−U20Y T

20v21 − Z20V T
20v21

−βu21/τL)/τR

α11 := α11 − uT
10y10 − zT

10v10
a21 := a21 − U20y10 − Z20v10
aT
12 := aT

12 − uT
10Y

T
20 − zT

10V
T
20»„

1

u+
21

«
, τL,

„
α11

0

«–
:=

Housev

„„
α11

a21

««
a+
12 := a12 − a12/τL
y21 := −Y20UT

20u
+
21 − V20ZT

20u
+
21

y21 := y21 +AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

w21 := w21 − U20Y T
20a

+
12 − Z20V T

20a
+
12

a22l := A22e0 − U20Y T
20e0 − Z20V T

20e0

y21 := a12 + y21
[ψ11 − α12, τR, α12] := Houses(a+

12)

v21 := (a+
12 − α12e0)/(ψ11 − α12);

aT
12 := α12eT

0

u21 := u+
21

β := yT
21v21

y21 := y21/τL
z21 := (w21 − α12a22l)/(ψ11 − α12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with
XTL XTR

XBL XBR

!
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (V, v, ν), (Y, y, ψ), (Z, z, ζ)}

endwhile

Fig. 10. Lazy unblocked versions of the algorithms in Figure 9. Left: lazy basic algorithm. Right:

lazy rearranged algorithm (this is essentially Algorithm III from [Howell et al. 2008]). The first
fused operation in the “Lazy rearranged unblocked” algorithm, modulo a slight reordering of the

computation vis-à-vis y21, corresponds to the BLAS 2.5 operation gemver [BLAST 2002]. Note
that upon entry to both algorithms, matrix A is n × n and matrices U , V , Y , and Z are n × b.
Also note that the multiplications A22e0, Y T

20e0, and UT
20e0 do not require computation: they

simply extract the first column or row of the given matrix.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · F. G. Van Zee et al.

Algorithm: [A] := BiRed blk(A,U, V, Y, Z)

Partition A→

ATL ATR

ABL ABR

!
, X →

XT

XB

!
for X ∈ {U, V, Y, Z}

where ATL is 0× 0 and UT , VT , YT , ZT have 0 rows
while m(ATL) < m(A) do

Determine block size b

Repartition
ATL ATR

ABL ABR

!
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

XT

XB

!
→

0@ X0

X1

X2

1A
for X ∈ {U, V, Y, Z}

where A11 is b× b and U1, V1, Y1, and Z1 have b rows

[ABR, UB , VB , YB , ZB] := BiRed lazy unb(b, ABR, UB , VB , YB , ZB)

A22 := A22 − U2Y T
2 − Z2V T

2

Continue with
ATL ATR

ABL ABR

!
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,

XT

XB

!
←

0@ X0

X1

X2

1A
for X ∈ {U, V, Y, Z}

endwhile

Fig. 11. Blocked algorithm for reduction to bidiagonal form. For simplicity, it is assumed that A

is n× n where n is an integer multiple of b. Matrices U , V , Y , and Z are all n× b.

5.5 Fusing operations

Once again, we leave it as an exercise to the reader to construct loop-based fusings
of the operations highlighted in Figures 9 and 10.

6. ACCUMULATING HOUSEHOLDER TRANSFORMATIONS

In Section 2.3, we briefly discussed how to accumulate the triangular factors T of
the block Householder transformations. The need for computing and storing T is
clear in the unblocked and blocked GQvdG algorithms for reducing a matrix to
upper Hessenberg form, shown in Figures 3 and 4. However, none of the other al-
gorithms (blocked or unblocked) for reduction to condensed form use the triangular
factors, because none of the other algorithms apply block Householder transforms.
So at first glance, computing and storing T within these algorithms may seem
unnecessary.

But typically reduction to condensed form is not a terminal operation. The
triangular factors will be needed when forming (or applying) the orthogonal matrix
Q after a reduction to upper Hessenberg or tridiagonal form, or the matrices QL

and QR subsequent to a reduction to bidiagonal form. So for most applications, it
is not a matter of if these factors will be computed, but when.

