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Abstract

Fault tolerance is a necessary ingredient if Exascale supercomputers are to operate within a reason-
able power budget. Increased complexity in software is usually hidden in libraries, such as the Basic
Linear Algebra Subprograms (BLAS), thus alleviating part of the effort required to attain high per-
formance for a significant number of scientific applications and architectures. Can implementations of
the BLAS similarly support algorithm-based fault tolerance (ABFT) without sacrificing the performance
upon which applications count? We provide insight into this question by focusing on the most important
BLAS operation, the matrix-matrix multiplication (gemm). We demonstrate that ABFT can be incor-
porated into the BLAS-like Instantiation Software (BLIS) framework’s implementation of this operation,
degrading performance by only 10-15% on current multicore architectures like the Intel Xeon E5-2580
processor with 16 cores and cutting edge many-core architectures like the Intel Xeon Phi processor with
60 cores.

1 Introduction

Algorithm-based fault tolerance (ABFT) is an application-specific approach that takes advantage of special-
ized properties of the application to embed error detection and correction within the underlying algorithm.
For example, matrix operations can take advantage of ABFT by verifying a pre-proved checksum relation-
ship at the end of the calculation [1]. These ideas have been further extended to tolerate fail-stop failures
in distributed environments without checkpointing [2].

Matrix multiplication of two dense matrices (gemm) plays a key role in scientific and engineering appli-
cations, as many complex codes are built on top of linear algebra libraries (e.g., LAPACK [3], libflame [4],
ScaLAPACK [5], Elemental [6], to name a few) that internally cast a large fraction of their computations
in terms of gemm. Moreover, techniques designed for gemm can often be easily generalized to other matrix
operations. Developing a high-performance fault-tolerant gemm is therefore a crucial first step towards
creating efficient fault-tolerant linear algebra libraries and, in consequence, more reliable scientific and
engineering applications.

In [7], on-line error recovery was integrated within matrix multiplication by detecting errors after indi-
vidual blocked outer-product computations of the result. The work in [8] expanded upon the original ABFT
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paper [1] and provided the key insights that underly the current work: To implement a high-performance
gemm one must amortize the movement of O(n2) data (the matrices) over O(n3) computation. Checking
the integrity of the data similarly requires O(n2) operations. Concretely, our work demonstrated that, for
the existing architectures and the best known algorithm for gemm at that time, high performance could
be maintained. The current paper reexamines the results from [8] for the significantly more advanced
modern multicore and many-core architectures that did not exist in 2001. While the algorithm for imple-
menting gemm from [9] that underlied the work in [8] was then state-of-the-art, shortly afterwards Goto
introduced the techniques that are at the core of most recent high-performance implementations, including
those incorporated in GotoBLAS [10], OpenBLAS [11], Intel’s MKL [12], AMD’s ACML [13], and IBM’s
ESSL [14]. Since this approach exposes many more levels of blocking, a careful study of where ABFT can
be added to these implementations is in order. In addition, the BLAS-like Library Instantiation Software
(BLIS) [15, 16, 17] framework now provides a convenient infrastruction with which to evaluate and analyze
insights.

In short, the current work provides a thorough examination of how to incorporate ABFT into practical
implementations of gemm for modern multicore and many-core architectures, supporting applications that
can execute on Exascale architectures by providing fault-tolerance at the node level and demonstrating
high performance. For this purpose, we revisit gemm with the goal of providing a software layer that can
tolerate multiple errors while retaining high performance. We consider silent data corruption [18, 19] only,
which does not abort the program execution but may yield an incorrect result of the computation if not
properly addressed. Furthermore, we assume that these errors manifest themselves in incorrect results of
floating point computation. As such they can originate anywhere in the processor datapath; e.g., in the
register file, floating point units (FPUs), reorder buffer, front-end of the pipeline, or cache controller. In
this initial study, we finally assume that errors in the L1 cache memory or below are solved via conventional
error-correcting code (ECC) memory.

In the remainder of the paper, we will consider the “extended” form of gemm, C += AB, where
C ∈ Rm×n, A ∈ Rm×k and B ∈ Rk×n, though in some cases we will simplify it to the more “basic”
caseC := AB. Hereafter, we will define the problem dimension using the triple (m,n, k).

2 BLIS and Potential Errors

In this section, we briefly review how BLIS implements gemm and succinctly discuss the effects of errors
into the BLIS implementation of this operation. While this paper is self-contained, it is recommended that
the reader be familiar with [15] and [17].

BLIS implements gemm as three external loops involving two packing routines around a macro-kernel
that computes the suboperation Cc += AcBc, of size (mc, nc, kc); see Fig. 1 and the loops 3–5 there. Note
that Ac, Bc correspond to actual buffers involved in data copies, while Cc ≡ C(Ic,Jc) is just a notation
artifact, introduced to ease the presentation of the algorithm.

Internally, the macro-kernel consists of two additional loops around a micro-kernel that computes

Cc(Ir,Jr) += Ac(Ir, 0 : kc − 1) Bc(0 : kc − 1,Jr),

of size (mr, nr, kc); see again Fig. 1 and the loops 1 and 2 there. The BLIS micro-kernel is typically
implemented using assembly code or with vector intrinsics, as a loop around a rank–1 (i.e., outer product)
update; see loop 0 in Fig. 1. The remaining five loops are implemented in C.1

The performance of the BLIS implementation strongly depends on that of the micro-kernel plus the
selected blocking parameters mc, nc, kc, mr and nr. An appropriate choice of these values: i) yields a
near-perfect overlap of communication (data fetching into the FPUs) with computation; ii) loads Bc into
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Loop 5 for jc = 0, . . . , n− 1 in steps of nc, Jc = jc : jc + nc − 1
Loop 4 for pc = 0, . . . , k − 1 in steps of kc, Pc = pc : pc + kc − 1

