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We discuss the parallel implementation of two operations, A := L−1AL−H and A := LHAL, where A

is Hermitian and L is lower triangular. We use the FLAME formalisms to derive and represent a family
of algorithms which are then implemented using Elemental, a new C++ library for distributed memory

architectures. It is shown that, provided the right algorithm is chosen, excellent performance is attained on

a large cluster.
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1. INTRODUCTION
The two-sided triangular solve is an important operation that can be used to reduce
a (well-conditioned) generalized Hermitian-definite eigenvalue problem, Ax = λBx
where A is Hermitian and B is Hermitian positive-definite, to a standard Hermitian
eigenvalue problem [Sears et al. 1998; Anderson et al. 1999; Poulson et al. ]. It is
also utilized in a stable implementation of a new algorithm for factoring (with pivot-
ing) an indefinite symmetric matrix A into LTLT , where L is lower triangular and T
is tridiagonal [Ballard et al. ]. The two-sided triangular matrix multiplication is en-
countered when transforming the generalized Hermitian-definite eigenvalue problem
ABx = λx to a standard Hermitian eigenvalue problem [Anderson et al. 1999; Poulson
et al. ]. This paper gives a thorough treatment of algorithms for these operations and
discusses their implementation in our new Elemental library [Poulson et al. ; Poulson
2011] for dense linear algebra on distributed memory architectures, an alternative to
ScaLAPACK [Blackford et al. 1997].

A second contribution of this paper is in its concise, start-to-finish demonstration
of the FLAME methodology for representing, deriving, and implementing dense lin-
ear algebra algorithms. The FLAME project has pursued techniques for developing
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0:2 J. Poulson et al.

dense linear algebra libraries for more than a decade, funded by the National Science
Foundation and industry. The hallmarks of the approach are:

— A notation for representing dense linear algebra algorithms that avoids in-
dices and facilitates the comparing and contrasting of related algorithms.
A journal paper on parallel inversion of a general matrix [Quintana et al. 2001] was
among the first papers to employ the FLAME notation for representing dense linear
algebra algorithms. In that paper, it was shown that the new Gauss-Jordan based
algorithm could be viewed as the classical three-step approach to inverting a matrix,
merged into one loop. As a result, the stability analysis for the classic approach car-
ried over to the new algorithm. It was also employed in a multitude of our papers
published in the ACM Transactions on Mathematical Software and elsewhere. In
this paper, the notation is again used to compare and contrast algorithms.

— A methodology for deriving algorithms hand-in-hand with their proof of
correctness. The FLAME methodology [Gunnels 2001; Gunnels et al. 2001] has
yielded a “worksheet” for deriving algorithms [Bientinesi et al. 2005a] that facilitates
systematic and mechanical tools for automatically deriving algorithms [Bientinesi
2006]. A book [van de Geijn and Quintana-Ortı́ 2008] breaks the process down into
steps that even undergraduates who have limited familiarity with linear algebra can
follow. It is our belief that everyone who works in the field of dense linear algebra
should be familiar with this work. The current paper shows how the methodology
yields a family of algorithms for the studied operations.

— Application Programming Interfaces (APIs) that allow algorithms to be
cleanly translated into code. We believe that code should closely reflect how al-
gorithms are naturally represented [Bientinesi et al. 2005b]. Elemental uses such
an API. A representative code excerpt can be found in the first journal paper on the
Elemental library [Poulson et al. ]. In a companion video [van de Geijn 2011], it is
demonstrated how an API for use with Matlab [Moler 1980], FLAME@lab [Bienti-
nesi et al. 2005b], can be used to rapidly implement the algorithms discussed in this
paper.

— A modern alternative for LAPACK. The notation, methodology, and APIs have
been used to develop a library, libflame [Van Zee et al. 2009; Van Zee 2009], that
already encompasses the functionality of most of the Basic Linear Algebra Subpro-
grams (BLAS) [Lawson et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990], and
LAPACK [Anderson et al. 1999]. It seemless also facilitates algorithms-by-blocks that
can target multicore [Quintana-Ortı́ et al. 009b] and multiGPU (and other acceler-
ated) architectures [Igual et al. 2011]. The algorithms discussed in this paper are
also available in libflame.