Note that we would normally compute T by columns, via t01 := UT
20u21, as

shown in the GQvdG algorithm in Figure 3, and the scalar τ11 is computed as part
of the Housev function. Upon careful inspection, we find that each lazy unblocked
algorithm (shown in Figures 2, 7, and 10) computes UT

20u21 as an intermediate
product in the course of its normal computation. Indeed, for reduction to upper
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 23

Fused operation
BLAST

name

dependent
algorithms

flops
memory operations
unfused fused

v := AT x

w := Ax
gemvt Hessenberg 4n2 2n2 n2

A := A− aT b− cT d ger2
Hessenberg,

bidiagonal
4n2,

4mn

4n2,

4mn

2n2,

2mn

A := A− aT b− cT d
v := AT x
w := Ax

N/A Hessenberg 8n2 6n2 2n2

y := y − Y UTu− UZTu

z := z − UY Tu− ZUTu
N/A Hessenberg 14mn 7mn 5mn

A := A− uT y − yTu

v := Ax
N/A tridiagonal 4n2 5n2 2n2

y := y − Y UTu− UY Tu N/A tridiagonal 8mn 4mn 3mn

A := A− aT b− cT d
b := ATu
a := a+ βb

w := Aa

gemver bidiagonal 8mn 6mn 2mn

b := b+ αATu
a := a+ βb
w := Aa

gemvt bidiagonal 4mn 2mn mn

w := w − UY T a− ZV T a
t := Ae0 − UY T e0 − ZV T e0

N/A bidiagonal 6mn 6mn 4mn

Fig. 12. A summary of the fused operations one could potentially use within various reduction

to condensed form algorithms and their floating-point and memory operation costs. The high-
lighted sets of fused operations are those present in the algorithms which exhibited the highest

performance.

Hessenberg and tridiagonal forms, this intermediate product is computed within
fusable sets of operations. And for reduction to bidiagonal form, if the intermediate
product V T

20a
+
12 is saved from the second set of fusable operations (see Figure 10),

then the t01 vectors associated with the right-hand orthogonal matrix QR may
easily be computed in a manner similar to that used to compute v21. This technique
saves 1

3b
2n floating-point operations every time Q (or QL and/or QR) is formed or

applied. Thus, given that the triangular factors can fit within a relatively small
b×n matrix (or two such matrices for bidiagonal reduction), it is easy to make the
case that these values should be stored for later use.

Notwithstanding the obvious advantage to storing T within the lazy unblocked
algorithms, we have chosen to omit these statements from the algorithms in this
paper (except in the case of the GQvdG algorithm) since they relate more to sub-
sequent computations that are outside the scope of this paper rather than the
reduction to condensed form operations themselves.

7. ESTIMATING THE IMPACT OF FUSING

Before presenting performance results of actual implementations, we will first esti-
mate the impact of fusing on performance.

The table in Figure 12 summarizes all of the fused operations used by all algo-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · F. G. Van Zee et al.

rithms presented in this paper and lists the corresponding routine names given by
the BLAST Forum [BLAST 2002]. The table also includes the approximations for
the floating-point and memory operation counts, which may be used to derive the
total number of memory and floating-point operations incurred within a given un-
fused or fused unblocked algorithm implementation. These totals are summarized
in Figure 13. Similarly, the table in Figure 14 shows the number of floating-point
operations (flops) required by unblocked and blocked components of various algo-
rithms. The table also quantifies the number of flops executed by fusable sets of
operations within a given unblocked algorithm.