B(Pc,Jc) → Bc // Pack into Bc

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc, Ic = ic : ic +mc − 1
A(Ic,Pc) → Ac // Pack into Ac

Loop 2 for jr = 0, . . . , nc − 1 in steps of nr, Jr = jr : jr + nr − 1 // Macro-kernel
Loop 1 for ir = 0, . . . ,mc − 1 in steps of mr, Ir = ir : ir +mr − 1
Loop 0 for kr = 0, . . . , kc − 1 // Micro-kernel

Cc(Ir,Jr) += Ac(Ir, kr) Bc(kr,Jr)
endfor

endfor
endfor
endfor

endfor
endfor

Figure 1: High performance implementation of gemm in BLIS.

the L3 cache (if there is one) when this block is packed; iii) loads Bc into the L1 cache in micro-panels
of nr columns (say Br) from inside the micro-kernel; iv) loads Ac into the L2 cache when packed; v) and,
from the micro-kernel, loads/stores C from/to the main memory into/from the file register, and streams
Br/Ac from the L1/L2 cache into the FPUs; see [15]. In practice, the BLIS implementations have been
demonstrated to deliver performance that rivals those of proprietary libraries such as Intel MKL [12], AMD
AMCL [13], and IBM ESSL [14], as well open source libraries like ATLAS [20] and OpenBLAS [11], on a
wide variety of modern computer architectures [16, 17]. Since all modern implementations of gemm are
based on the same general approach pioneered by the GotoBLAS [10], the insights in this paper can be
applied to any of these.

A key observation in [8] is that, for high-performance implementations of gemm, the cost moving data
is O(mn+mk+ kn), the cost of checking the correctness is O(mn+mk+ kn), and both overheads can be
potentially amortized over O(mnk) computation. Therefore, there is the possibility of incorporating error
checking into the data movements, much of which is explicitly exposed as packing into contiguous memory.
The question now becomes how to achieve this.

Categorizing errors. Let us analyze silent data corruption that may occur inside of BLIS and its effects.
From an abstract point of view, we will consider corruption that may occur either as floating-point data
resides in the unprotected register files or during computation with it.

The key to any high performance implementation of gemm is a careful reuse of data, in order to
amortize the cost of data movements across the memory hierarchy over a great deal of computation.
The danger of this reuse within the context of resiliency is that, through reuse, errors can propagate.
Concretely, elements of A/Ac or B/Bc that are corrupted while in the register files may be reused many
times, potentially corrupting many elements of the result C. For example, consider a single iteration of
loop 0 in Fig. 1, where the kr-th column/row of Ac(Ir, 0 : kr − 1)/Bc(0 : kr − 1,Jr) are copied into the
file register and then multiplied to update a micro-block of Cc. Each element of the kr-th column of
Ac(Ir, 0 : kr − 1) contributes to nr elements of this micro-block of Cc, and thus if a single element of this
column is corrupted during the copy operation, up to nr elements of C will be affected.

Because of this, we will consider both errors that occur during computation of C, and errors that occur
when moving matrices A and B through the memory hierarchy.
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False error detected in matrix C

Figure 2: This diagram illustrates how to detect where errors may occur, and hence which elements of
matrix C must be recomputed, using checksum vectors. Left: There is one error in C and it is detected.
Right: Two errors are in C, leading to 2 false postives.

3 Detecting and Correcting

We open this section with a brief review of the two-sided checksum-based method for gemm introduced
in [1], and the technique formulated in [21, 8] to detect soft errors and distinguish them from those intrinsic
to the use of finite precision arithmetic.

Assume for the moment that we are interested in computing the basic product C := AB. Consider
next the augmented matrices

A∗=

(
A

vTA

)
, B∗=

(
B Bw

)
, C∗=

(
C Cw

vTC vTCw

)
,

where vT and w are respectively row and column vectors with m and n random components. In the absence
of errors and in exact arithmetic, the result then satisfies C∗ = A∗B∗, and a simple mechanism to detect
an error is to verify whether

‖d‖∞= ‖Cw −A(Bw)‖∞ > 0 or
‖eT ‖∞= ‖vTC − (vTA)B‖∞> 0.

(1)

Here, d and eT are referred to as the left and right checksum vectors respectively, yielding a two-sided error
detection method. Note that in case w is orthogonal to one of the rows of B or vT is orthogonal to one
of the columns of A, a one-sided error detection method is not guaranteed to detect an error if A or B is
corrupted. However we consider this unlikely to occur in practice, and we assume that this will not occur.

In a real scenario, round-off error occurs and the previous criteria are modified in to declare an error if

‖d‖∞> τ‖A‖∞‖B‖∞ or

‖eT ‖∞> τ‖A‖∞‖B‖∞,
(2)

where τ = k u, and u denotes the unit round-off of the machine [21, 8], and k is the inner dimension of the
matrix multiplication.

The location of the errors may be determined by inspecting the entries of d and eT Concretely, if the
j-th entry of vector d satisfies |dj | > τ‖A‖∞‖B‖∞ = ρ, there is a significant error somewhere in the jth

column of C. Similarly if |eTi | > ρ, there is an error somewhere in the ith row of C. Then, each error
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will occur at some combination of i and j coordinates, but there may be false positives, as illustrated in
Figure 2.

Handling C += AB. When performing the “basic” operation C := AB, the checksum detection scheme
introduced in the previous section is sufficient. In this case, those parts of C that may be corrupted can
be simply recomputed. However in case of the more complicated operation C += AB, two additional
problems arise. First the checksum approach simply does not apply to this operation; it only applies to
the basic operation. Secondly, if a corrupted (intermediate) result is added to some element of the matrix
C, then it may be impossible to recover that element of C. We present two methods to deal with these
issues.