Thus, this paper also illustrates the benefits of a body of work that has been pub-
lished in the ACM Transactions on Mathematical Software and elsewhere over the
last decade.

2. ALGORITHMS FOR COMPUTING THE TWO-SIDED TRIANGULAR SOLVE OPERATION
In this section, we derive algorithms for computing C := L−1AL−H , overwriting the
lower triangular part of Hermitian matrix A with the lower triangular part of Hermi-
tian matrix C.
Derivation. We give the minimum information required so that those familiar with
the FLAME methodology can understand how the algorithms were derived. Those not
familiar with the methodology can simply take the resulting algorithms—presented
in Figures 2 and 3—on face value and move on to the discussion at the end of this
section.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.



Two-sided Triangular Solve and Matrix Multiplication 0:3

Using Â to denote the input state of the matrixA, and ∧ for the logical AND operator,
we express the computation C := L−1AL−H by the constraint that A = C ∧LCLH = Â
upon completion of the program. This constraint is known as the postcondition in the
FLAME methodology.

Next, we form the Partitioned Matrix Expression (PME), which can be viewed as a
recursive definition of the operation. For this, we partition the matrices so that

A→
(
ATL ?

ABL ABR

)
, C →

(
CTL ?

CBL CBR

)
, and L→

(
LTL 0
LBL LBR

)
, (1)

where ATL, CTL, and LTL are square submatrices and ? denotes the parts of the Her-
mitian matrices that are neither stored nor updated. Substituting these partitioned
matrices into the postcondition yields(
ATL ?

ABL ABR

)
=
(
CTL ?

CBL CBR

)
∧(

LTL 0
LBL LBR

)(
CTL ?

CBL CBR

)(
LTL 0
LBL LBR

)H

=

(
ÂTL ?

ÂBL ÂBR

)
.︸ ︷︷ ︸ LTLCTLL

H
TL = ÂTL ?

LBRCBL = ÂBLL
−H
TL − LBLCTL LBRCBRL

H
BR = ÂBR − LBLCTLL

H
BL

− LBLC
H
BLL

H
BR − LBRCBLL

H
BL


This expresses all conditions that must be satisfied upon completion of the computa-
tion, in terms of the submatrices. The bottom-right quadrant can be further manipu-
lated into

LBRCBRL
H
BR = ÂBR − LBLCTLL

H
BL − LBLC

H
BLL

H
BR − LBRCBLL

H
BL

= ÂBR − LBL

(
1
2
CTLL

H
BL + CH

BLL
H
BR

)
︸ ︷︷ ︸

WH
BL

−
(

1
2
LBLCTL + LBRCBL

)
︸ ︷︷ ︸

WBL

LH
BL

using a standard trick that casts three rank-k updates into a single symmetric rank-2k
update. Now, the PME can be rewritten as(
ATL ?

ABL ABR

)
=
(
CTL ?

CBL CBR

)
∧ YBL = LBLCTL ∧WBL = LBRCBL −

1
2
YBL

∧

(
LTLCTLL

H
TL = ÂTL ?

LBRCBL = ÂBLL
−H
TL − YBL LBRCBRL

H
BR = ÂBR − (LBLW

H
BL +WBLL

H
BL)

)
.

The next step of the methodology identifies loop invariants for algorithms. A loop
invariant is a predicate that expresses the state of a matrix (or matrices) before and
after each iteration of the loop. In the case of this operation, there are many such loop
invariants. However, careful consideration for maintaining symmetry in the interme-
diate update and avoiding unnecessary computation leaves the five in Figure 1.