Combining the analyses summarized in Figure 13 and Figure 14 allows us to
estimate an upper bound for the asymptotic speedup one would observe from fusing
operations within a given algorithm. We need only make a few mild assumptions
concerning the computation to construct a model to predict actual performance
improvement:

—The level-3 computation in a blocked algorithm executes s times faster than the
level-1 and level-2 computation in the corresponding unblocked algorithm.6

—An unblocked algorithm’s execution is limited by memory accesses rather than
its floating-point operations. This allows us to assume that reducing a fraction
n of memory operations within an unblocked algorithm will result in the a corre-
sponding speedup of 1

1−n , or a 1
1−n speedup contribution to the overall algorithm

if it is part of a blocked algorithm.

Thus, the expected asymptotic speedup α due to fusing is given by

α =
Execution time without fusing

Execution time with fusing
=
tunfused
unblocked + tblocked

tfused
unblocked + tblocked

=
su+ (1− u)

su(1− rf) + (1− u)

where r is the fraction of unblocked memory operations that are avoided via fusing,
f is the fraction of unblocked floating-point computation that is associated with
fusable operations, and u is the fraction of total floating-point operations performed
within the unblocked algorithm. Note that approximations for r are given in the
right-hand column of Figure 13 while f and u are estimated in the two right-most
columns of Figure 14.

Figure 15 summarizes the expected asymptotic speedups due to fusing for all
condensed form algorithms that contain fusable sets of operations.

The most obvious takeaway from Figures 13–15 is that while reduction to upper
Hessenberg form and reduction to bidiagonal form appear well-suited for speedup,
reduction to tridiagonal form presents fewer opportunities for fusing. In fact, the
blocked lazy algorithm is only benefited through a lower-order term. Thus, we
would not expect to see much improvement, if any, for this particular algorithm.

6Note that this assumption typically does not hold for small problem sizes due to data caching,
which is why we only attempt to estimate performance improvement for relatively large problem
sizes.
7Howell et al. implement fused operations as a sequence of level-2 BLAS operations. Rather than
achieving speedup by reducing memory operations, this type of fusing uses blocking to interleave

smaller fusable subproblems in an effort to promote increased data cache reuse.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 25

Algorithm
(unblocked only)

memory operations

unfused fused r = unfused−fused
unfused

Reduction to upper Hessenberg form

Basic 2 2n3+ 1
2 bn2 n3+ 1

2 bn2 ≈ 50%

Rearranged 2n3+ 1
2 bn2 2

3 n3+ 1
2 bn2 ≈ 66%

Lazy 2
3 n3+ 15

4 bn2 1
3 n3+ 13

4 bn2 ≈ 50%

Reduction to tridiagonal form

Rearranged 1
2 n3 1

3 n3 ≈ 33%

Lazy 1
6 n3+ 3

2 bn2 1
6 n3+ 5

4 bn2 ≈ 1%

Reduction to bidiagonal form

Basic 3(mn2− 1
3 n3) 2(mn2− 1

3 n3) ≈ 33%

Rearranged 3(mn2− 1
3 n3) (mn2− 1

3 n3) ≈ 66%

Lazy rearranged
(mn2− 1

3 n3)+

4b(mn− 1
2 n2)

1
2 (mn2− 1

3 n3)+

3bmn
≈ 50%

Howell’s Algorithm III
(mn2− 1

3 n3)+

4b(mn− 1
2 n2)

(mn2− 1
3 n3)+

4b(mn− 1
2 n2)

0%7

Fig. 13. A summary of the number of memory operations required by unfused and fused imple-

mentations of various unblocked algorithms for reducing a matrix to condensed form.

Algorithm
floating-point operations

unblocked fusable blocked f = fusable
unblocked

u = unblocked
total

Reduction to upper Hessenberg form

Basic 2 8
3 n3+bn2 8

3 n3 2
3 n3 ≈ 99% ≈ 80%

Rearranged 4
3 n3+ 15

2 bn2 4
3 n3+ 7

2 bn2 2n3 ≈ 99% ≈ 80%

Lazy 4
3 n3+ 15

2 bn2 4
3 n3+ 7

2 bn2 2n3 ≈ 99% ≈ 40%

Reduction to tridiagonal form

Rearranged 4
3 n3 4

3 n3 N/A ≈ 100% ≈ 100%

Lazy 2
3 n3+3bn2 2bn2 2

3 n3 ≈ 1% ≈ 51%

Reduction to bidiagonal form

Basic 4(mn2− 1
3 n3) 4(mn2− 1

3 n3) N/A ≈ 100% ≈ 100%

Rearranged 4(mn2− 1
3 n3) 4(mn2− 1

3 n3) N/A ≈ 100% ≈ 100%

Lazy

rearranged
2(mn2− 1

3 n3)