First, one can perform the operation Ĉ := AB, using checksum vectors to test the correctness of this
operation. If no error was detected, Ĉ is next added to the original matrix C. A second possibility is to
checkpoint (i.e., copy) C as Č := C. Next, perform T := AB and C += T with errors detected during the
computation of T := AB. If errors occur, C can be rolled back by performing C := Č, and restarting the
operation.

Comparison with conventional ABFT. Traditional approaches for ABFT often involve estimating
the difference between a corrupted result from an operation and the correctly computed result, and then
subtracting that difference from the corrupted result to yield the correct result. We chose a simpler
checkpoint and restart approach for two reasons. First, we have concerns that subtracting the estimated
error from the computed result may give rise to numerical stability issues, mainly due to catastrophic
cancellation. Second, in such schemes, it is necessary to determine exactly both what the errors are and
where they occurred. Such schemes may either fall apart or require extra checksums to account for multiple
errors occurring in the same row or column of the result, for instance when an error occurs in Ac or Bc and
propagates respectively corrupting several elements in a row or column of C. In contrast, our approach
can tolerate multiple errors in the same row or column of C. At worst, these lead to false positives, and
require the recomputation of uncorrupted elements of C.

4 Practical Solutions

Balancing the costs of fault tolerance. Computing d and eT in (1) in the two-sided checksum-based
method requires a total of six matrix-vector products (gemv), for a cost of 4(mn+mk+kn) floating-point
arithmetic operations (flops), plus the matrix norms involving A and B to verify (2), for an additional
mk + kn flops. (Hereafter, we neglect lower order terms in the costs.) Therefore, the overhead of this
two-sided error detection mechanism, relative to the total problem cost, is given by:

Od(m,n, k) =
4mn+ 5mk + 5kn

Oc(m,n, k)
=

4mn+ 5mk + 5kn

2mnk
,

where the denominator Oc(m,n, k) also equals the cost of an error correction mechanism which recovers
from an error by simply recomputing the complete product. Provided m,n, k are large, the overhead of
checking whether an error occurred is thus negligible compared with the 2mnk flops of gemm. Notice that
the true cost of the checksums is due more to data movements than the flops involved, so we will take
advantage of the data movements that naturally happen in gemm to reduce these costs.

This general approach has to be performed “off-line”, that is, once the matrix multiplication is com-
pleted. Thus, in case an error is detected, the operation has to be completely repeated. Furthermore, the
extended multiplication C += AB requires the original contents of C to be kept (see section 3), in case an
error is detected and it becomes necessary to restore the data. For large problems, this extra workspace
can be prohibitive.
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Inside Loop Required Od and Oc
loop index workspace depend on

5 jc m× nc (m,nc, k)

4 pc m× nc (m,nc, kc)

3 ic mc × nc (mc, nc, kc)

2 jr mc × nr (mc, nr, kc)

1 ir mr × nr (mr, nr, kc)

0 kr mr × nr (mr, nr, 1)

Figure 3: Analysis of the costs of the fault tolerance mechanism depending on the layer where/ loop inside
which it is applied.

Fortunately, the multi-layered organization of the BLIS gemm allows the application of the checksum
technique at different levels (i.e., within different loops), trading off workspace and error correction cost
for error detection overhead. In particular, inside each loop, the original BLIS algorithm updates a certain
part of C using certain blocks of A and B, say Cp += ApBp of dimension (mp, np, kp). Therefore, we
can compute Ĉp := ApBp using the workspace Ĉp, and update Cp if no error is present. Alternatively, we
can perform the following operations: (1) Čp := Cp, (2) T := ApBp, and (3) Cp += T , so that we can
always roll Cp back to Čp if an error is present. These techniques require mp × np elements as additional
workspace, for Ĉp or Čp. It may appear that it requires workspace for T as well, but we will later discuss
how to fuse these three operations such that T is not explicitly formed. Both alternatives also incur an
extra cost for error recovery (correction) of Oc(mp, np, kp) flops and present a relative overhead incurred for
the error detection mechanism of Od(mp, np, kp). Fig. 3 details these costs when applied to the indicated
loop of the BLIS gemm.

We emphasize that supporting the extended operation Cp += ApBp is absolutely vital when accommo-
dating fault tolerance at some layer within a rank-k update, even if the unpartitioned operation corresponds
to the “basic” operation C := AB, as the second and subsequent rank-k updates will always add to C.

Focusing on the Third Loop. Whether the overhead costs in Fig. 3 are acceptable or not strongly
depends on the problem dimensions as well as the concrete values of the five BLIS blocking parameters.
Consider for instance the Intel Xeon E5-2680 target processor (the Intel Xeon Phi Knight’s corner has
a similar story): (mc, nc, kc) = (96, 4096, 256) and (mr, nr) = (8, 4) This particular value of nc likely
turns the checksum approach at the two outermost Loops (Loops 5 and 4) too expensive from the point
of view of workspace, as they both require storage for m × nc = m × 4, 096 numbers. Furthermore,
the small values of mr and nr make the detection of errors inside the innermost three Loops (Loops 2,
1, and 0) relatively expensive due to the high overhead for detection they would incur. Therefore, the
only reasonable choice for this particular architecture is to apply the error recovery mechanism inside
the macro-kernel (Loop 3), that is, when Cc += AcBc is computed. This choice balances a moderate
workspace (96 × 4, 096 numbers), with reasonable error correction cost, and a low relative overhead for
error detection: Od(mc, nc, kc) = (4mcnc + 5mckc + 5kcnc)/(2mcnckc) ≤ 5/mc = 5/192 ≈ 2.6%. Note that
the memory operations (memops) are more costly than the flops when performing the checksums. As we
detail next, this cost can be reduced if, e.g., we reuse the matrix norms for Ac, Bc or the results of certain
gemv products.