The methodology finishes by deriving algorithms that maintain these respective loop
invariants. The resulting blocked algorithms are given in Figures 2 and 3 where Vari-
ant k corresponds to Loop Invariant k. Unblocked algorithms result if the block size is
chosen to equal 1.
Discussion. All algorithms in Figures 2 and 3 incur a cost of about n3 flops where n is
the matrix size. There is a useful rule of thumb for determining which operations in the
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Loop Invariant 10@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBL ÂBR

1A
Loop Invariant 20@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL ÂBR

1A
Loop Invariant 30@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL ÂBR

1A ∧
0@ YTL

YBL YBR

1A =

0@
LBLCTL

1A
Loop Invariant 40@ ATL ?

ABL ABR

1A =

0@ CTL ?

ÂBLL−H
TL − LBLCTL ÂBR − (LBLW H

BL + WBLLH
BL)

1A
Loop Invariant 50@ ATL ?

ABL ABR

1A =

0@ CTL ?

CBL ÂBR − (LBLW H
BL + WBLLH

BL)

1A
Fig. 1. Five loop invariants for computing A := L−1AL−H .

algorithms in this paper asymptotically require the most work: given the partitionings A00 ? ?

A10 A11 ?
A20 A21 A22

 ,

 L00 0 0
L10 L11 0
L20 L21 L22

 , and

 C00 ? ?

C10 C11 ?
C20 C21 C22

 ,

the operations that involve at least one highlighted submatrix contribute to an O(n3)
(highest order) cost term while the others contribute to lower order terms. Thus, first
and foremost, it is important that the highlighted operations in Figures 2 and 3 attain
high performance.

On sequential architectures, all of the highlighted operations can attain high per-
formance [Goto and van de Geijn 008a; Goto and van de Geijn 008b]. However, as we
will demonstrate, there is a notable difference on parallel architectures. As was al-
ready pointed out in a paper by Sears, Stanley, and Henry [Sears et al. 1998], it is the
parallel triangular solves with b right-hand sides (TRSM), A10 := A10L

−H
00 in Variant 1

and A21 := L−1
22 A21 in Variant 5, that inherently do not parallelize well yet account for

about one third of the flops for Variants 1 and 5. The reason is that inherent dependen-
cies exist within the TRSM operation, the details of which go beyond the scope of this
paper. All of the other highlighted operations can, in principle, asymptotically attain
near-peak performance when correctly parallelized on an architecture with reasonable
communication [van de Geijn and Watts 1997; Chtchelkanova et al. 1997; Gunnels
et al. 1998; van de Geijn 1997]. Thus, Variants 1 and 5 cast a substantial fraction of
computation in terms of an operation that does not parallelize well, in contrast to Vari-
ants 2, 3, and 4. Variant 3 has the disadvantage that intermediate result YBL must be
stored. (In the algorithm we show Y for all algorithms, but only Y10 or Y21 are needed
for Variants 1, 2, 4, and 5.)

In Section 4 we will see that Variant 4 attains the highest performance. This is
because its most computationally intensive operations parallelize most naturally when
targeting distributed memory architectures. Variant 2 might be a good choice when
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Algorithm: A := L−1AL−H and A := LHAL

Partition A→
(
ATL ATR

ABL ABR

)
, L→

(
LTL LTR

LBL LBR

)
, Y →

(
YTL YTR

YBL YBR

)
whereATL, LTL, and YTL are 0× 0.

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?
A20 A21 A22

,
(
LTL 0
LBL LBR

)
→

 L00 0 0
L10 L11 0
L20 L21 L22

,

(
YTL 0
YBL YBR

)
→

 Y00 0 0
Y10 Y11 0
Y20 Y21 Y22


whereA11, L11, and Y11 are b× b

Variant 4 for L−1AL−H (Section 2) Variant 4 for LHAL (Section 3)
A10 := L−1

11 A10

A20 := A20 − L21A10 (GEMM)
A11 := L−1

11 A11L
−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22 − (L21A
H
21 +A21L

H
21)

(HER2K)
A21 := A21 − 1

2Y21

Y10 := A11L10

A10 := W10 = A10 + 1
2Y10

A00 := A00 + (AH
10L10 + LH

10A10)
(HER2K)

A10 := A10 + 1
2Y10

A10 := LH
11A10

A11 := LH
11A11L11

A20 := A20 +A21L10 (GEMM)
A21 := A21L11

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?
A10 A11 ?