+8b(mn−n2)

2(mn2− 1
3 n3)

+4b(mn−n2)
2(mn2− 1

3 n3) ≈ 99% ≈ 51%

Fig. 14. A summary of the number of floating-point operations required by various algorithms for

reducing a matrix to condensed form. The two right-most columns, combined with the right-hand
column in Figure 13, may be used to estimate upper bounds for the speedup one would observe
from fusing eligible subproblems within an operation’s unblocked algorithm. These upper bounds
are estimated in Figure 15.

8. PERFORMANCE RESULTS

We now report performance for implementations of various algorithms that is at-
tained in practice.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · F. G. Van Zee et al.

Algorithm
memory operations floating-point operations speedup α

r = unfused−fused
unfused

f = fusable
unblocked

u = unblocked
total

s = 4 s = 5

Reduction to upper Hessenberg form

Basic 2 ≈ 50% ≈ 99% ≈ 80% 1.87 1.89

Rearranged ≈ 66% ≈ 99% ≈ 80% 2.60 2.65

Lazy ≈ 50% ≈ 99% ≈ 40% 1.56 1.61

Reduction to tridiagonal form

Rearranged ≈ 33% ≈ 100% ≈ 100% 1.49 1.49

Lazy ≈ 1% ≈ 1% ≈ 51% 1.00 1.00

Reduction to bidiagonal form

Basic ≈ 33% ≈ 100% ≈ 100% 1.49 1.49

Rearranged ≈ 66% ≈ 100% ≈ 100% 2.94 2.94

Lazy rearranged ≈ 50% ≈ 99% ≈ 51% 1.66 1.71

Fig. 15. Estimated asymptotic speedup from fusing using a simple model that assumes: (1) that

the level-3 computation in the blocked algorithm executes s times as fast as the level-1 and level-2

computation found in the corresponding unblocked algorithm; and (2) that memory operations
(rather than floating-point operations) are the limiting factor to performance in the unblocked

algorithm. We estimate speedup for s = 4 and s = 5.

8.1 Platform details

All experiments reported in this paper were performed on a single core of a Dell
PowerEdge R900 server consisting of four Intel “Dunnington” six-core processors.
Each core provides a peak performance of 10.64 GFLOPS. Performance experiments
were gathered under the GNU/Linux 2.6.18 operating system. Source code was
compiled by the GNU C compiler, version 4.1.2. All experiments were performed
in double-precision real floating-point arithmetic.

All reduction to condensed form implementations were linked to the BLAS pro-
vided by GotoBLAS2 1.10. All LAPACK implementations were obtained via the
netlib distribution of LAPACK version 3.3.1. For the reduction to bidiagonal form
we also compare against an implementation by Howell et al. (Algorithm III), re-
ported on in [Howell et al. 2008] and available from [Howell 2005]. (This code was
compiled by the GNU Fortran compiler, version 4.1.2.)