Figure 4 shows a fault-tolerant version of BLIS gemm, with the changes with respect to the original
algorithm highlighted in colors: red for the computation of the right checksum vector; blue for the com-
putation of the left checksum vector; and green for those parts involved in error recovery. We next review
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Loop 4 for pc = 0, . . . , k − 1 in steps of kc, Pc = pc : pc + kc − 1
Loop 5 for jc = 0, . . . , n− 1 in steps of nc, Jc = jc : jc + nc − 1

B(Pc,Jc) → Bc // Pack into Bc plus simultaneous
db := −Bc · w // right checksum

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc, Ic = ic : ic +mc − 1
A(Ic,Pc) → Ac // Pack into Ac plus simultaneous
d := Ac · db (= Ac ·Bc · db) // right checksum

Loop 2 for jr = 0, . . . , nc − 1 in steps of nr, Jr = jr : jr + nr − 1 // Macro-kernel Ĉc = Ac ·Bc

Loop 1 for ir = 0, . . . ,mc − 1 in steps of mr, Ir = ir : ir +mr − 1
T = Ac(Ir, 0 : kc − 1) · Bc(0 : kc − 1,Jr) // T resides in registers
d(Ir) += T · w(Jr) // Update right checksum: d = T · w −Ac ·Bc · w
eT (Jr) := vT (Ir) · T // Update left checksum: eT = vT · T − vT ·Ac ·Bc

Čc(Ir,Jr) := Cc(Ir,Jr) // Perform checkpoint: Čc := Cc

Cc(Ir,Jr) += T // Update C
endfor

endfor
if (‖d‖∞ > τ‖A‖∞‖B‖∞)
eTa := vT ·Ac // left checksum
eTab(Jr) := eTa ·Bc(0 : kc − 1,Jr)
Detect error locations using checksum vectors d and (eT - eTab), and record these locations
Roll back corrupted elements of C using Č
If one entire column of C has been corrupted, repack Bc

endfor
endfor
For every corrupted micro-kernel of C, recompute C(Ir,Jr) += A(Ir, 0 : kc − 1) ·B(0 : kc − 1 : Jr)

endfor

Figure 4: Our high performance implementation of gemm in BLIS with integrated fault tolerance after
applying the optimizations of lazy left checksums, lazy recomputation, checkpointing C, and repacking B.

each one of this parts in detail.

Right checksum. We start by noting that db and d are small column vectors, of dimension kc and mc

respectively. The two gemv products involved in this checksum, db := −Bcw and d := Acdb, can be
performed when the corresponding blocks, Bc and Ac, are packed and, implicitly, loaded into the L3 and
L2 caches, respectively. In BLIS, packing is a memory-bound operation and, therefore, we can expect
that adding a gemv to it has no real effect on its execution time. In the gemv with Bc, the cost of this
operation is furthermore amortized over the iterations of Loop 3 (i.e., several executions of the macro-
kernel), amortizing the cost of this larger gemv over more computation. Similar arguments hold for the
computation of ‖Bc‖∞ and ‖Ac‖∞.

Each execution of the micro-kernel computes a contribution Cc(Ir,Jr) to be accumulated into the
corresponding micro-block of Cc if the global result passes the checksum test. We exploit that, after
the execution of the micro-kernel, Cc(Ir,Jr) is available in the processor registers to compute the gemv
d(Ir) += Cc(Ir,Jr)w(Jr) as part of the computation d := Ccw (−AcBcw). Unlike the packing operations,
this gemv is not embedded into a memory-bound operation and its cost is explicitly exposed. However,
we expect its impact to be negligible, since it requires 2mcnc flops compared with the 2mcnckc flops of the
macro-kernel, with kc in the range of 256.

Left checksum. In this case, eTa and eT are both small row vectors of dimension mc. The computation
of this checksum follows the same ideas just exposed for its right counterpart, but in this case the vector
w is first multiplied by Ac and then by Bc. Because of this, the fault-tolerance overhead is greater. While
for the right checksum case, the gemv operation can be used across multiple iterations of Loop 3, now
both gemv operations must be performed inside of the body of Loop 3.1 Thus, the relative overhead

1Notice the benefit of how BLIS is structured: in the GotoBLAS and OpenBLAS implementations of gemm, the macro-
kernel is typically assembly coded, making it difficult to add the kind of changes we are now discussing.
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introduced by the gemv involving Bc is no longer amortized over several macro-kernels, and is roughly
given by 2kcnc/(2mcnckc) = 1/mc = 1/96 ≈ 1.04%. The operation eTaBc cannot be performed during a
packing operation, increasing its cost further.

Because the left checksum is more expensive than the right checksum, it is preferable to avoid computing
the former. Since it is possible to detect errors using only the right checksum, when an error is detected
with this mechanism, the left checksum can be obtained in order to locate where the error occured. During
normal operation, no errors are expected to occur, and the fault-tolerant gemm will thus be more efficient.
Proceeding in this manner, we shift part of the cost from error detection to to error correction. We call
this approach the lazy left checksum.

Preventing false negatives. Performing these checksums while packing can be dangerous, since if A or
B is corrupted while it is in some unprotected layer of memory, that same corrupted A or B can be both
copied into Ac or Bc and used to compute the left or right checksum. This could result in a false negative.
A way to prevent this from happening is to read A or B from the fastest protected memory layer twice:
Once for packing, and once for computing the checksum. This has a larger performance impact the fewer
levels of memory that are protected.

Handling C += AB. We will now discuss the costs and tradeoffs of the two options for handling the
extended gemm operation C += AB when injecting fault tolerance at the third loop.