A20 A21 A22

,
(
LTL 0
LBL LBR

)
←

 L00 0 0
L10 L11 0
L20 L21 L22

,

(
YTL 0
YBL YBR

)
←

 Y00 0 0
Y10 Y11 0
Y20 Y21 Y22


endwhile

Fig. 2. Blocked Variants 4 for computing A := L−1AL−H and A := LHAL. All blocked variants result by
inserting the commands in Figure 3.

implementing an out-of-core algorithm, since its most expensive computations (which
are highlighted) require the bulk of data (A00 and A20) to be read but not written.

3. ALGORITHMS FOR COMPUTING THE TWO-SIDED MATRIX MULTIPLICATION OPERATION
In this section, we derive algorithms for computing C := LHAL, overwriting the lower
triangular part of Hermitian matrix A.
Derivation. We once again give the minimum information required so that those fa-
miliar with the FLAME methodology understand how the algorithms were derived.

The postcondition for this operation is given by A = LHÂL where, again, Â repre-
sents the input matrix A. We again partition the matrices as in Eqn. (1). Substituting
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L−1AL−H LHAL

Variant 1 Variant 1
Y10 := L10A00 (HEMM)
A10 := A10L

−H
00 (TRSM)

A10 := W10 = A10 − 1
2Y10

A11 := A11 − (A10L
H
10 + L10A

H
10)

A11 := L−1
11 A11L

−H
11

A10 := A10 − 1
2Y10

A10 := L−1
11 A10

Y21 := A22L21 (HEMM)
A21 := A21L11

A21 := W21 = A21 + 1
2Y21

A11 := LH
11A11L11

A11 := A11 + (AH
21L21 + LH

21A21)
A21 := A21 + 1

2Y21

A21 := LH
22A21 (TRMM)

Variant 2 Variant 2
Y10 := L10A00 (HEMM)
A10 := W10 = A10 − 1

2Y10

A11 := A11 − (A10L
H
10 + L10A

H
10)

A11 := L−1
11 A11L

−H
11

A21 := A21 −A20L
H
10 (GEMM)

A21 := A21L
−H
11

A10 := A10 − 1
2Y10

A10 := L−1
11 A10

A10 = LH
11A10

A10 = A10 + LH
21A20 (GEMM)

Y21 = A22L21 (HEMM)
A21 = A21L11

A21 = A21 + 1
2Y21

A11 = LH
11A11L11

A11 = A11 + (AH
21L21 + LH

21 ∗A21)
A21 = A21 + 1

2Y21

Variant 3 Variant 3
A10 := W10 = A10 − 1

2Y10

A11 = A11 − (A10L
H
10 + L10A

H
10)

A11 = L−1
11 A11L

−H
11

A21 = A21 −A20L
H
10 (GEMM)

A21 = A21L
−H
11

A10 = A10 − 1
2Y10

A10 = L−1
11 A10

Y20 = Y20 + L21A10 (GEMM)
Y21 = L21A11

Y21 = Y21 + L20A
H
10 (GEMM)

This variant performs O(n3)
additional computations and is
therefore not included.

Variant 4 Variant 4
A10 := L−1

11 A10

A20 := A20 − L21A10 (GEMM)
A11 := L−1

11 A11L
−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22 − (L21A
H
21 +A21L

H
21) (HER2K)

A21 := A21 − 1
2Y21

Y10 := A11L10

A10 := W10 = A10 + 1
2Y10

A00 := A00 + (AH
10L10 + LH

10A10) (HER2K)
A10 := A10 + 1

2Y10

A10 := LH
11A10

A11 := LH
11A11L11

A20 := A20 +A21L10 (GEMM)
A21 := A21L11

Variant 5 Variant 5
A11 := L−1

11 A11L
−H
11

Y21 := L21A11

A21 := A21L
−H
11

A21 := W21 = A21 − 1
2Y21

A22 := A22 − (L21A
H
21 +A21L

H
21) (HER2K)