8.2 Fused operation implementations

Experiments were performed with both cache-level and register-level fused imple-
mentations. All implementations were coded in C. Operations fused at the cache-
level were expressed in terms of level-1 BLAS. By contrast, operations fused at the
register-level were coded using SSE2 and SSE3 vector intrinsics. The corresponding
assembly code of each register-level fused kernel was carefully inspected to ensure
that (1) the correct vector arithmetic instructions were emitted by the compiler and
(2) the number of load/store instructions were kept to a minimum. We believe that
the resulting fused implementations are, for the most part, comparable to what one
would arrive at if the operation were assembly-coded by hand.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 27

8.3 Implementations of the reduction algorithms

The blocked algorithms were implemented using the FLAME/C API [Van Zee 011a;
Bientinesi et al. 2005] which allows the implementations to closely mirror the algo-
rithms presented in this paper. Since this API carries considerable overhead that
affects performance, the unblocked algorithms were translated into lower-level im-
plementations that use the BLAS-like Interface Subprograms (BLIS) interface [Ve-
ras et al.]. This is a C interface that resembles the BLAS interface but is more
natural for C and fixes certain problems for the routines that compute with (single-
and double-precision) complex datatypes. All these implementations are part of
the standard libflame distribution so that others can experiment with further
optimizations.

8.4 Tuning of block size

We performed experiments to determine the optimal block size for the blocked algo-
rithms. A block size of 32, the default block size for the LAPACK implementation,
appeared to be near-optimal and was used for all experiments.

8.5 Reduction to upper Hessenberg form

The table in Figure 15 indicates that there is considerable potential for speedup
from fusing for all three fusable algorithms, particularly an algorithm based on the
rearranged unblocked algorithm. Performance of the various implementations of
reduction to upper Hessenberg form are given in Figure 16, with raw performance
results in the top graph and speedup of fusable algorithms, using both cache-level
and register-level fusing, shown in the bottom graph.

Not surprisingly, register-level fusing provides a significant improvement in per-
formance over cache-level fusing. Remarkably, the speedups predicted by the model,
as summarized in Figure 15, provide good estimates of the performance of algorithm
implementations that use register-level fusing.

For larger matrices (n ≥ 300), the blocked implementation that uses a lazy
unblocked algorithm with register-level fusing (labeled “blocked with lazy unblocked
with register-level fusing”) outperforms all other implementations, even the netlib
dgehrd and “GQvdG blocked with GQvdG unblocked” implementations. Note
that netlib dgehrd uses the “GQvdG blocked with GQvdG unblocked” algorithm,
with the minor modification that the algorithm switches to what is essentially our
pure basic unblocked algorithm for the final 128 × 128 subproblem (when ABR is
128× 128).

8.6 Reduction to tridiagonal form

In contrast to reduction to upper Hessenberg form, Figure 15 suggests that there
is much less room for improvement via fusing in the reduction to tridiagonal form
algorithms, particularly for the lazy algorithm.

The reason for the negligible potential for speedup in the lazy algorithm can be
traced back to the memory and flop count analysis in Figures 13 and 14. The reduc-
tion in memory operations that may be achieved via fusing within the unblocked
lazy algorithm constitutes a lower-order term. Likewise, the floating-point opera-
tions in the fusable portions of this algorithm amount to a similar lower-order term.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

28 · F. G. Van Zee et al.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

problem size

G
F

L
O

P
S

75% of peak
blocked with basic unblocked 1

blocked with basic unblocked 2

blocked with basic unblocked 2 with register−level fusing

blocked with rearranged unblocked

blocked with rearranged unblocked with register−level fusing

blocked with lazy unblocked

blocked with lazy unblocked with register−level fusing

GQvdG blocked with GQvdG unblocked

netlib dgehrd

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5

problem size

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 u
n

fu
s
e

d
 i
m

p
le

m
e

n
ta

ti
o

n

blocked with basic unblocked 2 with cache−level fusing

blocked with basic unblocked 2 with register−level fusing

blocked with rearranged unblocked with cache−level fusing

blocked with rearranged unblocked with register−level fusing

blocked with lazy unblocked with cache−level fusing

blocked with lazy unblocked with register−level fusing

Fig. 16. Performance of various implementations of reduction to upper Hessenberg form for prob-
lem sizes up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to

their unfused counterparts using cache-level and register-level fusing (bottom). Implementations
of blocked algorithms use a block size of 32. Note that in the top graph, the performance curve for

“netlib dgehrd” coincides mostly with the curve for “GQvdG blocked with GQvdG unblocked.”