The first option is to check for errors before accumulating Ĉc into the final block of C in order to
prevent corruption of the result. There are a couple of problems with this approach. (1) Since Ĉc is a larger
mc×nc buffer we can expect its contents to lie low in the memory hierarchy. The update C(Ic,Jc) += Ĉc
is therefore a memory-bound operation. (2) If this operation is performed all at once, it may disturb the
contents of the caches. Notice the following: Ĉc is mc×nc. Bc is nc×kc, mc is typically on the same order
of magnitude of kc, and thus Bc and Ĉc are of similar size. If there is an L3 cache, nc and kc are chosen
such that Bc occupies a large fraction of it. Because of this, the operation C(Ic,Jc) += Ĉc is likely to
bump large portions of Bc out of the L3 cache. The takeaway is that in the GotoBLAS approach, Bc is
designed to reside in the L3 cache and then reused across many macro-kernels. However if this option is
used, Bc will have to be re-read from main memory for each macro-kernel that uses it.

The other option is to checkpoint Cc into Čc, perform T := AcBc, and then Cc += T . These three
operations can be fused during the BLIS micro-kernel in order to reduce memory movements. The micro-
kernel computation, Ĉc(Ĩr, J̃r) := Ac(Ĩr, 0 : kc − 1)Bc(0 : kc − 1, J̃r) is generally implemented as a block
dot-product T := Ac(Ĩr, 0 : kc − 1)Bc(0 : kc − 1, J̃r) followed by the update C(Ĩr, J̃r) += T , where the
mr × nr matrix T resides in registers only. Thus, at the same time that C(Ĩr, J̃r) is brought into registers
to update T , it can also be used to checkpoint Č(Ĩr, J̃r). Thus the only extra memory movements needed
for this technique are an extra mc × nc elements of Cc that must be written to Čc. Since each element
of Čc is only used once during each macro-kernel, it most likely lies high in the memory hierarchy, and
possibly in main memory. Thus this approach saves mc × nc elements that do not need to be read from
main memory per macro-kernel as compared to the first approch. The disadvantage is that recovering from
an error now requires the corrupted elements of C to be rolled back. However, as errors are expected to
be relatively rare, the second aproach may be preferred, as it is cheaper when detecting errors.

Error correction. Detecting errors at the macro-kernel level, via the checksum vectors, while computing
the product with the granularity of a micro-kernel opens the door to a selective error recovery method. For
example, a single error in a single entry of d(Ĩr) combined with an error in a single entry of eT (J̃r) points
in the direction of a problem during the micro-kernel computation Cc(Ĩr, J̃r) := Ac(Ĩr, 0 : kc − 1)Bc(0 :
kc − 1, J̃r). We can therefore recompute only that specific result, if we consider that to be an indivisible
unit of computation (which it is the way BLIS is structured). This implies that error detection roughly
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comes with the overhead Od(mc, nc, kc) (as we explained in this section, it is actually lower if we reuse
some of the operations), but the cost of error correction is reduced from Oc(mr, nr, kc) to Oc(mc, nc, kc).

The presence of one (or multiple) corrupted item(s) in d(Ĩr), but one (or multiple) corrupted item(s) in
two blocks eT (J̃ 1

r ), eT (J̃ 2
r ) will require the recomputation of two micro-kernels. If the errors occur in two

blocks d(Ĩ1
r ) and d(Ĩ2

r ) and two blocks eT (J̃ 1
r ), eT (J̃ 2

r ), then four micro-kernels have to be recomputed,
and so forth

On the other hand, nothing prevents us from being more aggressive in the error correction strategy in
case of single (or few) errors per micro-kernel. An error in a register holding a value for Cc(Ĩr, J̃r) will
appear as single corrupted elements in both d(Ĩr) and eT (J̃r). A single error in a register holding a value
of Ac(Ĩr, 0 : kc − 1) will corrupt a full row2 of Ĉc(Ĩr, J̃r) and all entries of d(Ĩr). Analogously, a single
error in a register holding a value of Bc(0 : kc − 1, J̃r) will corrupt an entire column of Cc(Ĩr, J̃r) and all
of eT (J̃r). In all these three cases we can recompute only the corrupted entries of Cc(Ĩr, J̃r), as dictated
by the specific corrupted entries of d(Ĩr) and eT (J̃r).
Repacking A or B. It is important that errors in either Ac or Bc do not propagate corrupting more ele-
ments of the result than necessary. Thus, we must detect which elements of Ac or Bc may be corrupted and
repack them. An alternate solution is to use the original buffers containing A or B during recomputation.

When detecting and correcting errors at the macro-kernel level, by the time that errors are detected
and corrected, Ac is no longer used and the buffer containing the packed block of Ac has been recycled to
store the next block of A. This suggests that Cc be recomputed by using the original matrix A rather
than repacking A. On the other hand Bc is reused many times after errors in it are detected, so repacking
corrupted elements of Bc is beneficial to prevent errors from also occuring in future iterations of Loop 3.

While one cannot determine for certain if an element of Ac or Bc is corrupted, if (for instance) an entire
column of Cc is corrupted, in such scenario it is most likely that an element of Bc was corrupted, rather
than each element of Cc having been corrupted independently.

5 Multithreaded Parallelism

Much like the structure of the BLIS implementation allows one to systematically reason about where
to insert a mechanism for fault tolerance, it also allows one to systematically reason about how to add
thread-level parallelism, as discussed in [17]. In that paper, it is also demonstrated that, for many-core
architectures, it is beneficial to parallelize multiple loops, including at least one loop that iterates along
the m dimension of the problem and one that iterates along its n dimension. We now discuss how to
merge these ideas with the proposed mechanisms for fault-tolerance. This creates constraints on where
parallelism can be introduced because the presence of checksum gemv operations introduces dependencies
between iterations of some loops.

Loops to parallelize. Let us revisit Fig. 1. Parallelizing Loop 4 is not desirable [17], since then partial
results must be computed, stored, and summed. For this reason, hereafter we focus on the other loops,
taking into account that dependencies may appear if iterations of a loop share a checksum vector:
Loop 5. For Loop 5, all the fault tolerance happens within it: each iteration of the loop calls fault tolerant
operations. Thus, this loop can be trivially parallelized.