A21 := A21 − 1
2Y21

A21 := L−1
22 A21 (TRSM)

Y10 := A11L10

A10 := A10L00 (TRMM)
A10 := W10 = A10 + 1

2Y10

A00 := A00 + (AH
10L10 + LH

10A10) (HER2K)
A10 := A10 + 1

2Y10

A10 := LH
11A10

A11 := LH
11A11L11

Fig. 3. All algorithms corresponding to the Invariants in Figures 1 and 4 for both A := L−1AL−H and
A := LHAL.
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Loop Invariant 10@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL + (W H

BLLBL + LH
BLWBL) ?

LH
BR(ÂBLLTL + ÂBRLBL) ÂBR

1A
Loop Invariant 20@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL + (W H

BLLBL + LH
BLWBL) ?

ÂBLLTL + ÂBRLBL ÂBR

1A
Loop Invariant 30@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBLLTL ÂBR

1A ∧
0@ YTL

YBL YBR

1A =

0@
ÂBRLBL

1A
Loop Invariant 40@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBLLTL ÂBR

1A
Loop Invariant 50@ ATL ?

ABL ABR

1A =

0@ LH
TLÂTLLTL ?

ÂBL ÂBR

1A
Fig. 4. Five loop invariants for computing A := LHAL.

these partitioned matrices into the postcondition yields the PME(
ATL ?

ABL ABR

)
=

(
LH

TLÂTLLTL + (WH
BLLBL + LH

BLWBL) ?

LH
BR(ÂBLLTL + ÂBRLBL) LH

BRÂBRLBR

)
,

where WBL = ÂBLLTL + 1
2 ÂBRLBL. Letting YBL = ÂBRLBL yields five loop invariants

for this operation that exploit and maintain symmetry. These loop invariants are listed
in Figure 4 while the corresponding blocked algorithms were already given in Figures 2
and 3. One of the loop invariants yields an algorithm that incurs O(n3) additional
computation and we do not give the related algorithm.
Discussion. For this operation, in principle, all of the highlighted suboperations can
be implemented to be scalable on parallel architectures.

4. PERFORMANCE EXPERIMENTS
We now show the performance attained by the different variants on a large distributed
memory parallel architecture. We compare implementations that are part of the Ele-
mental library to the implementations that are part of netlib ScaLAPACK version
1.8.
Target Architectures. The performance experiments were carried out on Argonne
National Laboratory’s IBM Blue Gene/P architecture. Each compute node consists of
four 850 MHz PowerPC 450 processors for a combined theoretical peak performance
of 13.6 GFlops (13.6× 109 floating-point operations per second) per node using double-
precision arithmetic. Nodes are interconnected by a three-dimensional torus topology
and a collective network that each support a per-node bidirectional bandwidth of 2.55
GB/s. Our experiments were performed on one midplane (512 compute nodes, or 2048
cores), which has an aggregate theoretical peak of just under 7 TFlops (7×1012 floating-
point operations per second). For this configuration, the X, Y , and Z inter-node dimen-
sions of the torus are each of length 8, and the intra-node dimension, T , is of size 4.
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Variant 4 (Elemental) Variant 4 (ScaLAPACK)
A10 := L−1

11 A10

A20 := A20 − L21A10 (GEMM)
A11 := L−1

11 A11L−H
11

Y21 := L21A11

A21 := A21L−H
11

A21 := W21 = A21 − 1
2
Y21

A22 := A22 − (L21AH
21 + A21LH

21) (HER2K)
A21 := A21 − 1

2
Y21

G21 := L21

R21 := A21

S10 := A10

R11 := tril(A11)

G21 := −G21L−1
11

R21 := R21 + 1
2
G21A11

A22 := A22 + G21RH
21 + R21GH

21 (HER2K)
A20 := A20 + G21S10 (GEMM)
A21 := A21 + G21R11

A10 := L−1
11 A10

C11 := tril(A11)
triu(C11) := tril(C11)H

C11 := L−1
11 C11

C11 := C11L−1
11

tril(A11) := tril(C11)

9>>>=>>>; A11 := L−1
11 A11L−H

11

A21 := A21L−H
11

Fig. 5. Operations performance by Variant 4 for A := L−1AL−H in Elemental (left) and ScaLAPACK
(right).