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 29

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

problem size

G
F

L
O

P
S

75% of peak
basic unblocked

rearranged unblocked

rearranged unblocked with register−level fusing

blocked with lazy unblocked

blocked with lazy unblocked with register−level fusing

netlib dsytrd

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5

problem size

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 u
n

fu
s
e

d
 i
m

p
le

m
e

n
ta

ti
o

n

rearranged unblocked with cache−level fusing

rearranged unblocked with register−level fusing

blocked with lazy unblocked with cache−level fusing

blocked with lazy unblocked with register−level fusing

Fig. 17. Performance of various implementations of reduction to tridiagonal form for problem
sizes up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to their

unfused counterparts using cache-level and register-level fusing (bottom). Implementations of
blocked algorithms use a block size of 32. Note that in the top graph, the performance curve for

“netlib dsytrd” coincides mostly with the curve for “blocked with lazy unblocked with register-level
fusing.”

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

30 · F. G. Van Zee et al.

Thus, we would expect very little performance benefit from fusing for this algorith-
mic variant. By contrast, a simple rearranged unblocked algorithm should stand
to benefit noticeably from fusing. However, with none of its computation express-
ible in terms of level-3 operations, such an algorithm is bound to asymptotically
underperform its lazy counterpart.

Figure 17 (top) reports performance for various implementations of reduction
to tridiagonal form, with corresponding speedups for the two fusable algorithms
displayed in Figure 17 (bottom). The fused implementations perform mostly as
expected.

8.7 Reduction to bidiagonal form

According to Figure 15, reduction to bidiagonal form should receive significant
benefit from fusing.

Figure 18 (top) reports performance for various implementations of reduction to
bidiagonal form while Figure 18 (bottom) shows speedups for fusable algorithms.
For this operation there is a clear advantage gained from rearranging the compu-
tations and fusing operations, particularly when register-level fusing is employed.
With the exception of small problem sizes, the “blocked with lazy rearranged with
register-level fusing” outperforms all others, including the implementation of Algo-
rithm III reported on in [Howell et al. 2008]. Once again, our simple model provides
good estimates of the asymptotic speedup for each fusable algorithm.

The performance results for “blocked with lazy rearranged unblocked with cache-
level fusing”, along with Howell’s Algorithm III, clearly show that considerable
improvement can be gained from cache-level fusing. However, as one might ex-
pect, accessing an element of data from cache is still more costly than avoiding
the memory operation altogether, as the “blocked with lazy rearranged unblocked
with register-level fusing” exhibits the highest performance, except for the smallest
problem sizes.

Note that in Figure 18 (bottom) Howell’s Algorithm III outperforms the “blocked
with lazy rearranged unblocked with cache-level fusing” algorithm by a small mar-
gin. The two algorithm implementations are similar except that the former (1)
fuses in terms of level-2 BLAS instead of level-1 BLAS, and (2) is coded entirely in
Fortran-77 rather than C with higher-level FLAME abstractions. Given that both
styles of cache-level fusing incur the same number of memory operations, we suspect
the outperformance can be explained almost entirely by the latter point, as mod-
ern compilers tend to be able to more highly optimize pure Fortran-77 over C that
contains some calls to the FLAME/C APIs. Thus, it may be possible to achieve
marginal improvements in performance of all register-level fused implementations
by removing all programming abstractions and coding entirely at low levels.

8.8 Hybrid algorithms

In Figure 18 (top) it can be observed that, for smaller problem sizes (n ≤ 500), the
“rearranged unblocked with register-level fusing” algorithm yields the best perfor-
mance. This suggests that a library routine should switch algorithms as a function
of problem size. Note that the netlib LAPACK implementations of all three con-
densed form operations tested in this paper employ hybrid approaches, albeit with
different crossovers point. The netlib routines for reduction to upper Hessenberg
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 31

form (dgehrd) and reduction to bidiagonal form (dgebrd) switch to basic unblocked
algorithms for the final 128×128 submatrix, while the routine for reduction to tridi-
agonal form (dsytrd) switches for the final 32× 32 submatrix.