2This is true if the error occurs immediately after that particular entry of Ac(Ĩr, 0 : kc − 1) is loaded into the register, but
before it is used, and persists as long as that data item is in the register. If the error occurs when it value already loaded in
the register and used in part of the update of Cc(Ĩr, J̃r), then the corrupted data will only appear in a few elements of the
same row of the latter. A similar comment holds for the errors in the registers holding Bc(0 : kc − 1, J̃r) and the columns of
Ĉc(Ĩr, J̃r).

9



Loop 3. If Loop 3 is parallelized, then all the threads compute the checksum db := −Bcw during the
operation that packs Bc. This packing is performed in parallel by the BLIS framework. Therefore, it is
important that the fused pack and gemv operation are parallelized along rows; if the operation is instead
parallelized along columns, each thread will update all of the entries of db, requiring either a reduction
or mutex synchronization. Now, each iteration of Loop 3 uses different parts of A, different parts of C,
and performs its own checksums using parts of A and C. Furthermore each iteration performs its own
independent recomputation of C if an error has occurred. This means that no other race conditions are
introducing during the update of checksum vectors, except that, if Loop 3 is parallelized, each thread must
have its own independent checksum vectors d and eT .
Loop 2. If Loop 2 is parallelized, then all threads collaborate in the concurrent packing of Bc, as discussed
for Loop 3, as well as the operations that pack the mc×kc block of Ac and perform the checksum operations
d := Acdb and eTa := −vTAc. Notice that there are two dimensions along which the loops iterate: mc and
kc. Each iteration of the loop along the mc dimension updates the entire vector eTa , and each iteration of
the loop along the kc dimension updates the entire vector d. Thus, there are no independent dimensions
over which to parallelize this operation, and either a reduction or a mutex is required for updating either
eTa or d, depending on which loop is parallelized. Because of this, one ancillary benefit of computing the
left checksum only if an error is detected by the right checksum is that the synchronization when updating
eTa can be avoided. If only the right checksum is computed during the packing of Ac, then the loop that
iterates over mc can be parallelized.

Next, notice that each iteration of Loop 2 updates the entire vector d inside of the micro-kernel.
Thus, the iterations of this loop are still dependent, and either a mutex or a reduction must be employed
when updating d. There are no other potential race conditions when updating checksum vectors, as each
iteration of Loop 2 updates different parts of eT inside of the micro-kernel. Furthermore, each iteration of
Loop 2 updates a different part of C. When parallelizing Loop 2, notice that each thread parallelizes the
recomputation of C if an error has occurred.
Loop 1. If Loop 1 is parallelized, all thread will participate in the concurrent packing of Bc and associated
operations, as discussed in the bullet point on Loop 3. Also, all thread will collaborate to pack of Ac and
associated operations and recompute C, as discussed in the bullet on Loop 2.

In addition, each iteration of this loop updates the entire checksum vector eT , introducing potential
race conditions that must be avoided, but this is not an issue if the left checksums are performed lazily.
Summary. Loop 5 can always be trivially parallelized, and Loop 3 can be parallelized as long as care
is taken when packing Bc. When parallelizing Loop 2, care must be taken to avoid race conditions when
updating d inside of the micro-kernel, and care must be taken to avoid race conditions when packing Ac.
When parallelizing Loop 1, care must be taken to avoid race conditions when updating eT inside of the
micro-kernel, but this is not an issue when the lazy left checksum optimization is employed.

Load imbalance caused by error correction. Delays and load imbalance among threads may occur
if one or more threads encounter errors and those threads recompute while other threads have to wait. If
the recomputation is done as soon as errors are detected this happens within Loop 3 of our algorithm, at
the end of each iteration. If the lazy left checksum is computed, this operation will also take place within
Loop 3, just before the recomputation is performed. If loops 3, 4, or 5 are parallelized and, for example,
a single error occurs, then one thread will perform the recomputation, while the remaining threads will
have to wait for it to finish. On the other hand, if loops 1 or 2 are parallelized, even if only a single thread
encounters an error, all the threads parallelizing those loops will participate in the recomputation.

It is desirable to parallelize loops 3 and 5, and to do so without introducing load imbalance upon
error recovery overhead. To this end, we introduce the lazy recomputation of the parts of C that were
calculated incorrectly. The goal of the lazy recomputation is to “push” the recomputation to the outer
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loops, instead of performing it inside Loop 3. Thus the goal is to delay performing the recomputation of
parts of C += AB, so that more threads can participate in the recomputation. The advantage of this
approach is better load balancing. In contrast to lazy recomputation, we will refer to the scheme that
performs recomputation as soon as errors are detected as the greedy recomputation.

There are a couple of weaknesses to this lazy recomputation approach. First, the lazy left checksum,
the identification of where the errors happened, the repacking of Bc, and the roll-back of the C to Č are
still performed immediately upon encountering an error and this is done inside of Loop 3. Thus there is
still some load imbalance that may occur, since these operations will not be performed in cooperation by
all threads and some load imbalance will still occur. Second, a disadvantage of the lazy recomputation is
that putting off the recomputations for later means that they must be performed cold. That is, when the
error is first detected, Ac is still in the L2 cache, and Bc is still in the L3 cache (However it is possible
that one or both of Ac or Bc has corrupted elements and must be repacked). By performing the lazy
recomputation later, A or B will no longer be packed and will no longer be in cache, so the recomputation
will be less efficient.