Since collective communication over so-called ‘irregular’ communicators (those that do
not span entire dimensions of the torus) cannot fully exploit Blue Gene/P’s hardware,
the performance of both Elemental and ScaLAPACK was tested over all process grid
configurations which resulted in regular row and column communicators that were
sufficiently close in size (i.e., all process grid configurations whose rows and columns
each spanned two dimensions of the torus). In every experiment, both Elemental and
ScaLAPACK performed best with the (Z, T ) × (X,Y ) decomposition, which is to say
that the Z and T dimensions of the torus form the columns of the two-dimensional
process grid, while the X and Y dimensions make up the rows.
ScaLAPACK. ScaLAPACK was developed in the 1990s as a distributed memory dense
matrix library meant to mirror the style of LAPACK, and thus the majority of the li-
brary was written in Fortran-77, but a significant portion was written in C. It uses
a two-dimensional block cyclic data distribution, meaning that p MPI processes are
viewed as a logical r× c mesh and the matrices are partitioned into br × bc blocks (sub-
matrices) that are then cyclically wrapped onto the mesh. It is almost always the case
that br = bc = bdistr, where bdistr is the distribution block size. The vast majority of
the library is layered so that the algorithms are coded in terms of parallel implemen-
tations of the BLAS. An important restriction for ScaLAPACK is that the algorithmic
block size b in Figure 2 is tied to the distribution block size.

The ScaLAPACK routines p[sd]sygst and p[cz]hegst implement Variant 5 from
Figure 2 when used to compute A := L−1AL−H and Variant 5 from Figure 2 when
computing A := LHAL. In addition, for A := L−1AL−H , a vastly more efficient al-
gorithm (Variant 4 from Figure 2) is implemented as the routines p[sd]syngst and
p[cz]hengst. These faster routines currently only support the case where the lower
triangular part of A is stored. Routines p[sd]syngst and p[cz]hengst appear to have
been derived from the work by Sears et al. There are a few subtle differences between
the algorithm used by those routines and Variant 4 in Figure 2, as illustrated in Fig-
ure 5. Expansion of each of the dark gray updates in terms of the states of A and L at
the beginning of the iteration reveals that they are identical. Likewise, the light gray
update on the right is merely an expanded version of the update A11 := L−1

11 A11L
−H
11

that could have been performed more simply via a call to LAPACK’s [sd]sygs2 or
[cz]hegs2 routines.
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Elemental. We think of Elemental as a modern replacement for ScaLAPACK and
PLAPACK [van de Geijn 1997]. It is coded in C++ in a style that resembles the
FLAME/C API used to implement the libflame library. Elemental uses a two-
dimensional elemental distribution that can be most easily described as the same
distribution used by ScaLAPACK except that (a) bdistr = 1, and (b) the algorithmic
block size is not restricted by the distribution block size. Elemental uses a more flex-
ible layering so that calls to global BLAS-like operations can be easily fused, which
means that communication overhead can be somewhat reduced by combining commu-
nications from within separate calls to BLAS-like operations. See [Poulson et al. ] for
details.
Tuning. Both packages were run with one MPI process per core using IBM’s non-
threaded ESSL library for sequential BLAS calls. For the sake of an apples-to-apples
comparison, performance of hybrid implementations is not given for either package.
Both packages were tested over a wide range of typical block sizes; ScaLAPACK was
tested with block sizes {16, 24, 32, 48, 64}, while the block sizes {64, 80, 96, 112, 128} were
investigated for Elemental. Only the results for the best-performing block size for each
problem size are reported in the graphs. In the case of ScaLAPACK, the algorithmic
and distribution block sizes are equal, since this is a restriction of the library. In the
case of Elemental, the distribution is elemental (block size of one) and the block size
refers to the algorithmic block size.
Results. In Figure 6 and 7 we report performance of the different variants for the
studied computations. We do so for the case where only the lower triangular part of
A is stored, since this case is the most commonly used and it exercises ScaLAPACK’s
fastest algorithms (the more efficient routines p[sd]syngst and p[cz]hengst are only
implemented for the lower triangular storage case). In order to lower the required
amount of compute time, all experiments were performed with real double-precision
(64-bit) data.