Hybrid algorithms for all three reduction to condensed form operations can be
constructed in a straightforward manner, and thus we omit results for such imple-
mentations from this paper.

8.9 Experiments with multiple cores

A logical criticism of the experimental results given in the paper is that they only
involve a single core. However, the limiting factor for performance is the bandwidth
to memory which is clearly demonstrated by the experiments. Also, parallelizing
the fused operations goes beyond the scope of this paper. The work presented
here exposes how algorithms can be rearranged to create fusable operations so that
others can focus on the optimization of those operations.

9. CONCLUSION

This paper presents what we believe to be the most complete analysis to date
of algorithms for reducing matrices to condensed form. Numerous algorithms are
summarized and opportunities for rearranging and fusing of operations are ex-
posed. The benefit of cache-level fusing is confirmed, while more highly-optimized
register-level fusing is shown, in theory and practice, to offer superior gain. These
performance improvements based on register-level fused kernels conform reasonably
well to the speedups predicted by a simple model.

Acknowledgments. This research was partially sponsored by NSF grants OCI-
0850750 and NSF CCF-0917167, and a grant from Microsoft.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J. J., Croz,
J. D., Hammarling, S., Greenbaum, A., McKenney, A., and Sorensen, D. 1999. LAPACK

Users’ guide (third ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA.

Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ort́ı, E. S., and van de Geijn, R. A.

2005. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31, 1
(March), 1–26.

Bientinesi, P., Igual, F. D., Kressner, D., Petschow, M., and Quintana-Ort́ı, E. S. 2011.
Condensed forms for the symmetric eigenvalue problem on multi-threaded architectures. Con-

currency and Computation: Practice and Experience 23, 694–707.

Bientinesi, P., Quintana-Ort́ı, E. S., and van de Geijn, R. A. 2005. Representing linear
algebra algorithms in code: The FLAME application programming interfaces. ACM Trans.

Math. Soft. 31, 1 (March), 27–59.

Bischof, C., Lang, B., and Sun, X. 1994. Parallel tridiagonalization through two-step band
reduction. In In Proceedings of the Scalable High-Performance Computing Conference. IEEE
Computer Society Press, 23–27.

Bischof, C. and Van Loan, C. 1987. The WY representation for products of Householder
matrices. SIAM J. Sci. Stat. Comput. 8, 1 (Jan.), s2–s13.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

32 · F. G. Van Zee et al.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

problem size (m = n)

G
F

L
O

P
S

75% of peak
basic unblocked

basic unblocked with register−level fusing

rearranged unblocked

rearranged unblocked with register−level fusing

blocked with lazy rearranged unblocked

blocked with lazy rearranged unblocked with register−level fusing

blocked with lazy basic unblocked

netlib dgebrd

Howell’s Algorithm III

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5

problem size (m = n)

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 u
n

fu
s
e

d
 i
m

p
le

m
e

n
ta

ti
o

n

basic unblocked with cache−level fusing

basic unblocked with register−level fusing

rearranged unblocked with cache−level fusing

rearranged unblocked with register−level fusing

blocked with lazy rearranged unblocked with cache−level fusing

blocked with lazy rearranged unblocked with register−level fusing

Howell’s Algorithm III (relative to netlib dgebrd)

Fig. 18. Performance of various implementations of reduction to bidiagonal form for problem
sizes up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to their

unfused counterparts using cache-level and register-level fusing (bottom). Implementations of

blocked algorithms use a block size of 32.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Families of Algorithms for Reducing a Matrix to Condensed Form · 33

Bischof, C. H., Lang, B., and Sun, X. 2000. Algorithm 807: The sbr toolbox-software for

successive band reduction. ACM Trans. Math. Soft. 26, 602–616.