Swapping the two outermost loops. If the lazy recomputation is performed after Loop 3, then it is
possible to remove any load unbalance caused by recomputation that may arise when parallelizing Loop 3,
but this load imbalance will still occur when Loop 5 is parallelized instead. Thus it is desireable to perform
the lazy recomputation outside of Loop 5, however this means that the recomputation will be done across
multiple rank-k updates. This introduces a couple of small challenges. First, the recomputations from
different rank-k udpates will happen concurrently, leading to potential race conditions if an element of C
must be recomputed across multiple rank-k updates. Second, BLIS scales C by β inside of the micro-kernel,
so the first rank-k update uses the β passed in by the user invoking gemm, and subsequent rank-k updates
use β = 1. This can create difficulties because C must first be scaled by β before it is updated, and each
rank-k update uses a different β.

There are several solutions to the above problems but we believe the simplest is to swap loops 4 and 5.
Proceeding in this manner, we can parallelize the outermost loop over the n dimension, while performing
the lazy recomputation after it has finished, all while doing all of this within a single rank-k update to
avoid the above issues. This yields an algorithm that slightly deviates from the one used in the GotoBLAS
approach [10], but the resulting algorithm is still one that belongs to the family of high performance
algorithms that follows a locally optimal cache blocking scheme investigated in [9]. The main difference is
that the next panel of B to work on is the one next to the current panel of B rather than the one below.
We do not expect this to have an appreciable impact on performance.

6 Experiments

We report results on a dual socket system with two eight core Sandybridge (SNB) processors as well as an
Intel Xeon Phi Knight’s Corner (KNC) coprocessor.

Implementation. The described mechanisms were added to the BLIS framework, using modified versions
of the standard micro-kernels and the blocking parameters reported in [16]. As mentioned, the standard
implementations of BLIS are highly competitive.

The following decisions were made regarding the implementation of the detection and correction mech-
anism: (1) Our implementation handles the extended gemm operation using the approach that checkpoints
C before updating it, as described at the end of Section 4, because that approach requires less bandwidth
from main memory when no error occurs; (2) The implementation always uses the lazy left checksum
approach because performance results suggest that the cost of error detection outweighs the cost of error
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Figure 5: Performance of BLIS vs. prototype implementation of the routine with an embedded fault-
tolerant mechanism on an Intel Xeon E5-2680, when no errors are introduced. k is fixed to 256 for all three
graphs. Left: Cost of detecting errors; Middle: Breakdown of costs (1 core); Right: Breakdown of costs
(16 cores).

correction in most cases; (3) We swap Loops 4 and 5 to place the lazy recomputation outside of the
outermost loop over the n dimension for load balancing reasons. With these decisions, the algorithm we
use for our experiments is shown in Fig. 4. We note that we did not take the precaution mentioned in
Section 4 to prevent false negatives for the Intel Xeon E5-2680, but for the KNC, A and B were read from
the assumed to be protected L1 cache twice. This had very little impact on performance.

How to read the graphs. The tops of the graphs represent theoretical peak performance. In some
graphs we use problem sizes with fixed k, varying m and n, where k is the algorithmic block size, kc. Such
gemm cases are often encountered in, for example, LAPACK implementations. Furthermore, our fault
tolerant mechanisms occur entirely within each rank-k update, so the costs of the fault-tolerance do not
change significantly once k is greater than or equal to kc = 256 (see Fig. 3), making it more interesting to
see how the costs of performing the checksums change with varying m and n. The rate of computation in
GFLOPS uses the standard 2mnk flop count.

Experimental results for a conventional CPU. We now examine the overheads of our fault-tolerant
BLIS implementation on SNB. We first examine the costs associated with error detection when no errors
occur. In Fig. 5 we report the overhead of the error detection mechanism (labeled with “BLIS-FT”) when
no errors are introduced, both for a single core and for two SNB processors with eight cores each. These
overheads result from the computation of the checksum vectors and the checkpointing of C. This shows
that the overhead of fault-tolerance is in the 10% range for both the single and multi-threaded cases, once
the problem size is reasonably large. Fig. 5 also breaks those costs down further, showing the overhead if
either the checksum vectors are computed or the checkpointing of C is performed. This graph demonstrates
that these two costs involved in error detection are roughly equal. Furthermore, this is the case both in
the single-threaded case and the multi-threaded case, so performing the checkpointing of C is not causing
the gemm operation to be bandwidth limited, at least with 16 threads.

We will now examine the effects of performance when one or more errors are introduced into various
stages of the computation. In Fig. 6 (left), we illustrate the impact on performance when between one
and ten errors are artificially introduced into matrix C and then detected and corrected, with a single
thread. These errors were injected in such a way that there were no false positives in recomputation. The
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Figure 6: Left: Performance of BLIS vs. prototype implementation of the routine with an embedded fault-
tolerant mechanism on an SNB, when between 1 and 10 errors are injected into C during computation.
Middle: Impact on performance when an error is encountered in Ac or Bc. k is set to 256. Repacking
Bc reduces the impact of the error on performance because it reduces the number of entries in C that
need to be recomputed. Right: Impact on performance when correcting a single error encountered when
packing Bc. k is set to 256. The error is only encountered by a subset of the threads, and this may result
in load imbalance. The lazy recomputation helps alleviate this load imbalance when multiple errors are
encountered.

performance impact for recomputation is relatively low even for small matrices. The gap between the curve
with no errors and the curve with a single introduced error is greater than the gap between the single error
curve and the 5 error curve, and it is still greater than the gap between the single error cuve and the
10 error curve. That this is true, even though the 10 error curve has ten times more work to do during
rollback and recomputation, suggests that other costs that are associated with detecting an error can be
more costly than recomputation. The largest such cost is the left checksum.