In Figure 6 performance for computing A := L−1AL−H is given. As expected, the
variants that cast a significant part of the computation in terms of a triangular solve
with multiple right-hand sides (TRSM) attain significantly worse performance. Variant
4 performs best, since it casts most computation in terms of a symmetric (Hermitian)
rank-2k update (A22 − (L21A

H
21 + A21L

H
21)) and general rank-k update, (A20 − L21A10),

which parallelize more naturally. Variants 2 and 3 underperform since symmetric
(Hermitian) or matrix-panel multiplies (matrix multiply where the result matrix is
narrow), like L10A00, A21 − A20L

H
10, and Y21 + L20A

H
10, require local contributions to

be summed (reduced) across processes, a collective communication that often requires
significantly more time than the simpler duplications needed for rank-k updates. Also,
the local matrix-panel multiply that underlies these parallel operations is often less
optimized than the local rank-k update that underlies the parallel implementations
of the symmetric (Hermitian) rank-2k and general rank-k updates. For Variant 4,
bdistr = balg = 32 was typically optimal for ScaLAPACK, while balg = 112 was the
almost always the best blocksize for Elemental.

We believe that ScaLAPACK’s Variant 4 is slower than Elemental’s Variant 4 for two
reasons: (1) ScaLAPACK’s implementation is layered on top of the PBLAS and there-
fore redundantly communicates data, and (2) ScaLAPACK has a hard-coded block size
for the local updates of their parallel symmetric (Hermitian) rank-2k update that is
therefore not a parameter that is easily tuned in that package (and we did not tune it
for that reason). Thus, part of the increased performance attained by parallel imple-
mentations stems from the proper choice of algorithm, part is the result of implemen-
tation details, and part comes from how easily the implementation can be tuned.
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Fig. 6. Performance of the various implementations for A := L−1AL−H on 2048 cores of Blue Gene/P. The
top of the graph represents the theoretical peak of this architecture. (The three curves for Variants 1 and 5,
which cast substantial computation in terms of a parallel TRSM, essentially coincide near the bottom of the
graph.) The legend lists the implementations from fastest to slowest for the largest problem size.
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Fig. 7. Performance of the various implementations for A := LHAL on 2048 cores of Blue Gene/P. The
legend lists the implementations from fastest to slowest for the largest problem size.
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In Figure 7 performance for computing A := LHAL is given. As can be expected
given the above discussion, Variant 4, which casts the bulk of computation in terms of
a symmetric (Hermitian) rank-2k update and general rank-k update, attains the best
performance.

5. CONCLUSION
We have systematically derived and presented a multitude of algorithms for two-sided
triangular solves and matrix multiplication. While the concept of avoiding the unscal-
ability in the traditional algorithm for A := L−1ALH was already discussed in the
paper by Sears et al., we give a clear derivation of that algorithm as well as several
other new algorithmic possibilities. For A := LHAL we similarly present several al-
gorithms, including one that is different from that used by ScaLAPACK and achieves
superior performance.

The performance improvements of Elemental over ScaLAPACK are not the central
message of this paper. Instead, we argue that a systematic method for deriving algo-
rithms combined with a highly-programmable library has allowed us to thoroughly
explore the performance of a wide variety of algorithms. Still, Elemental outperforms
ScaLAPACK even when the same algorithm is used and hence Elemental is clearly
faster on this architecture.

Exercises
To fully appreciate the FLAME methodology for deriving algorithms, one must derive
a few algorithms oneself. On the accompanying website [van de Geijn 2011], exercises
related to the operations in this article have been posted.
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