BLAST 2002. Basic linear algebra subprograms technical forum standard. International Journal

of High Performance Applications and Supercomputing 16, 1 (Spring).

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. 1990. A set of level 3 basic linear

algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1–17.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An extended set of

FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1 (March), 1–17.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A. 1991. Solving Linear

Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, PA.

Dongarra, J. J., Hammarling, S. J., and Sorensen, D. C. 1989. Block reduction of matri-

ces to condensed forms for eigenvalue computations. Journal of Computational and Applied

Mathematics 27.

Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. 2001. FLAME:

Formal linear algebra methods environment. ACM Trans. Math. Soft. 27, 4 (December), 422–
455.

Howell, G. 2005. Fortran 77 codes for Householder bidiagonalization. http://www.ncsu.edu/

itd/hpc/Documents/Publications/gary_howell/030905.t%ar.

Howell, G. W., Demmel, J. W., Fulton, C. T., Hammarling, S., and Marmol, K. 2008. Cache

efficient bidiagonalization using BLAS 2.5 operators. ACM Transactions on Mathematical
Software 34, 3 (May), 14:1–14:33.

Joffrain, T., Low, T. M., Quintana-Ort́ı, E. S., van de Geijn, R., and Van Zee, F. 2006.
Accumulating Householder transformations, revisited. ACM Transactions on Mathematical

Software 32, 2 (June), 169–179.

Lang, B. 1999. Efficient eigenvalue and singular value computations on shared memory machines.

Parallel Comput. 25, 845–860.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. 1979. Basic linear algebra

subprograms for Fortran usage. ACM Trans. Math. Soft. 5, 3 (Sept.), 308–323.

Puglisi, C. 1992. Modification of the Householder method based on the compact wy representa-

tion. SIAM J. Sci. Stat. Comput. 13, 723–726.

Quintana, E. S., Quintana, G., Sun, X., and van de Geijn, R. 2001. A note on parallel matrix
inversion. SIAM J. Sci. Comput. 22, 5, 1762–1771.

Quintana-Ort́ı, G. and van de Geijn, R. 2006. Improving the performance of reduction to
Hessenberg form. ACM Transactions on Mathematical Software 32, 2 (June), 180–194.

Schreiber, R. and Van Loan, C. 1989. A storage-efficient WY representation for products of
Householder transformations. SIAM J. Sci. Stat. Comput. 10, 1 (Jan.), 53–57.

Sun, X. 1996. Aggregations of elementary transformations. Tech. Rep. Technical report DUKE–
TR–1996–03, Duke University.

van de Geijn, R. A. and Quintana-Ort́ı, E. S. 2008. The Science of Programming Matrix
Computations. www.lulu.com.

Van Zee, F. G. 2011a. libflame: The Complete Reference. www.lulu.com.

Van Zee, F. G., Chan, E., van de Geijn, R. A., Quintana-Ort́ı, E. S., and Quintana-Ort́ı,

G. 2009. The libflame library for dense matrix computations. Computing in Science and
Engineering 11, 56–63.

Van Zee, F. G., Quintana-Ort́ı, G., van de Geijn, R., and Elizondo, G. J. 2010b. Algorithms

for reducing a matrix to condensed form. FLAME Working Note #53 TR-10-37, The University
of Texas at Austin, Department of Computer Science. October. Submitted to ACM TOMS.

Veras, R. M., Monette, J. S., Van Zee, F. G., van de Geijn, R. A., and Quintana-Ort́ı,
E. S. FLAMES2S: From abstraction to high performance. ACM Trans. Math. Soft.. submitted.

Available from http://z.cs.utexas.edu/wiki/flame.wiki/Publications/.

Walker, H. F. 1988. Implementation of the GMRES method using Householder transformations.
SIAM J. Sci. Stat. Comput. 9, 1, 152–163.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

34 · F. G. Van Zee et al.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