In Fig. 6 (middle), we report the performance impact when a single error is artificially introduced during
a packing routine, and then detected and corrected after that error propagates, corrupting potentially
hundreds of elements of C. If an error is introduced into Ac, this will corrupt min(n, nc) elements of
C that must be rolled back and recomputed. In this case, an entire row of C will be corrupted, since
nc = 4096, the maximum size for n in this experiment. This is illustrated in the curve labeled “FT, 1
error in Ac”. Next, if an error is introduced in Bc, this could potentially corrupt an entire column of C.
This is illustrated in the curve labeled “FT, 1 error in Bc”. Now the amount of recomputation that must
occur changes with the problem size. Furthermore, it will cause errors in many macro-kernels, and each
time a macro-kernel with error is performed, the left checksum must be performed and the locations of
these errors must be determined and recorded since the recomputation is performed lazily. We believe it
is these operations that account for the difference in performance between the lines labeled “FT, 1 error
in Ac” and “FT, 1 error in Bc”, even though at the right-most datapoint in the graph they have the same
amount of rollback and recomputation. It is possible to detect if an error has occurred in Bc after a single
macro-kernel execution, and then repack Bc if this has happened. In this case, a maximum of mc = 96
elements may be corrupted. This is illustrated in the curve labeled “FT, 1 error in Bc, with repack”. A
large performance advantage is seen due to this optimization of repacking Bc, as fewer errors must be
corrected, despite the extra time spent in repacking Bc. It may be possible to repack only select elements
of Bc if an error is detected in it, but in this experiment, we repacked the entire Bc.
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Figure 7: Performance of BLIS and a prototype implementation of the routine with an embedded fault-
tolerant mechanism on KNC. Partial fault tolerant implementations that show the breakdown of the costs
of the fault-tolerant mechanism are dotted. Performance when one error is introduced in the computation
of C is also shown.

In Fig. 6 (right), we report performance when introducing errors into Bc using both lazy and greedy
recomputation. Here we do not repack BC to demonstrate the case where many errors are encountered by
one or only a few of the threads. In this experiment, we parallelized Loop 5 with eight threads, and Loop 3
with two threads. Thus, Bc will be shared by each pair of threads parallelizing Loop 3, and corrupt a
single column of C. With greedy recomputation, only one pair of threads will perform the recomputation
of that corrupted column, while the other threads wait. In contrast, with lazy recomputation all eight
pairs of threads will perform that recomputation, yielding much better performance. This demonstrates
that lazy recomputation can be very effective in reducing the load imabalance that may occur when few
threads encounter many errors.

Experimental results for a many-core coprocessor. We now examine the overheads of our fault-
tolerant BLIS implementation on KNC. In Fig. 7, we show the regular BLIS implementation of gemm,
alongside a prototype fault-tolerant implementation. In both implementations, we used 60 cores3, paral-
lelizing Loop 3 with 15 threads, and Loop 2 with 16 threads. (Each core must use four hyperthreads for
high performance.) This graph demonstrates that our error detection mechanisms scale to a many-core
architecture. We break down performance further and show that the overhead of performing checksums
is relatively minor, and the overhead of performing checkpointing is even smaller. It is interesting that
performing checkpointing can have such a low overhead on an architecture with so many threads, despite
the extra bandwidth to main memory that this entails.

It was important to use streaming store instructions such as vmovnrapd during the checkpointing to
attain high performance. The curve “FT neither” is the prototype fault-tolerant implementation of gemm

3Our KNC has 61 cores, however 60 cores are usually employed in practice.
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with neither checkpointing nor checksums performed. The fact that this curve is much slower than the
normal BLIS implementation suggests that there are inefficiencies in our foult-tolerant prototype (e.g.
extra barriers and memory allocations) that can be removed, and thus performance can be closer to that
of the regular implementation, especially for smaller problem sizes.

In this graph, we also report the performance exhibited when we introduce errors during the execution
of a single micro-kernel. In our experiment, we corrupted an 8 × 1 row of a single micro-tile of C during
computation. Our prototype implementation performs recomputation on the granularity of a micro-kernel,
and so a single 8×30×240 matrix multiplication was performed for the recomputation. This recomputation
was performed by a single thread, and it was implemented with an inefficient triply nested loop, so our
implementation of it can still be improved. However this was an extremely small amount of computation
in the context of a 14400× 14400× 240 gemm. This suggests that while our lazy recomputation solution
to load imbalance problems works in the context of a multi-core system where one core encounters many
errors, it does not help load imbalance problems in the context of a many-core system where only one error
is encountered. This indicates that we should use dynamic parallelism to solve this load imbalance.

7 Conclusion

In this paper, we have analyzed how algorithm-based fault-tolerance can be integrated into a modern
framework, BLIS, for the sequential and multi-threaded implementation of matrix-matrix multiplication.
A key observation for attaining high performance is that the matrix-vector multiplications that underlies the
computations of checksum vectors can be done simultaneous with the packing of data that is inherent in the
BLIS framework. This overcomes the need for bringing data in from main memory more often than already
necessary for the standard implementation of gemm. Other innovations include a technique to increase
load balancing by performing recomputations lazily, performing checkpointing while C is in registers to
reduce the bandwidth requirements, and the technique of lazily performing some error detection operations
to reduce the overhead of error detection.

The presented work leaves much work to be done. The BLIS framework implements all BLAS. Im-
portantly, how BLIS implements the other matrix-matrix operations (level-3 BLAS) closely resembles how
gemm is implemented. Thus, the insights we give in this paper likely extend to fault-tolerant implemen-
tations of these other closely related operations. Beyond this, the level-3 BLAS are used in higher level
matrix operations like the various decompositions. Can the techniques be extended to these? How can
fault-tolerance be included in the other parts algorithms for implementing these higher level operations,
or applications that utilize BLAS?

We made severe restrictions on where we allow errors to be introduced. Errors can only occur when
data is either in registers or while it is moving through the CPU’s functional unit, and we assume all data
in caches and main memory is safe. Furthermore, we only consider errors that occur during the execution
of the micro-kernel or during the packing routines. We did not consider errors that can occur during
checkpointing, roll-back, or recomputation. Expanding upon this work may lead to a robust, fault-tolerant
BLAS library, which would be an important component of a more comprehensive fault-tolerant solution.
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